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Many distributed multimedia applications rely on video analysis algorithms for automated video
and image processing. Little is known, however, about the minimum video quality required to
ensure an accurate performance of these algorithms. In an attempt to understand these require-
ments, we focus on a set of commonly used face analysis algorithms. Using standard datasets
and live videos, we conducted experiments demonstrating that the algorithms show almost no
decrease in accuracy until the input video is reduced to a certain critical quality, which amounts
to significantly lower bitrate compared to the quality commonly acceptable for human vision.
Since computer vision percepts video differently than human vision, existing video quality met-
rics, designed for human perception, cannot be used to reason about the effects of video quality
reduction on accuracy of video analysis algorithms. We therefore investigate two alternate video
quality metrics, blockiness and mutual information, and show how they can be used to estimate
the critical video qualities for face analysis algorithms.

Categories and Subject Descriptors: I.2.10 [Vision and Scene Understanding]: Video Analy-

sis; C.2.4 [Distributed Systems]: Distributed Applications

General Terms: Experimentation; Measurement; Performance;

Additional Key Words and Phrases: Video Analysis Algorithm, Video Quality, Blockiness, Mutual
Information, Video Surveillance

1. INTRODUCTION

Humans are the typical end recipients of images and video footage. Recently, how-
ever, various systems and applications started to rely on video analysis algorithms
to automate their tasks. Such systems include video surveillance, autonomous ve-
hicles, and applications running on small wireless mobile devices. For example,
a video surveillance system can automatically analyze video, without alerting the
human guard, until a suspicious event occurs; an autonomous aircraft or vehicle
can detect, track, and follow a target based on results of the video analysis; a
mobile phone with camera used for automated tagging of friends on a photo or
identification of the current location based on analysis of a landmark captured in
the picture.

Typically, these automated systems have more than one remote video sensor
unit (surveillance camera, mobile camera-phone) and either a control server or
a set of remote proxies that process information received from the units. There
can be two options regarding where the video is analyzed. The first option is
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to analyze the video at the sensor and transmit the results to the server. The
second option is to transmit the video streams to the control server and analyze
the video at the server. Each option has its advantages and disadvantages. Run-
ning video analysis on the sensors consumes little bandwidth but requires complex
and computationally-capable sensor units, increasing cost and complicating system
maintenance. Analyzing the video at the server leads to cheaper and more en-
ergy efficient sensor units, but streaming video poses a higher demand on network
bandwidth. Therefore, a tradeoff exists between cost and energy efficiency of video
sensors and network bandwidth.

Since the end recipients of video in these systems are non-human, the video
quality, and hence the bitrate, can possibly be reduced. Typical digital surveillance
cameras produce video that has spatial resolution of no less than 320×240, high
SNR, and 10-30 fps. Such quality is normally the minimal desirable quality for the
human visual system. Although it is shown that humans can perform recognition
tasks for lower video quality [Rouse and Hemami 2008], typical surveillance video is
recorded at the highest affordable quality to ease visual monitoring. We hypothesize
that some video analysis algorithms should not require such high video quality to
perform accurately. For such algorithms, we can reduce the quality of the video,
thus reducing its bitrate, allowing us to use cheap video sensors and save on network
bandwidth.

To verify this hypothesis, we conducted experiments with several commonly used
and freely available face analysis algorithms to find their requirements on the input
video quality. We determined how much of the input video quality can be reduced
(through frame dropping, compression, spatial scaling, or their combination) with-
out reducing the resulted accuracy of these algorithms. Since we used only several
algorithms, we do not claim the generality of our results. We believe, however,
that this paper is the first attempt to conduct an extensive study of video quality
requirements for video analysis algorithms.

To determine video quality requirements, we use the following face analysis algo-
rithms: (i) Viola-Jones [Viola and Jones 2001] and Rowley [Rowley et al. 1998] face
detection algorithms, (ii) QDA-based face recognition algorithm [Lu et al. 2003],
and (iii) CAMSHIFT [Bradski 1998] face tracking algorithm. We choose these al-
gorithms, because they are non-trivial and freely available for experiments. Also,
for face detection and face recognition, the standard test data with ground truth
is available, making the evaluation of these algorithms easier. We measure the
changes in accuracy for each of the studied algorithms when fed with input video
at different qualities. To change the input video quality, we use various video adap-

tations, such as JPEG compression1, frame dropping, as well as bicubic, nearest
neighbor, and pixel area relation spatial scaling. We find that the algorithms show
almost no degradation in accuracy until a certain quality threshold, which we term
critical video quality, is reached. We demonstrate that encoding video with critical
video quality can amount to significant video bitrate reductions (e.g., 23 times for
Viola-Jones face detection algorithm).

Since different quality-degrading video adaptations can be used, it is important to
have a common definition of video quality, specifically SNR quality, so that we can

1We use library by Independent JPEG Group (IJG)
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reason about the effects of these adaptations on different video analysis algorithms.
The existing SNR quality metrics, such as PSNR, SIMM, and PQV, are not suit-
able, because they are developed to measure quality from the human perspective.
Different analysis algorithms have different meaning of the term “video quality”,
which also differs from its conventional meaning in terms of human perception.

A video quality metric that matches the “perception” of video analysis algorithms
needs to have the following properties. For a given algorithm, the quality metric
should help in identifying critical video qualities corresponding to different video
adaptations. The metric should be easy to compute, and it needs to be general
enough to suit different types of video analysis algorithms and video adaptations.
Optionally, the metric’s value can reflect the reduction in video bitrate, allowing
us to compare different video analysis algorithms in terms of their efficiency and
tolerance to low video quality.

In this paper, we consider two video quality metrics, blockiness and mutual infor-
mation, and examine them for the above properties. Blockiness is one of the com-
mon video artifacts introduced by compression algorithms. Other video artifacts
include blurriness, color bleeding, and sharpness. Mutual information measures a
general loss of information in the degraded image and is more independent from
the type of compression used. We show that with the help of these metrics, we
can estimate critical SNR video quality for our video analysis algorithms, with-
out resorting to exhaustive experimental search, which is not attractive to use in
practical systems. In our experiments, blockiness demonstrates higher precision in
estimation of the critical quality. Mutual information is less precise compared to
the blockiness but is more independent from the choice of video adaptation.

