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Abstract. User reaction to traffic congestion can have severe impact on network
stability and significant implication for traffic engineering. For example, users
who persist in large peer-to-peer transfers despite congestion can drive the net-
work into congestion collapse. On the other hand, users who abort large trans-
fers can smoothen self-similar traffic. We present a tool, called SAX, for study-
ing congestion-induced behavior of web surfers. SAX extracts information from
HTTP packet traces and infers clicks, abortions and sessions. Measurements with
SAX show how users back-off when congestion occurs.

1 Introduction

Despite exponential growth of Internet traffic in the last ten years, widespread outage
similar to the congestion collapse observed in the early years [1, 2] have not happened,
even with the occasional flash crowds (Olympics, 9/11, etc.). Much credit for the In-
ternet’s ability to deal with such traffic bursts goes to the TCP’s congestion control
mechanism. TCP congestion control, however, only affects the traffic in a connection,
not the number of connections. This number is determined by the users, who therefore
play a role in controlling the traffic.

Such traffic control by users is particularly prominent during web surfing. A web
surfer reacts to congestion in two ways: (U1) she may abort a slow download by click-
ing “Stop”, “Reload” or another hyper-link, and (U2) she may cut short her surfing
session. Such behavior is a form of congestion-induced user back-off: (U1) stops a
download and (U2) reduces the number of completed downloads.

User reaction to network congestion can significantly affect network stability and
traffic engineering. Indeed, aborting large HTTP pares down the tail of the file size
distribution. This action in effect smoothens out self-similar traffic, possibly making
elaborate traffic engineering for countering burstiness unnecessary.

As part of a larger study on the interaction between bandwidth supply and de-
mand [3], we are interested in finding evidence for (U1) and (U2) in traffic traces.
Figs. 1 and 2 show our main results, obtained from analysis of a 50GB tcpdump trace
taken from a link in an academic network over two work days. Fig. 1 shows evidence
for user back-off (U1). As download bandwidth decreases, the probability of aborting
a download increases. The cumulative distribution function (cdf) is represented by the
smoother curve. Fig. 2 shows evidence for user back-off (U2). As session bandwidth
decreases, the number of completed downloads per session decreases; here, we focus
on session bandwidths below 20KBps — the cdf indicates that they make up 95% of
the data.
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Fig. 1. Evidence for user back-off (U1).
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Fig. 2. Evidence for user back-off (U2).

The rest of this paper presents how we analyze the HTTP packet trace to obtain the
results in Figs. 1 and 2 using SAX, a tool we developed to infer surfer actions from
packet traces.

2 Models for Congestion and User Surfing Actions

Before we present SAX, we need to propose a good measure of “congestion”. It is
difficult to quantify network congestion in general using some metric. For example,
download time is not a good measure of congestion, since it is affected by round-trip
time, server load, etc. We therefore focus our analysis on a single bottleneck link 1, and
define the congestion level on the link as the number of concurrent downloads at any
instant on this link, denoted as k. Fig. 3 confirms that this metric is appropriate: our
measurements show k traces the session arrival rate as it rises and falls over 48-hour.

An alternative measure of congestion level is the per-download bandwidth bk =
(link bandwidth)/k. Essentially, a bk-axis reverses the k-axis, and the interesting,
high-congestion part of the curve is compressed near the vertical axis; thus, presentation-
wise, k seems a better choice than bk.

To formalize actions (U1) and (U2), we need to model sessions, downloads and
abort. In our model, a user surfs the web through a series of sessions, each consisting of
a series of HTTP requests. A user sends HTTP requests by typing in URLs, clicking on
bookmarks or hyper-links, etc. Each of these actions is modeled as a click and each click
generates one download. A download may consist of multiple and possibly parallel
HTTP requests. (Our download corresponds to Barford and Crovella’s web object [4]
and Choi and Limb’s web-request [5].) One user may launch multiple downloads in
parallel from different browser windows.

