
DISTRIBUTED CONSTRUCTION OF RESOURCE-EFFICIENT OVERLAY TREE BY
APPROXIMATING MST

Yuan Li
School of Computing

National University of Singapore,
email: liyuan@comp.nus.edu.sg

Wei Tsang Ooi
School of Computing

National University of Singapore,
email: ooiwt@comp.nus.edu.sg

ABSTRACT

This paper presents a distributed protocol called RESMO
for constructing overlay tree to support video streaming ap-
plications. RESMO reduces network resource usage by ap-
proximating minimum spanning tree and achieves low end-
to-end latency between the sender and each receiver at the
same time. The resulting overlay is a compromise between
overlay minimum spanning tree and shortest path tree. We
evaluated the tree constructed by RESMO through simu-
lations, and found that RESMO gives significant improve-
ment over existing protocols in terms of link stress, relative
delay penalty and resource usage.

1. INTRODUCTION

IP multicast allows efficient one-to-many data delivery by
eliminating data duplicates on network links. However, due
to scalability issues, it is still not widely deployed. In recent
years, many application-layer multicast (ALM) protocols
[1–6] have been proposed as an alternative method for one-
to-many communication. In ALM, routing and data for-
warding is carried out at the application layer instead of the
network layer. The multicast tree in ALM (also known as
overlay tree) is a virtual delivery tree built on top of under-
lying network where each edge consists of a unicast route
between two overlay nodes. Unlike IP multicast, ALM may
introduce duplicate packets on physical links. Chu et. al. [2]
defined the following metrics to evaluate the efficiency of
overlay trees: (a)link stress: number of duplicate packets
carried by each link, (b)resource usage:

∑L
i=1 di∗si where

L is the number of active physical links covered by the over-
lay tree,di is the delay of linki andsi is the link stress of
link i, and (c)relative delay penalty(RDP): the ratio of the
delay between the source and a receiver along the overlay
tree to the unicast delay between them.

In order to disseminate real-time multimedia data effi-
ciently, an overlay tree needs to have low end-to-end de-
lay between the sender and each receiver. Furthermore,
due to the bandwidth intensive nature of multimedia data,
constructing a tree with low resource usage is important.

Since resource usage is equivalent to the sum of the virtual
edge delays in an overlay tree, a minimum spanning tree
(MST) has minimum resource usage. However, an MST
does not guarantee minimum end-to-end delays. Several
existing work have studied constructions of overlay trees
that trade off between resource usage and end-to-end de-
lays [6,7].

This paper presents a distributed protocol called RESMO
(ResourceEfficient ScalableMulticastOverlay) that builds
an overlay tree connecting overlay nodes byapproximat-
ing an MST. RESMO sacrifices the minimality of resource
usage in order to improve end-to-end delays. We show that
RESMO has resource usage comparable to MST, while keep-
ing RDP low. Our simulations indicates that the RDP and
link stress of RESMO are lower than those of NICE [4] and
Narada [2], two reputable ALM protocols. RESMO also
shows good scalability behavior when group size increases.

The rest of the paper is organized as follows. Section 2
discusses the related work. RESMO protocol is presented
in Section 3. We explain and analyze the simulation results
in Section 4. Section 5 concludes the paper.

2. RELATED WORK

The existing ALM protocols can be generally classified into
two categories: tree-first (ALMI [1], HMTP [5], NICE [4])
and mesh-first protocols (Narada [2], Gossamer [3]). Narada
builds the overlay tree on top of a mesh. The tree’s effi-
ciency depends on the mesh’s quality. RESMO is similar to
Narada as it is a mesh-first protocol. However, Narada uses
DVMRP to build a shortest path tree, while RESMO tries to
reduce resource usage by approximating MST. NICE [4] is
a hierarchical clustering-based protocol which is designed
for low bandwidth application with large group size. In
contrast, RESMO is non-hierarchical, and is designed with
small to medium size group in mind for low resource usage
and low end-to-end delay.