We also show that compression algorithms can be simplified if the resulting image
or video is to be used as input to video analysis algorithms instead of human
vision. We demonstrate it by simplifying JPEG quantization table and showing
that critical SNR quality corresponding to the modified version of JPEG leads to
the same reduction in bitrate as the original JPEG compression.

The following summarizes our contributions:

—We have demonstrated that each algorithm used in our experiments has a critical
video quality. Video encoded with such quality has very low bitrate compared to
conventional video for human visual system. It does not, however, significantly
affect the accuracy of the algorithms.

—We argue for the need of alternative video quality metrics that are suitable for
video analysis algorithms. We present experimental results illustrating the ad-
vantages and disadvantages of using blockiness and mutual information as video
quality metrics.

—We use simpler JPEG tables to compress images for face detection, demonstrating
that it is possible to develop compression algorithms better suiting the require-
ments of computer vision.

In the next section, we discuss the related work in bitrate reduction of transmitted
video and approaches to video streaming in practical systems. In Section 3, we give
a detailed overview of the experiments conducted in the paper. In Section 4, we
present the results of finding critical video quality for the studied face analysis
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algorithms. In Section 5, we propose estimating the critical SNR quality using
blockiness and mutual information. We conclude the paper with Section 6.

2. RELATED WORK

Many techniques were proposed for adapting video transmission rate to meet band-
width constraints. One of the first suggested methods, presented by Eleftheriadis
and Anastassiou [Eleftheriadis and Anastassiou 1995], uses a rate-distortion func-
tion to find minimal distortion. Based on the bandwidth capacity predicted via
monitoring the current state of the network, the video is dynamically reshaped
with different quantization values. Extending this idea, Kim and Altunbasak [Kim
and Altunbasak 2001] suggested a technique to reshape video by scaling its spa-
tial, temporal, and SNR properties. This technique was later generalized into a
utility-based framework by Kim et al. [Kim et al. 2003]. These approaches aimed
at reducing the time and complexity of re-encoding the video for the network with
limited bandwidth. In this paper, we adapted some of these ideas, though we fo-
cus on the case where the end recipients are video analysis algorithms rather than
human.

Many latest video and image coders support region of interest (ROI) coding,
which allows encoding different regions with different quality [Schumeyer et al.
1997; Sanchez et al. 2004]. For instance, a static background can be encoded with
lower quality than a moving foreground object, drastically reducing overall video
transmission. The major challenge with this approach, however, is to identify such
region of interest. Model-based and object-based coding research aims to solve this
problem for various video streaming applications. A model-based coder, commonly
used in video telephony, encodes a parameterized 3-D head model that is repre-
sented through facial animation parameters (FAP) derived from the video. Smolic
et al. [Smolic et al. 1999] proposed to estimate these parameters based on a set of
feature points tracked for every video frame; while Eisert and Girod [Eisert and
Girod 1998] estimated FAPs based on hierarchical optical flow. Eisert et al. [Eisert
et al. 2000] extended their work to combine 3-D model-based coding and wavelet-
based coding. Hakeem et al. [Hakeem et al. 2005] proposed object-based coding
method that does not require a 3-D or 2-D model of an object. The authors sug-
gested using a generic contour-based tracker together with background modeling
for extracting a moving foreground object. All these ROI-based coding methods
require cameras to have high computational power in order to detect, describe, or
track an object of interest. In this paper, however, we assume cheap video sen-
sors with little computational ability, while video analysis and heavy computations
are performed at remote processing servers, which, in turn, can employ ROI-based
encoders.

Research in video surveillance also proposed several solutions for reducing the
amount of data transmitted over network. Yuan et al. [Yuan et al. 2003] and
Nair et al. [Nair and Clark 2002] presented systems that avoid using excessive net-
work bandwidth by periodically sending still images from a video source to the
end user. VSAM [Collins et al. 2000] deals with bandwidth constraint by sending
only one low quality video at a time and relies on workstations attached directly
to video sources for the detection, tracking, and classification of events. Such so-
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lutions limit the amount of visual information that is available to the viewer and
are not scalable. The authors of many recent surveillance systems, for example
SfinX [Rangaswami et al. 2004] and KNIGHT [Javed et al. 2003], did not address
the problem of video streaming and, instead, focus on developing more accurate
video analysis algorithms. The authors of DOTS surveillance system [Girgensohn
et al. 2007], acknowledge the scalability problem in their indoor surveillance system,
allowing only 15 video cameras streaming simultaneously. This paper addresses the
problem of video streaming in surveillance systems by taking advantage of video
analysis algorithms’ tolerance to low video quality. Since in typical surveillance
scenario, suspicious events are rare [Wu et al. 2003], it is not necessary for hu-
man to constantly observe all video streams but only those that require his/her
attention. Therefore, most of the time, the video is transmitted for video analysis
algorithms only, allowing us to significantly reduce its quality and, hence, increase
the scalability of the surveillance system.

3. EXPERIMENTS OVERVIEW

Before proceeding to describe our results, we first explain in more details how our
experiments were conducted. To determine the video quality requirements for a
particular video analysis algorithm, we degrade the original video to a point when
the accuracy of the algorithm drops significantly. We call such point a critical video

quality, indicating the quality threshold above which the algorithm performs with
its original accuracy. The video is degraded in small steps with a video adaptation,
such as JPEG compression or frame dropping. It should be noted that, in this
paper, we understand the accuracy of an algorithm as a relative measurement.
It refers to how much the accuracy changes when the video is degraded from its
original quality.