A user may be frustrated by — and abort — a download that takes too long to fin-
ish. For example, a user who is presented with several web search results may click
one link, find the download too slow, and abort it by clicking on another link. We de-
note the probability that a download is aborted as pabort. After the download is aborted,

1 This singling out one link from the Internet is analogous to how classical demand-supply
analysis isolates one market in a larger economy.
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Fig. 3. How congestion k and session arrival
rate changes over time.
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Fig. 4. User Surfing Model

the user might click again. We denote the probability of a click following an aborted
download in the same session as pretry. We say a download is completed, if it is not
aborted. Probability pnext denotes the proportion of completed downloads that are fol-
lowed by another click in the session. Fig. 4 shows this user behavior model, with three
user states. A user stays in either wait-abort state (for aborted download) and wait-
complete state (for completed download) while a download is in progress. A think
state, where the user is viewing the completed download, follows the wait-complete
state. One can elaborate on this simple model by adding sleep time between sessions
and non-reactive elephantine downloads [3].

Analysis of the same HTTP packet trace in Section 1 illustrates how users behave
when congestion-level changes. Fig. 5 plots pabort, pnext and pretry against k. As ex-
pected, pabort increases with the congestion measure k, while pnext decreases. As for
pretry, there are two possibilities: at low congestion levels, when throughput is still sat-
isfactory, an increase in congestion may prompt a user to retry; with poor throughput
at high congestion levels, however, any increase in congestion may prompt a user to
abandon the session. These possibilities are consistent with the slight increase in pretry

for small k in Fig. 5, and the slight decrease for large k. Note that, as expected, pretry

is less than pnext at every congestion level k, indicating that a user is less likely to con-
tinue a session after an abort. These graphs provide further evidence for user reaction
to congestion.
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Fig. 5. How pabort, pnext and pretry vary with congestion measure k.



We obtain Fig. 5, by inferring user surfing actions indirectly, through analysis of
packet-level HTTP traces. We chose this approach, as we found other alternatives im-
practical — using human observers to log surfing activities is time consuming, and
modifying existing web browsers [6] to log user actions requires large-scale deploy-
ment of the modified browsers. Comparatively, analyzing packet traces is simpler as it
involves only passive collection of packet traces and development of analysis tool. We
describes this analysis tool next.

3 SAX: Surfer Actions eXtractor

We develop SAX as an off-line tool to infer user actions from HTTP packet traces. as
a tool to infer user actions from HTTP packet traces. SAX takes HTTP packet dump
as input, analyzes the relationships among the packets, and groups the packets into
downloads. Each download is classified as either completed or aborted and is further
grouped into sessions.

The difficulties of extracting HTTP information from packet level data are well-
documented by Feldmann [7]. Additional issues encountered by SAX are:

(D1) Packets from parallel connections may belong to the same download, and packets
from a persistent connection may belong to different downloads.

(D2) Two downloads from the same user might overlap in time – before a web page
finishes downloading, the user may click on one of its links, thus initiating another
download.

(D3) Aborted and completed downloads need to be distinguished.
(D4) Software-generated, automatic downloads do not reflect user behavior and need

to be filtered out.

Grouping Packets into Downloads. A request-response is a collection of packets,
containing an HTTP request, followed by an HTTP response with response header and
data for that request. A download is a collection of request-responses, the first of which
is initiated by a click. A click takes place when (C1) the user requests a page by entering
the URL in the address bar of a browser or launch the browser through another applica-
tion (such as an RSS reader) or (C2) the user clicks on an URL in a previously retrieved
page.

To identify a click, we consider both cases above separately. A click generated by
(C1) is identified by an HTTP request without a referrer, while a click generated by
(C2) is identified by an HTTP request with a URL that corresponds to a hyper-link or
submit button, with Referer field pointing to a previously downloaded web page.

After identifying the click that starts a download X , we proceed to group request-
responses that belong to the same download. The subsequent request-responses in X
consists of HTTP requests and responses for embedded objects required to display the
containing web page. Such embedded objects are downloaded automatically by the
browser. Just like (C2), the request header for such objects contains a Referer field that
specifies the containing web page. However, the URLs of the requested objects ap-
pear as embedded objects in a previously downloaded document. Using this fact, SAX



includes in X any HTTP requests for embedded objects that have Referer fields (recur-
sively) pointing to objects that are already included in X . Browser-initiated requests for
Redirect links are also included in X .