RESMO is similar to PBDT [6] in the way that both
protocols aim to trade-off MST with SPT. But in PBDT,
the sender assigns a priority to each receiver with respect to
their application-layer features and then uses this priority to

0-7803-8603-5/04/$20.00 ©2004 IEEE.

balance between delay and resource usage. It is a central-
ized protocol. In contrast, RESMO is completely distributed
and assumes a single priority for each receiver. LAST [8] is
another algorithm that trades off latency with cost. This ap-
proach traverses a MST in a depth-first fashion, whenever
it encounters a node with MST delay larger than SPT de-
lay by a treshold, it adds links from the node’s shortest path
to the current tree. LAST requires construction of a MST
first before constructing its distribution tree. On the other
hand, RESMO constructs an approximation of MST as its
distribution tree directly.

3. PROTOCOL DESCRIPTION

RESMO is a mesh-first protocol – nodes in RESMO main-
tains a mesh and the overlay tree is build on top of the
mesh. Since our focus in this paper is the construction of
the overlay tree, we do not elaborate on the orthogonal is-
sues of mesh construction and maintenance mechanism. In
our simulation, we simply use expanded ring search to dis-
cover neighboring nodes to form the mesh. Only links with
sufficient bandwidth to support the current session require-
ment are considered in the mesh.

RESMO constructs the overlay step-by-step, “growing”
the tree from the sender. At each step, the current leaf nodes
in the tree are actively involved in constructing the tree by
sending out invitations to its neighbors to join the tree. This
process stops when a leaf node has no neighbors that is in-
terested in the given session.

A RESMO node can be in one of the following five
states (with respect to a session) at one time: (a)sleep: a
node is in this state if it has not been invited to join the
session. (b)awake: a node isawakeif it has received one
invitation to join the tree, but has not yet become part of the
tree. (c)weighing: a node is in theweighingstate if it has
received multiple invitations to join the tree, and is deciding
which inviter should be its parent. (d)inviter: a node is an
inviter if it has a parent but has no children. Overlay nodes
in this state will send invitations to its neighbors to expand
the overlay tree, constructing the tree recursively. (e)par-
ent: a node is said to be in theparentstate when it has one
or more children.

Each node maintains a soft-state table calledrtttablethat
records the round-trip time to each of its neighbors in the
mesh. The table is maintained by exchanging alive mes-
sages occasionally, and is useful in selecting parents and
tree partition recovery.

We now describe how the tree is built in details.
The tree construction process begins when a senderS

sends aninvite message to its neighbors, which are insleep
state. Each neighbor ofS, upon receivinginvite, replies
with a thanks message and goes into theawakestate.

S will add the first neighbor that replies as its first child,

and ignore otherthanks messages that arrive later. Let this
first neighbor beG0. S sends abe-my-child message toG0

and goes into theparentstate.
After receivingbe-my-child message fromS, G0 sets

S as its parent, and switches fromawaketo inviter state.
G0 now sendsinvite messages to its neighbors, but only to
those that have not been involved in the tree construction.

It is possible that a nodeG receives multipleinvite mes-
sages while it isawake. This happens whenG is a common
neighbor of some inviter nodes. In this case,G should de-
cide which one of these neighbors should be chosen as its
parent.G sets a timerTwgh,j for each inviterGj . G is said
to be in theweighingstate. When timerTwgh,j expires,G
examines itsrtttableand picks the inviter with smallest RTT
as its parent by sending abe-my-parentmessage to the cho-
sen parent. ThenG cancels all the other pending timers and
goes fromweighingstate toinviter state.

The selection of parent with smallest RTT is crucial to
the approximation of MST in RESMO. The value ofTwgh,∗
can be tuned to trade-off resource usage with RDP of the
resulting overlay tree. A largeTwgh,∗ allowsG to wait for
more invitations, hence increasing the chance of selecting a
parent with lower RTT. While selecting parent with lowest
RTT reduces resource usage, it does not guarantee that the
end-to-end delay fromS to G is also small. The key to
reducing end-to-end delay is to use smallerTwgh,∗. Since
RESMO constructs the tree in a stepwise fashion, a node
that has lower delay from the source (measured along the
constructed tree) is more likely to become an inviter and
send out invitations sooner. By using smallerTwgh,∗, a node
will select those who become inviters sooner and have lower
delays from the source, thus reducing the end-to-end delay
from S to itself.