We use the following video analysis algorithms in our experiments: OpenCV2 im-
plementation of Viola-Jones [Viola and Jones 2001] face detection, Rowley face de-
tection [Rowley et al. 1998] algorithms; QDA-based face recognition [Lu et al. 2003]
algorithm; and CAMSHIFT (OpenCV) face tracking [Bradski 1998] algorithm. We
picked these algorithms because they are freely available, fairly complex, and com-
monly used in various applications. Also, for face detection and face recognition
algorithms, there are standard datasets with ground truth available.

Test Data. Datasets used in our experiments are summarized in Table I. We use
standard MIT/CMU and Yale datasets with provided ground truth for testing the
accuracy of face detection and face recognition algorithms respectively. For face
recognition, typically, the set of images is divided into gallery and probe subsets.
Images in gallery have faces that are assumed to be known at the moment of
recognition and images in probe set contain faces that are being recognized by the
algorithm. To avoid bias in our recognition results, we divide the Yale dataset into
four randomly generated pairs of gallery (36% images) and probe (64% images)
subsets; our experimental results are obtained as average values corresponding to
four subset pairs. For face tracking algorithm, due to the lack of standard test
videos, we use our own videos of a face captured with a web-cam (see a snapshot

2http://www.intel.com/research/mrl/research/opencv/
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Dataset Characteristics Short description Algorithm

MIT/CMU
(subset A)

images with 168
faces of different
sizes

various
background/lighting
conditions

face detection

Yale images with 165
faces of 15
people, 320× 240

various lighting
conditions, different
facial expressions

face recognition

Videos with
moving
faces

video, 600 frames,
352× 288, 30 fps

office settings, web-cam,
face moves close-far
from the camera

face tracking

Video of the
lab door

video, 22000
frames, 320× 240,
5 fps

surveillance of the door
in a research lab

face detection,
face recognition

Table I. Summary of datasets used in the experiments with different video analysis
algorithms.

example in Figure 6). We also test face tracking on movies and news clips.
To test face detection and face recognition algorithms in practical scenario, we

recorded a one hour video of the door in our research lab (see the last row of Table I),
simulating an indoor video surveillance system. We used Cannon VCC4 camera
with the default video quality settings (320×240 resolution and JPEG compression
90). An example of a frame from this video sequence is shown in Figure 13(a).
Among the recorded 22,000 frames, we manually marked 237 faces as ground truth,
including 138 frontal and 99 profile faces. This set of frames is used to verify
critical video qualities estimated for face detection and face recognition algorithms
using mutual information metric. We evaluate the recognition algorithm by using
the standard verification performance metric [Grother et al. 2003]. Frames with
detected faces, including false positives, are used as the input probe faces. For
each person in the test videos, one representative face is pre-selected and is used in
verification matching of the probe faces in the video.

Video Adaptation and Algorithm Accuracy. Table II summarizes the video adap-
tations used to change the video quality for our video analysis algorithms. SNR
video quality is degraded with IJG3 implementation of JPEG compression algo-
rithm. In this implementation, compression quality 1 corresponds to images with
the highest compression ratio (the most distorted image) and 99 to images with
the lowest compression ratio (the least distorted image). To evaluate accuracy of
face detection, we compute the detection index as follows. For each JPEG quality,
the number of detected faces is recorded. Using available ground truth, we obtain
the number of correctly detected faces and divide it by the recorded total number
of faces to get the detection index. We also divide the number of faces that are
wrongly detected by the algorithm by the total number of faces to obtain the false
positive index of face detection.

In experiments with Yale dataset, the identification task of face recognition algo-

3http://www.ijg.org/
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Video

adaptation

Degradation

pattern

Algorithm Dataset

JPEG compression quantizer from 1 to
99 with step 2

face detection,
face recognition

MIT/CMU,
Yale

quantizer from 10 to
100 with step 10

face tracking videos with
moving faces

Scaling (nearest
neighbor, bicubic,
pixel area relation)

2 to 100 percent of
original size with
step 2

face detection,
face recognition

MIT/CMU,
Yale

Combination of
JPEG compression
and nearest
neighbor scaling

scaling from 10 to
100 percent of
original size with
step 10, compressing
at each step from 1
to 99 with step 2

face detection,
face recognition

Video of the
lab door

Frame dropping drop i out of i + j
frames

face tracking Videos with
moving faces

Table II. Summary of video adaptations used in the experiments with different
video analysis algorithms.

rithm is evaluated using the standard performance metric, rank one of cumulative
match characteristic (CMC) [Grother et al. 2003]. CMC rank one value is com-
puted for images from the probe set only. In experiments with practical surveillance
video, we evaluate the recognition algorithm by using the standard verification per-
formance metric instead. We also degrade SNR quality of videos used to test face
tracking algorithm. We use Microsoft Video 1 codec to compress videos, changing
its quantizer value from 10 (higher distortion, low quality) to 100 (best quality)
with step 10.

OpenCV implementation of nearest neighbor, bicubic, and pixel area relation
scaling algorithms are used for reducing spatial video quality. The change in spa-
tial quality is tested for face recognition algorithm and Viola-Jones face detection
algorithm (only in some experiments). With a given scaling algorithm, we reduce
spatial sizes of images from 100 to 2 percent of the originals with step size 2. Then,
we scale them back to the original sizes. Such downscaling-upscaling transforma-
tion can be used in a practical scenario of distributed video surveillance system, as
demonstrated in Figure 1. The video with reduced spatial size is sent by a camera
to a proxy through network. Upon receiving a video frame, the proxy upscales it to
its original size and runs a video analysis algorithm. The downscaling-upscaling of
the video stream allows us to reduce amount of data transmitted across the network
link between camera and proxy/server.

The scaling can also be combined with JPEG compression as we demonstrate for
face detection and face recognition algorithms in Section 5.2. We combine nearest
neighbor scaling with JPEG compression in the following way. Images are first
prescaled to several spatial sizes (20%, 30%, 40%, etc.) after which they are com-
pressed with JPEG quantizer varying between 1 and 99 with step 2. Then, images
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Network

Scale down

Compress Decompress

Scale up

Camera Proxy

Fig. 1. Video surveillance scenario of combining scaling and compression adapta-
tions to further reduce bitrate.

are decompressed and scaled back to their original spatial sizes. Compressing down-
scaled video frame allows achieving even higher reduction in bitrate at the expense
of receiving frame with higher distortion at the proxy.