HTTP requests generated by browsers due to auto-update, however, should be ex-
cluded. SAX uses a temporal threshold τauto to identify such requests. An embedded
object Y with a Referer pointing to download X , is added to X only if the arrival time
for Y is within τauto of X’s last packet; otherwise, Y is identified as an auto-update.

One expects the period for auto-updates to be in minutes, whereas the requests for a
web page and its embedded objects should occur within seconds of each other [8]. There
is therefore considerable latitude in specifying the threshold τauto. Our measurements
shows that 95% of the silent gap between Y and X is within 2 minutes. We thus set
τauto to 2 minutes in our measurements.

Identifying Aborted Downloads. Having identified downloads, we now classify these
downloads as either completed or aborted. Such classification was not performed in
previous web traffic characterizations efforts.

We say a request-response is not completed if (i) the entity’s length is specified
in the response header and the amount of data received by the browser is less than the
entity’s length; or (ii) HTTP 1.1 and chunked transfer-coding are used and the browser
has not received an end-of-chunk indication; or (iii) HTTP 1.0 is used and the entity’s
length is not specified in the response header (i.e. SAX assumes the server will send a
FIN when the download completes).

SAX detects an abort of a request-response if the first FIN or RST is sent by the
browser and the request-response is not completed. A download is aborted if and only
if one of its request-responses is aborted. Otherwise, a download is completed. Some
browsers terminate a download immediately if they see some special response headers
(e.g. “304 Not Modified”). For such special cases, SAX considers the download as
completed.

Extracting URLs from HTML Documents. SAX’s method for detecting clicks and
grouping request-responses into downloads relies on its accuracy in extracting URLs
from the HTML documents. Issues that SAX addresses related to this task are:

• When a user clicks on the submit button of an HTML document X , the requested
URL Y may contain the form’s information. Some extra processing is necessary to
match Y to X .

• Relative URLs need to be converted to absolute URLs for matching.
• A browser may request an embedded object immediately when it finds the URL in

a partially received HTML document. SAX therefore needs to extract URLs upon
arrival of any HTML fragments to keep pace with the behavior.

• The message body of a request-response can be encoded using chunked transfer-
coding or content-coding (gzip, compress, etc.). SAX partially decompresses
the packets in main memory to extract the URLs.



Excluding Background Downloads. Besides background downloads generated by
auto-updates of web pages, SAX needs to exclude background HTTP downloads gen-
erated by non-browser applications (e.g. Windows Update). SAX therefore compiles a
list of the most common URLs that it has seen; any background downloads that appear
on this list are excluded during post-processing.

To define “most common”, SAX checks periodically (every 20 minutes), for each
user, whether a seen URL X is again requested; if so (no matter how many times), X’s
counter is incremented by 1. URLs with large counters are treated as most common
URLs. This accounting allows SAX to differentiate downloads by applications which
appear regularly over extended periods of time, from URLs that attract flash crowds.

Limitations of SAX. SAX is unable to process encrypted packets that belong to se-
cure HTTP flows. Also SAX cannot identify some HTTP requests that are triggered by
JavaScript since the URL can be created dynamically by the program. HTTP requests
generated by JavaScript may have an empty Referer field, confusing SAX to treat it as
a new click (C1). Finally, since SAX depends on HTTP packet dump, it cannot identify
a download that is partially served from browser cache.

4 From SAX to the Model

The output from SAX includes download description (URLs, timestamps, size, abort/complete,
etc.), request-response and Referer information, TCP connections, etc. We now describe
how these are processed to give Figs. 1, 2, and 5.

Session Definition. Our user model groups clicks into sessions. Two sessions are sep-
arated by a sleep time Tsleep, where the user is not actively surfing the web. Within
a session, a think time Tthink separates a click from the previous download comple-
tion, while the download is viewed (think state in Fig. 4); in contrast, think time for
CARENA separates one click instant from the next [6].