A node G always set a timeTivt when it receives an
invitation for the first time, say, from an inviterGl. If G is
still in theawakestate when the timer expires (i.e., no other
invitations has been received byG), then it is probable that
other routes fromS to G has long delays. In this case,G
asks to join the tree by sendingbe-my-parent to Gl. By
adjusting the value ofTivt, we can tune the tolerable end-
to-end delays in the tree.

Due to space constraints, we do not elaborate on tree
update mechanisms here. Briefly, when a node joins the
session or needs to look for a new parent (either because the
parent has left or failed), it finds the neighbor with lowest
RTT from its rtttable and sendsbe-my-parent message to
that neighbor.

As network conditions and group memberships change
continuously, RESMO must adapt since the overlay tree
may not be efficient anymore. We currently reconstruct the
tree periodically. We are developing mechanisms that al-
low incremental updates of the tree to avoid the expensive
overhead in reconstructing the tree.

4. SIMULATION AND EVALUATION

Using simulations, we (i) determined the effects of weight-
ing timer on the constructed tree, (ii) compared the perfor-
mance of RESMO with five other schemes, namely NICE,
Narada, MST, SPT and Unicast, using RDP, resource us-
age, link stress and maximum node degree as comparison
metrics. Simulations of NICE and Narada are based on the
mynssimulator provided by the authors of NICE, while the
rest of the schemes are simulated in ns-2.

Using GT-ITM toolkit, we randomly generated ten 1000-
nodes transit-stub topologies with 0.42 edge connection prob-
ability within stub domains. Overlay nodes are randomly
located in the stub domains and the sender is randomly se-
lected from the overlay nodes. In each experiment, session
group size is varied between 25 and 150 to evaluate the scal-
ability of RESMO. The results are averaged over these ten
topologies.

In our experiments, we set the value ofTivt to 8d, where
d is the estimated one-way delay (obtained fromrtttablebe-
tween the inviter and the receiving node).Twgh,∗ is set to
k × d, for some constantk. To find reasonable values ofk,
we varyTwgh,∗ between0.2d and6d and plot the different
performance metrics for group size 100 (we found similar
curves for other group sizes). As expected, increasingk re-
duces average link stress (Figure 1), resource usage (Figure
2), but it also deteriorates RDP (Figure 3) and increases the
tree construction time. Values ofk between 2 and 4 shows
a good compromise between the various performance met-
rics. We therefore setTwgh,∗ to a uniform random value
between[2d, 4d].

Our other findings can be summarized as follows:
(a) Link stress of RESMO is significant lower than those

of NICE and Narada and is comparable to MST. Figure 4
shows that for each group size, RESMO has around 1.46
mean stress, which is about50% of NICE (2.33 - 3.30) on
average although they have similar number of active physi-
cal links. This is because RESMO is a fully distributed pro-
tocol where each node shares the forwarding task evenly;
whereas NICE is a hierarchical protocol and leaders at each
level will forward more packets. The large confidence in-
terval of NICE supports our analysis. The mean link stress
of RESMO is about60% of Narada (2.01 - 3.02) on av-
erage. Narada uses DVMRP to produce lower delay, thus
it uses fewer number of physical links which in turn intro-
duces more link stress.

(b) RESMO has RDP values between those of MST and
SPT. For 100 nodes topology, the 90% RDP for these trees
are: 2.0 (RESMO), 2.8 (MST), and 1.4 (SPT) respectively
(see Figure 5). We also compare the RDP with NICE and
Narada: NICE has more overlay nodes with RDP less than
1.4 than other schemes, but the 90% RDP is up to 4.0 which
is twice of RESMO. Furthermore, increasing the group size

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5 6

L
in

k
 S

tr
e
s
s

k value

Mean Link Stress vs. k

RESMO
SPT
MST

Fig. 1: Mean Link Stress with 90% Confidence Interval vs.k.