For face tracking algorithm, we change the video frame rate of a test video by
dropping frames from the original video using drop pattern: “drop i out of i + j
frames” (see Figure 2 for illustration). We vary i and j from 1 to 14. The value i
represents the gap between frames, and j represents how many consecutive frames
remain. For example, if we drop every third frame, i equals to 1 and j to 2; when
three consecutive frames out of nine frames are dropped, i is 3 and j is 6. Note
that while these two patterns give the same average frame rate, the accuracy of the
tracking algorithm can be different.

We compute the accuracy of face tracking algorithm as follows. The mean dis-
tance between the center of the tracked face in degraded video (with applied drop
pattern) and the center of the face in the original video is recorded. We use the ratio
of this mean distance and half the average diagonal of the tracking rectangle as a
metric of accuracy for the tracking algorithm. Essentially, it measures the error of
tracking across all frames in the video. Therefore, we call the metric average error.
For a given dropping pattern, smaller average error means better relative accuracy
of the face tracking algorithm.

j i

Fig. 2. Dropping i out of i + j frames. i is the drop gap.

4. CRITICAL VIDEO QUALITY

In this section, we present experimental results of finding critical video quality for
our examples of video analysis algorithms. The main focus of the experiments is on
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Viola-Jones face detection, CAMSHIFT face tracking, and QDA-based face recog-
nition algorithms. Only selected experimental results are presented for Rowley face
detection algorithm, due to the lack of space and their similarity to Viola-Jones’s
results. For the same reason, we also emphasize more on pairs of SNR quality and
face detection, spatial quality and face recognition, and temporal quality and face
tracking.

4.1 Face Detection

First, we investigate how the accuracy of Viola-Jones and Rowley face detection
algorithms change when SNR quality of the video is reduced. Viola-Jones algorithm
is an object detection algorithm that uses a cascade of classifiers based on Haar-like
features [Viola and Jones 2001]. Intuitively, it should perform accurately as long as
images contain such features. Rowley algorithm is based on the statistical changes
in intensity values across a given image. Those regions that reflect the patterns
collected through algorithm’s training are marked as a face. We present experi-
mental findings showing changes in accuracy of these two algorithms for degraded
SNR quality (see Section 3 for more detailed description of experiments).

The experimental results for Viola-Jones algorithm and MIT/CMU dataset are
presented in Figure 3(a). The figure shows both detection and false positive indexes
of the face detection algorithm against different compression qualities. It can be
noted that the average accuracy of the face detection algorithm does not change
significantly when JPEG compression quality is decreased from 99 to 9 (indicated
with the dashed vertical line on the figure). For quality less than 9, the detection
index demonstrates a sharp decrease. Since 90-95 is the default JPEG compression
quality used in typical video surveillance cameras (e.g., Axis 207, Canon VCC4),
compressing images to quality 9 can lead to significant reduction in size. Also
note that the false positive index does not increase in response to reduced com-
pression quality, which means that only the detection index is affected. Therefore,
we can transmit video frames compressed with quality 9 and achieve similar de-
tection results as with uncompressed video. If we conservatively choose 20 as the
critical compression quality, we find that the average file size of JPEG images in
the MIT/CMU data set is 15.8 KB compared to 135.6 KB for original images (a
nine times reduction in size). This reduction, however, does not directly apply to a
normal video, since video encoders typically use motion estimation between frames
to achieve higher compression. More details about the experimental results with
streaming video can be found in our previous work [Korshunov and Ooi 2005].

The effect of JPEG compression on accuracy was also tested for Rowley face
detection algorithm. Results, presented in Figure 3(b), demonstrate that this algo-
rithm is generally less accurate compared to Viola-Jones algorithm (see Figure 3(a)).
Nevertheless, the detection index of Rowley algorithm shows the same pattern of
being at its original level until JPEG compression quality is reduced to value 13
(indicated with the dashed vertical line in the figure). Conservatively, the critical
compression quality can also be chosen as 20. False positive of Rowley algorithm
is lower than Viola-Jones algorithm and it is also not affected by the decrease in
compression quality.

Figure 3(a) and Figure 3(b) demonstrate that both face detection algorithms
have noticeable fluctuations in the detection index. The main reason for such
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Fig. 3. Accuracy of face detection algorithms vs. JPEG compression quality.

fluctuations in the detection lies in the reliance of the Viola-Jones and Rowley
algorithms on different threshold values, which are empirically obtained through
offline training of their classifiers. These values affect the detection sensitivity of
algorithms to the faces in the input images. Slight changes in the pixel values of
an image due to compression can unpredictably affect the decision of the algorithm
on faces that are near the threshold. Also, these algorithms are sensitive to factors
such as face size, lighting, background conditions, etc. For more details refer to
our earlier study [Korshunov and Ooi 2005], where additional experimental results
supporting this reasoning are presented.

It is hard to find a definitive and quantitative answer to why these face detection
algorithms remain accurate for highly compressed images. Intuitively, algorithm’s
accuracy depends on what type of features it searches for in an image and how it
performs the search. The type of distortions, caused to video/image by reduction in
quality, affects algorithms’ accuracy as well. For instance, Viola-Jones algorithm is
based on Haar-like features, which are not affected much by the blockiness artifact
(the strongest artifact of JPEG compression) compared to, say, an edge detection
algorithm. The design of the algorithm, however, plays very important role as well.
Many modern algorithms (including Viola-Jones and Rowley algorithms) are based
on empirical training using a large pool of real-life images with faces of various
qualities, shapes, and scales. Therefore, thresholds and pruning values obtained
in the training stage have a strong affect on algorithms’ accuracy as well as their
robustness to reduction in video quality. We have previously discussed in more
details the effect of Viola-Jones algorithm’s thresholds on its response to JPEG
compression [Korshunov and Ooi 2005].