Think time and sleep time vary from one person to another and, for each person,
from one session to another. In the traffic trace, think time and sleep time both appear
as a silent gap tsilent between packets. To distinguish between think time and sleep
time, we use a threshold τsession, where Tthink < τsession < Tsleep in most cases. There
is considerable latitude in specifying τsession since, in general, Tthink ! Tsleep. Other
studies have found average think time within a session to be less than a minute [9,
4, 5, 10]. In our experiments, we generously set τsession to 10 minutes, since our mea-
surements shows that 95% of silent gaps between two downloads is within 10 minutes.
(Hlavacs and Kotsis used the thresholds of 8.3 minutes and 30 minutes in their model,
depending on whether there was a change in web server address [11].)

Session Bandwidth and Download Bandwidth. Having identified downloads and ses-
sions, we can now compute the session bandwidth bsession in Fig. 2. We are interested
in this metric since the length of a session may depend on the surfer’s aggregated expe-
rience of multiple downloads. We quantify this experience with bsession, defined as the



number of bytes transferred in a session (aborted or completed), divided by the sum of
download transfer time.

A user may abort a slow download. Therefore, another metric of interest is the
download bandwidth bdownload, i.e. the number of bytes transferred in a download
(aborted or completed) divided by its time span (see Fig. 1).

∆-intervals. Recall that we use k, the number of concurrent downloads on the bot-
tleneck link, as a metric for network congestion (Fig. 5). Measuring k, however, is not
trivial as a download may contain silent gaps, may spread over parallel connections,
and share a TCP connection with another download.

This issue led us to the following idea: Partition the trace into equal (non-overlapping)
intervals of time. Let (t, t + ∆) denote the interval between times t and t + ∆, where
∆ > 0, and length(t, t + ∆) = ∆; we call (t, t + ∆) a ∆-interval. Let D be the set of
downloads, d ∈ D, and Id be the time interval between start and end of the download
d. We measure the number of concurrent downloads in (t, t + ∆) by

k =
∑

d∈D length(Id ∩ (t, t + ∆))
∆

. (1)

This idea is illustrated in Fig. 6. Note that, if no download starts or ends during the
interval, then Eqn. (1) gives precisely the number of downloads spanning that interval.

We also use ∆-intervals to measure the probabilities, as described below.

Measuring the Probabilities. Our user model has parameters pabort, pnext and pretry.
To measure these probabilities, let nclick, ncompleted, nabort, nretry and nnext be (re-
spectively) the number of downloads, completed downloads, aborted downloads, retries
after aborts, and clicks after think time. Then, one could calculate the probabilities by

pabort =
nabort

nclick
, pretry =

nretry

nabort
, pnext =

nnext

ncompleted
. (2)

However, it is not clear how nclick, etc. are to be measured. An obvious choice is to
measure them per session (Fig. 4), calculate each probability for every session, then
aggregate the probability over the sessions. This approach has three problems:

• pretry is a conditional probability, so it is ill-defined if nabort = 0 for a session;
pnext has a similar problem if ncompleted = 0 for a session.

• How should the per-session values for pretry (say) be aggregated over the sessions
to give one pretry value for each k?

• If a session ends with a completed download, nretry = nabort, so pretry = 1 for that
session; if a session ends with an aborted download, then nretry = nabort − 1, so
pretry for a session can only take values 0, 1

2 , 2
3 , 3

4 , . . .. This discrete spread makes
any smooth aggregation over all sessions difficult.

Therefore, instead of aggregating after the division (2), we first aggregate the values
for nabort, etc., then do the division. This can be done as follows: consider each ∆-
interval and measure the number nabort of aborted downloads and the number nclick of



downloads in that interval, then divide one by the other to get pabort. Each ∆-interval
thus gives a (k, pabort) pair, from which we derive the relationship between the two
metrics.

However, the size of ∆ forces a tradeoff: a large ∆ gives a poor measurement for
k, while a small ∆ gives noisy measurements of nclick and nabort; furthermore, user
reaction to congestion within the ∆-interval may occur after that interval.