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6

R
e
la

ti
v
e
 R

e
s
o
u
rc

e
 U

s
a
g
e

k value

Resource Usage over MST vs. k

MST
RESMO

SPT

Fig. 2: Resource Usage over MST vs.k.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

RDP

RESMO Cumulative Distribution of RDP

SPT
k=0.2
k=1.0
k=3.0
k=6.0
MST

Fig. 3: Cumulative RDP vs.k.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 20 40 60 80 100 120 140 160

L
in

k
S

tr
e
ss

Group Size

Mean Link Stress vs. Group Size

RESMO
MST
SPT

NICE
Narada

Fig. 4: Mean Link Stress with 90% Confidence Interval.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

RDP

Cumulative Distribution of RDP

RESMO
MST
SPT

NICE
Narada

Fig. 5: Cumulative RDP of Group Size 100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

RDP

Cumulative Distribution of RDP

25
50
75

100
150

Fig. 6: Cumulative RDP with Different Group Size.

 1

 2

 3

 4

 5

 20 40 60 80 100 120 140 160

R
e
la

tiv
e
 R

e
so

u
rc

e
 U

sa
g
e

Group Size

Resource Usage over MST vs. Group Size

RESMO
SPT

NICE
Narada

Fig. 7: Resource Usage over MST.

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160

N
o
d
e
 D

e
g
re

e

Group Size

Max Node Degree vs. Group Size

RESMO
MST
SPT

NICE
Narada

Fig. 8: Maximum Node Degree.

from 25 to 150 does not degrade RDP of RESMO (Figure
6).

(c) RESMO also has resource usage comparable to MST
(9%-15% more, see Figure 7). NICE and Narada have much
higher resource usage, possibly due to the existence of mul-
tiple paths in both protocols. When the group size increases,
their relative resource usage increases also while the relative
resource usage of RESMO remains stable.

(d) The maximum node degree of RESMO is close to
MST and slightly increases with the group size (Figure 8).
Narada has lowerest maximum node degree due to the de-
gree constrains in its protocol.

5. CONCLUSION AND FUTURE WORK

We have presented a distributed protocol for building resource-
efficient overlay tree by approximating MST. The resulting
tree is comparable to MST in resource usage, link stress
and node degree, but has low end-to-end latency as well.
We are currently improving RESMO to reconstruct the tree
incrementally under changing network conditions, and we
plan to implement RESMO over the wide-area experimental
platform PlanetLab to study its performance in real network
settings.

6. REFERENCES

[1] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI:
An application level multicast infrastructure,” inProc. of 3rd
Usenix Symp. on Internet Technologies and Systems, Mar.
2001.

[2] Y. H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for
end system multicast,” inProc. of ACM SIGMETRICS, June
2000.

[3] Y. Chawathe, “Scattercast: An architecture for internet broad-
cast distribtuion as an infrastructure service,” Ph.D. disserta-
tion, University of California, Berkeley, Dec. 2000.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scal-
able application layer multicast,” inProc.of ACM SIGCOMM,
Aug. 2002.

[5] B. Zhang, S. Jamin, and L. Zhang, “Host multicast: A frame-
work for delivering multicast to end users,” inProc. of IEEE
infocom, June 2002.

[6] J. Vogel, J. Widmer, D. Farin, M. Mauve, and W. Effelsberg,
“Priority-based distribution trees for application-level multi-
cast,” inProc. of NetGames 2003, May 2003.

[7] D. Kostic and A. Vahdat, “Latency versus cost optimizations
in hierarchical overlay networks,”Duke Technical Report,
Nov. 2001.

[8] S. Khuller, B. Raghavachari, and N. Young, “Balancing minu-
mum spanning and shortest path trees,”Algorithmica, vol.
14(4), pp. 305–321, 1994.