4.2 Face Recognition

The accuracy of QDA-based face recognition algorithm [Lu et al. 2003] is evalu-
ated for the following spatial video adaptations: nearest neighbor and pixel area
relation scaling algorithms (see Table II). The results are presented in Figure 4(a)
and Figure 4(b) respectively. Similarly to the accuracy pattern of face detection
algorithms, the accuracy of face recognition does not change until video quality
is reduced to a critical spatial quality. As indicated with dashed vertical lines in
the figures, for nearest neighbor scaling algorithm the critical quality is 20% of the
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Fig. 4. Identification CMC value of face recognition vs. scaling quality of two
scaling algorithms.

original images sizes and for pixel area relation it is 11%. On average, for images
from Yale set, these qualities reduce file sizes to 9.9% of their original sizes (10
times reduction) for the nearest neighbor scaling algorithm and to 4.2% (24 times
reduction) for the pixel area relation scaling.

Similarly to face detection algorithms, face recognition remains accurate for im-
ages with significantly reduced quality. We use QDA-based recognition, which relies
on a quadric offline-trained classifier to determine whether two input faces belong
to the same person or not (a categorization task). Detection and recognition algo-
rithms are designed to perform their task accurately on data (images or video) with
large amount of noise. Video artifacts of compression and scaling can be regarded
as noise added to an image. Therefore, since detection and recognition algorithms
are designed to be prone to noise, they are robust on video that is highly compressed
or scaled.

4.3 Face Tracking

In this section, we study the trade-off between accuracy of implemented in OpenCV
library CAMSHIFT [Bradski 1998] face tracking algorithm and two qualities of the
video, temporal and SNR. We run the tracking algorithm on video with differ-
ent frame dropping patterns and compute tracking average error as described in
Section 3. We also test face tracking for different compression qualities.

Figure 5(a) shows the average error for one of the test videos for patterns with i
varying from 1 to 14 and j equal to 1, 3, 6 and 12. The figure shows that drop gap
i plays a more important role in the accuracy of the tracking algorithm compared
to j. We can see from the figure that accuracy is consistent with increase of i
and decrease of value j. Only when gap i is more than 8, the algorithm shows
unpredictable behavior; we call this drop gap a critical drop gap. The reason for
unpredictable behavior is that CAMSHIFT algorithm searches for a given object’s
histogram inside a subwindow of the current frame of the video, which is computed
as 150% of the object size detected in the previous frame. Therefore, if the object,
moves between two frames from its original location for a distance larger than half
of its size, the algorithm will lose the track of the object. With another drop gap,
the face may be able to move out and move back into the search subwindow. Hence,
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Fig. 5. Average error vs. drop gap for CAMSHIFT algorithm. Compression quality
100 and 50.

(a) (b)

Fig. 6. A snapshot frame from a test video for CAMSHIFT face tracking. In (a) it
is compressed with quality 100 and in (b) with quality 50.

the oscillations in the algorithm’s accuracy occur.
Such observations demonstrate the significance of gap i for the accuracy of the

face tracking algorithm. In the video used for Figure 5(a), i should be bounded by
8 for the tracking to be consistently accurate. Therefore, the algorithm can achieve
reasonable accuracy (within two pixels) using the pattern: “Drop 8 frames out of 9
frames.” In other words, the video source only needs to send at 1/9 of the original
frame rate.

Next, we study the effect of SNR quality on the accuracy of face tracking. We
compress the video with different compression qualities and repeat the experiments
with frame dropping pattern. The results for video with compression quality 50 are
shown in Figure 5(b). We can see that accuracy is lower on average for video of
higher compression ratio. An increase in compression ratio leads to an increase in
average face distance ratio since highly compressed video has fewer details, making
the border of a tracked face less distinct. Figure 6(b) shows the effect of the
compression with quality 50 using a frame sample from the test video.
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The results reported above come from experiments on a single video, captured
using a web-cam in a normal office environment. We repeat the experiments for
different videos with different content and notice that for a movie clip with talking
person, moving his hands occasionally, the critical drop gap is 14, even when the
video was compressed with quality 10. On the other hand, for a movie clip showing
a character moving his head constantly in a fast and jumpy motion, the critical drop
gap is found to be 4 (“drop 4 out of 5 frames” pattern). We also run experiment with
web-cam video captured in different lighting conditions. The critical drop gap found
for various videos and different compression qualities is plotted in Figure 7. The
figure shows that compression quality does not significantly affect accuracy of the
face tracking algorithm, hence, the type of face motions is a major video constraint
for the accurate tracking. Face tracking algorithm is resistant to video compression
because it is based on histogram matching. Since DCT-based compression removes
high frequencies from a video, it does not have a significant effect on the histogram
of a face.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10  20  30  40  50  60  70  80  90  100

C
rit

ic
al

 D
ro

p 
G

ap

Compression Quality

Moving Slowly, Normal Light
Moving Slowly, Bright Light

Moving Jumpy, Normal Light

Fig. 7. Critical drop gap vs. compression quality.

5. CRITICAL SNR QUALITY ESTIMATION

We demonstrated that the tested face analysis algorithms can sustain high reduc-
tions in video quality. However, in practical scenario, determining critical video
quality for a given video analysis algorithm is difficult. In the previous section,
to find critical quality, we used an exhaustive search by running an algorithm on
videos/images with gradually reduced quality. Such search is inefficient and there-
fore undesirable.

To overcome the above issues, we propose using metrics specific to computer
vision to compare videos degraded by video adaptations with different types of
distortion. Such metric can also be used for finding critical video quality for an
analysis algorithm, provided the metric is a “perceptual” metric for the algorithm,
i.e., it fits the way the algorithm analyses the video. Although several quality
metrics exist, such as objective PSNR metric or perceptive VQM and SIMM, they
were designed for human visual system and, therefore, cannot be applied directly
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to video analysis. Video analysis algorithms, unlike humans, have different require-
ments on the video quality, and hence, the challenge is to design a metric that is
suitable for different algorithms.