We resolve this tension thus: for each ∆-interval, let nclick and nabort be the number
of downloads and aborted downloads from the start of that ∆-interval to the end of the
session; their ratio then gives pabort for that ∆-interval. We measure pretry and pnext

similarly.

Curve Smoothing. By using ∆-intervals for the measurements, we have discretized
time; add to this the bursty nature of network traffic, and the data becomes jittery, mak-
ing it difficult to discern trends.

To smooth out the jitter, we use a sliding window of size L units. For example, to
smooth out a function of k, a unit is one integer value. If we have (k, pabort) measure-
ments sequenced by k, then we consider consecutive (k, pabort) measurements within
that window (i.e. such that x ≤ k ≤ x + L, where x is the start of the window), and
average the k values and the pabort values to give an aggregate pair; we then slide the
window by 1 (i.e. consider window x+1 ≤ k ≤ x+1+L), and repeat the aggregation.

In our measurements, we chose L = 6 for smoothing k in Fig. 5; for smoothing a
function of download bandwidth in Figs. 1 and 2, each unit is 50KBps. We set ∆ = 1
minute in our measurement. The smoothened curves yield our main results, which are
presented in Figs. 1, 2 and 5.
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x1 x2 x3 x4

time

+ + +
!  

k =

!  

download1 download2

download3

download4

Fig. 6. Using intervals to measure the number of concurrent downloads k.



5 Related Work

User Behavioral Model. Our model is the first to study how users react to congestion.
Choi and Limb’s behavioral model [5] and Barford and Crovella’s user equivalent [4]
do not include sessions (U2), whereas the layered model by Hlavacs and Kotsis does
not provide for user reaction to delays [11].

Rossi et al.’s measurement study of how transfer delays cause users to interrupt
TCP connections is relevant [12], but they do not offer a user model. Furthermore, a
download may be more than one TCP connection.

Studies on how users react to server delays [13, 14] are only marginally relevant
since, in our context, the users may be visiting different web sites, and each user may
visit multiple web sites.

Characterizing Web Traffic. Mah [15] was one of the first to model HTTP traffic
by analyzing packet dumps. He used a threshold (1 second) between arrival times of
packets to determine whether two HTTP connections belong to the same download.
Such a heuristic can fail if two downloads overlap (D2). A similar approach is used by
Barford-Crovella [4], Lan-Heidemann [16], Smith et. al. [17], Molina et. al [18], and
Abrahamsson-Ahlgren [19]. Choi and Limb pointed out the inadequacy in relying on
a 1-second threshold [5]; instead, they parsed the HTTP headers to detect the start of
downloads. However, header information may not be enough, and it may be necessary
to extract information from the body as well.

None of the previous work characterizes downloads as completed or aborted (D3).
Rossi et al. [12], used TCP FIN and RST to distinguish completed and aborted TCP
connections, which does not correspond to downloads due to parallel or persistent con-
nections (D1).

Among the related work, Abrahamsson-Ahlgren [19] is the only study that groups
downloads into sessions. They use a threshold of 15 minutes to separate HTTP requests
into different sessions. Other previous studies did not distinguish between think time
and sleep time.

Packet Analysis Tool. Feldmann’s BLT is a tool for extracting HTTP information from
sniffed packets [7], much like HTTPdump [20] and the more general Nprobe [21]. One
could use such information for further studies of compression, traffic invariants, proxy
caching, etc. In principle, we can process BLT output to identify user actions, such as
clicks and aborts. However, the heuristics used by such general tools for handling miss-
ing packets, erroneous HTTP format etc. filter out some information that are needed by
studies like ours, e.g. for distinguishing between a click and a download of an embedded
object.

6 Conclusion

We presented an analysis tool called SAX that infer user surfing behavior from HTTP
packet traces. SAX was designed to confirm the existence of congestion-induced user



back-offs while surfing. We believe, however, that SAX is useful in its own way, for
instance, to researchers studying affects of web caches, or to researchers studying surf-
ing behavior of different social groups. Furthermore, the user surfing model constructed
using SAX can be used in a network simulator such as ns-2 to generate web traffic that
incorporates user behavior.
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