A video quality metric suitable for algorithms needs to satisfy several properties.
It should correspond to the tradeoff between video quality and algorithms’ accuracy.
In fact, since the sweet spot in such tradeoff is the most important point, the metric
should exhibit a significant drop in quality around the region where the sweet spot
occurs. Different tradeoffs, however, result from using different video adaptations
with the algorithm. For instance, Figure 4(a) and Figure 4(b) show two different
tradeoffs for two different scaling adaptations and a recognition algorithm. There-
fore, good video quality metric should match such different sweet spots accurately.
Since different video adaptations degrade video differently, finding a suitable metric
is a challenging task. Other properties of a suitable video quality metric include
ease of computation and generality to suit different video analysis algorithms. Op-
tionally, if the metric correlates with changing video bitrate, its value can be used
to compare different video analysis algorithms on how they perform on low video
quality.

In this section, we consider two different metrics that can be used to measure
SNR quality of the video: blockiness and mutual information. Blockiness is one
of the common distortion types, often called video artifacts. We choose blockiness
for two reasons: (i) it is the most prominent artifact of JPEG compression, and
(ii) Viola-Jones algorithm relies on Haar-like features, which, intuitively, should
be affected by this artifact. Blockiness, however, is not suitable for non-blocky
image adaptations such as bicubic scaling or JPEG 2000 compression. Therefore,
we also consider mutual information, as an alternative metric, which measures
general information loss in the degraded image. To demonstrate that the proposed
metrics satisfy the first property above, we show that, for a given video analysis
algorithm, the same metric’s value matches the critical video quality obtained with
different video adaptations. Therefore, using this value, we can practically estimate
critical quality for different types of adaptations without running multiple empirical
experiments demonstrated in the previous section.

In Section 5.1 and Section 5.2, we show how blockiness and mutual informa-
tion metrics can be used to estimate critical SNR quality for Viola-Jones, Rowely,
and QDA-based face recognition algorithms. We use JPEG compression and vari-
ous scaling algorithms as examples of different adaptations. We demonstrate that
blockiness metric can be used with blocky video adaptations, while mutual infor-
mation does not depend on adaptations type. Adaptation-independence makes
mutual information more convenient to use in practice, but it is also shown to be
less accurate than blockiness in estimation of SNR video quality.

5.1 Blockiness metric

We demonstrate, in this section, that blockiness can be used as a video quality
metric for various blocky video adaptations. To avoid inconsistencies with defini-
tion of critical SNR quality, we call the corresponding value of blockiness metric
as threshold on blockiness. We first find such threshold for a face detection or
recognition algorithm and a single video adaptation with blockiness artifact, e.g.,
JPEG compression. To demonstrate that it can be used as metric, we show that
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Fig. 8. Value of blockiness metric vs. JPEG compression quality for different
modifications of JPEG algorithm.

the same threshold value can be used to determine critical SNR quality for other
blocky video adaptation as well.

A non-reference blockiness metric by Muijs and Kirenko [Muijs and Kirenko 2005]
is adopted in our experiments. We chose this metric because it is easy to implement
and easy to adjust for blocks of different size. In a given blocky image, the metric
measures the contrast between local gradient of the block’s edge and the average
gradient of the adjacent pixels. Essentially, the metric’s value is the ratio of these
gradients. It considers horizontal and vertical block edges separately and takes the
average of these values across all the blocks in the image.

We use images from MIT/CMY dataset for face detection algorithms (see Sec-
tion 3 for more details) with JPEG compression as video adaptation. For recogni-
tion algorithm, we use Yale dataset and different scaling algorithms.

Face Detection. Since blockiness is the most prominent video artifact of JPEG
compression, it is reasonable to suggest that this artifact would affect accuracy of
face detection. We compute blockiness for each compressed image assuming that
block artifacts of JPEG have a size of 8 × 8 pixels. Since we later use blockiness
for other video adaptations that have blocks of different sizes, we normalize its
original value by multiplying it with the block’s size. Using the MIT/CMU dataset,
we measure the blockiness for different JPEG compression qualities and plot the
results in Figure 8(a).

For Viola-Jones face detection algorithm, taking JPEG compression quality 9 (the
sweet spot in Figure 3(a)), we can suggest 26.4 to be the threshold on blockiness
(indicated by the dashed line in Figure 8(a)). In order to verify that blockiness is a
suitable quality metric for Viola-Jones algorithm, we need other video adaptations
with blockiness artifact, and, for these adaptations, the same threshold value should
fit the corresponding sweet spots.

We artificially created other blocky video adaptations by modifying JPEG com-
pression. We created three simple quantization tables of JPEG that lead to blockier
images than the original JPEG compression. Tables are constructed without any
specific reason in mind, except they should be simple and emulate the pattern of
the original quantization table. We used formula aij = (4+i)(4+j), to obtain seven
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Fig. 9. Accuracy of Viola-Jones and Rowley face detection algorithms vs. JPEG
compression quality for different modifications of JPEG algorithm.

rows of the first table with last row and column repeated twice. Multiplying values
of this table by 3/2, we obtain the second table and multiplying them by 2, we
obtain the third table. We term the corresponding JPEG compressions according
to their tables’ most top-left values: “qt16”, “qt24”, and “qt32”. JPEG with the
original quantization table is marked as “original”.

Blockiness values for our JPEG modifications are compared in Figure 8(b). Tak-
ing 26.4 as threshold on blockiness determined above, we can estimate that the
critical SNR quality for “qt16” should be 15, for “qt24” should be 21, and for
“qt32” should be 29 (all values are indicated in the figure with dashed vertical
lines). Plotting accuracy of Viola-Jones algorithm against compression qualities of
these JPEG modifications in Figure 9(a) demonstrates that the estimated critical
SNR qualities match the sweet spots of the corresponding curves very well. There-
fore, the same threshold on blockiness determines the critical SNR quality value
for Viola-Jones face detection algorithm and several different versions of JPEG
compression.

To verify that blockiness as the quality metric is not specific to Viola-Jones
algorithm only, we conducted the above experiments for Rowley algorithm. The
threshold on blockiness is determined as 21.5 based on the sweet spot value 13 from
Figure 3(b) and the blockiness measurements of JPEG in Figure 8(a). Therefore,
critical SNR qualities for different modifications of JPEG can be estimated as 20
for “qt16”, 29 “qt24”, and 39 for “qt32” (from Figure 8(b)). Plotting accuracy of
Rowley algorithm against our versions of JPEG compression in Figure 9(b) confirms
the estimated values as they fit the corresponding sweet spots.

Rowley face detection algorithm is based on variations in pixel intensities, which
are not blocky type of features as Haar-features of Viola-Jones algorithm. Neverthe-
less, blockiness metric estimates the critical SNR quality for Rowley algorithm well,
because we use JPEG compression, for which blockiness is a main video artifact.
This observation indicates that the accuracy of face detection is mostly affected by
the type of video adaptation’s distortion rather than features that algorithm relies
on in its detection.

Note that the proposed simple modifications of JPEG are more preferable com-
pared to original JPEG compression. First, the original quantization table is em-
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(a)

Critical
quality

Image size
(bytes)

original 9 6955
qt16 15 6861
qt24 21 6604
qt32 29 6739

(b)

Critical
quality

Image size
(bytes)

original 13 8547
qt16 20 8171
qt24 29 7980
qt32 39 8035

Table III. Critical video qualities and corresponding average images sizes estimated
with blockiness metric for Viola-Jones (a) and Rowley (b) algorithms with original
and modified JPEG compressions.

pirically determined to fit human visual system, which is not well suited for video
analysis algorithms. Second, modified quantization tables can be expressed using
formula and hence easier to use in practice compared to storing tables in memory
of every device that uses JPEG compression (the current situation). The only con-
cern with simpler modifications of JPEG would be that their critical SNR qualities
amount to bigger file size compared to original JPEG. To address this concern,
we measured the average size of tested images compressed the critical qualities for
Viola-Jones algorithm in Table III(a). From the table, we notice that each criti-
cal quality corresponds to images with average size 8% of the images compressed
with conventional JPEG quality 90. Hence, our simplified versions of JPEG lead
to similar or arguably better bitrate reductions than the original JPEG. Similarly,
Table III(b) shows that for Rowley algorithm, critical SNR qualities of original
and modified JPEG compressions result in images with comparable average sizes.
These findings suggest that simpler and more efficient encoders can be developed
for these face detection algorithms.

Face Recognition. For QDA-based face recognition algorithm, we estimate the
critical video quality using blockiness metric for nearest neighbor and pixel area re-
lation scaling algorithms. These scaling algorithms exhibit strong blockiness video
artifacts. Unlike JPEG compression, however, sizes of resulted blocks depends on
the value of scaling quality (the percentage to which images are pre-scaled to). For
example, consider downscaling an original image to 50% using nearest neighbor.
After scaling back, each pixel in the resulted image is repeated, resulting in the
blocks of 2 × 2 pixels. Therefore, we adopted the blockiness metric used in Sec-
tion 5.1 to blocks of different size. The blockiness value for nearest neighbor and
pixel area relation scaling algorithms are presented in Figure 10(a) and Figure 10(b)
respectively. Combining these measurements with results on accuracy of the face
recognition algorithm given in Figure 4(a) and Figure 4(b), we can find value 158.5
to be a threshold on blockiness. Note that the same threshold value is obtained
for different scaling adaptations. This fact indicates that blockiness can be used as
SNR quality metric for QDA face recognition as well.

5.2 Mutual information metric

Video artifact metrics can be used only with video adaptations that produce the
measured artifacts. Such restriction causes inconvenience in using artifact metrics
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Fig. 10. Blockiness metric vs. scaling quality of two scaling algorithms.

in practice. Therefore, it is desirable to have a video quality metric that is more
independent of the way the video is degraded. In this section, we propose mu-
tual information as such a metric and show that it suits face detection and face
recognition algorithms.

Mutual information was first introduced in information theory [Shannon 1948]
and has proven itself as a good similarity metric in image registration. It measures
the amount of statistical information two different images share about each other.
It is easy to compute and it is a more general measure of distortion compared to
a video artifact metric (such as blockiness), which focuses on a specific type of
distortion. Also, mutual information is a better measure of video quality for video
analysis algorithms than PSNR. This is because, for instance, mirroring an image
to itself, while not affecting the performance of face detection or face recognition,
changes its PSNR. Mutual information value, on the other hand, is not affected by
such operations.

We demonstrate the advantages of mutual information by measuring the quality
of video degraded with different types of video adaptations. In addition to pre-
viously used blocky adaptations (JPEG, nearest neighbor, and pixel area relation
scaling), we also consider bicubic scaling algorithm, which adds a strong blurriness
artifact to the degraded image. We conduct experiments for Viola-Jones face de-
tection and QDA-based face recognition algorithms. Similar to experiments with
blockiness, we show that mutual information can be used as a metric of video qual-
ity for the selected algorithms. It means that a single threshold value of mutual
information can be used to estimate the critical quality for a particular algorithm
across various video adaptations.

To compare experimental results on mutual information for different adapta-
tions, we plot the value of mutual information vs. the accuracy of a given video
analysis algorithm. The results are presented in Figure 11(a), for face detection
and in Figure 11(b), for face recognition. We explain how a single curve on the
graph is obtained, using example of JPEG compression (marked as “jpeg”) and
face detection algorithm. Images from the MIT/CMU test dataset are compressed
with JPEG compression qualities varying from 1 to 99. For each JPEG quality, we
compute detection index of the face detection algorithm and the average mutual
information, using original uncompressed images as references. Note that mutual
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Fig. 11. Mutual information vs. accuracy of face detection and face recognition
algorithms. Different curves correspond to different types of video adaptations.

information has lower value for more distorted images and higher value for less
distorted. The resulted pair of detection index and mutual information represent
one point on “jpeg” curve. Curves for scaling algorithms are obtained similarly.
Curves marked as “scale NN”, “scale BC”, and “scale Area” correspond to nearest
neighbor, bicubic, and area-based scaling respectively. For face recognition algo-
rithm, Yale dataset is used (partitioned to probe and gallery subsets as described
in Section 3), and cumulative match characteristic (CMC) rank one value [Grother
et al. 2003] is computed.

Figure 11(a) demonstrates that a mutual information value between 2 to 2.3
can be considered as a threshold corresponding to the critical video quality for the
face detection algorithm for the given set of images. The threshold is actually an
interval, because the face detection algorithm is not very robust to high noises in
images showing frequent fluctuations in accuracy. In practice, we can conservatively
use 2.3 to be the threshold for mutual information metric, as indicated with the
dashed vertical line in the figure. This value reflects the quality 17 for JPEG
compression (which is between sweet spot value 9 and our conservatively selected
critical quality 20), 54 for nearest neighbor, 48 for bicubic, and 52 for area scaling
algorithms. Degrading images in MIT/CMU dataset to these qualities corresponds
to approximately 12, 4, 5, and 6 times reductions in average image sizes.
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Fig. 12. Mutual information vs. accuracy of face detection and face recognition al-
gorithms. Different curves correspond to different combinations of nearest neighbor
scaling and JPEG compression.

For face recognition, the CMC rank one value is plotted against the value of
mutual information in Figure 11(b). From the figure, the face recognition threshold
value on mutual information can be conservatively set to 1.8. This value gives
approximately 10, 11, 21, and 29 times reduction in Yale image sizes for JPEG
compression, nearest neighbor, bicubic, and area scaling algorithms respectively.

Since blocky and blurry types of video adaptations were used in these experi-
ments, it demonstrates that, compared to artifact metrics, mutual information is
adaptation independent. Therefore, we can use mutual information to measure
SNR quality for a combination of different video adaptations. For example, video
frames can be scaled down first and then compressed with JPEG to achieve a higher
bitrate reduction. We only need to make sure that for the resulted frames, the value
of mutual information is above the threshold.

Combining Several Video Adaptations. Figure 1 shows a practical video surveil-
lance scenario, where the surveillance video is reduced by scaling followed by com-
pression. Combination of two adaptations allows even higher reductions in video
size compared to using single adaptation (compression or scaling). We use nearest
neighbor scaling for its speed. It also shows the worst reduction results compared
with other scaling algorithms. As described in Section 3, images from MIT/CMU
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(a) (b)

Fig. 13. An example of original video frame (JPEG compression value 90) used in
practical tests (a) and an example of test frame scaled with nearest neighbor to
30% followed by JPEG compression with quality 20 (b).

and Yale datasets are degraded following this sequence: prescaled, compressed with
JPEG, decompressed, and scaled back to their original resolution. The accuracy
of Viola-Jones face detection and QDA-based face recognition algorithms are com-
pared on the degraded and original images. Accuracy vs. mutual information are
plotted in Figure 12(a) for face detection and in Figure 12(b) for face recognition.
For face detection algorithm, the images were prescaled to 30%, 50%, and 80% of
their original resolution, which correspond to curves “preNN30”, “preNN50”, and
“preNN80”. Images for face recognition algorithm were prescaled to 20%, 30%, and
40%. The threshold values on mutual information that were found in the previous
section are indicated with dashed vertical lines in the corresponding figures.

By looking at Figure 12(a) and measuring the reduction in files sizes for the
corresponding transformations, we notice that there is no apparent benefit in com-
bining neighbor scaling and JPEG compression video adaptations for face detection
algorithm. Only images prescaled to 80% and compressed with JPEG compression
quality higher than 75 have mutual information larger than the threshold. Ev-
idently, the best choice for face detection, because of simplicity and amount of
bitrate reduction, is to apply a single JPEG compression with quality 17.

With face recognition, the situation is different (Figure 12(b)). By measuring
resulted files sizes, we found that the best reduction in size is achieved by prescaling
images to 30 with nearest neighbor and then compressing them with JPEG quality
20.

Lab Experiments. To verify the critical video qualities determined in the previous
section for face detection and face recognition algorithm in a practical scenario, we
installed a video camera in our research lab and pointed it at the door (see the
description of the test video given in Section 3). We degrade the original video
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frames to JPEG quality 20, as the critical SNR quality for face detection. For face
recognition, we prescale the video with nearest neighbor algorithm to 30 percent
first, then compress it with 20 JPEG quality. An example of the original camera
frame shown in Figure 13(a) can be visually compared with the degraded frame
in Figure 13(b). The resulted reductions in bandwidth are presented in Table IV.
The reduction in bandwidth amounts to 3.9 times for face detection and 12.5 times
for face recognition. If we also reduce original video frame rate from conventional
30 fps to 5 fps, which is a reasonable frame rate for detection and recognition, the
reduction amounts to 23 times for face detection algorithm and 75 times for face
recognition.

Video Mutual Information Bitrate (kbps) Reduction
Original - 4403.2 -

Video for FD 2.7158 1138.8 3.9
Video for FR 1.798 352.2 12.5

Table IV. The reduction of video bitrate: original video, degraded video for face
detection (FD), and for face recognition (FR) algorithms.

We evaluated both video analysis algorithms with video degraded in the above
manner, considering each frame as a separate image. Coordinates of faces detected
by face detection algorithm were given as an input to the recognition algorithm.
We evaluate the recognition algorithm by using the verification, instead of identifi-
cation, performance metric [Grother et al. 2003]. The choice of evaluation metric is
not essential to us, since we only concern with the consistency in algorithm’s per-
formance when the video is changed from the original high quality to the degraded
low quality.

Evaluations of two algorithms showed that face detection algorithm correctly
detected 144 out of 237 faces in images compressed with both JPEG quality 20
and 90. The algorithm, however, had falsely detected four faces for quality 20 and
one face for 90. To avoid occasional false positives occurring due to algorithm’s
fluctuations, only faces that are present in three consecutive frames were counted
as a real face. The detected faces from the degraded video, including false positives,
were used as the inputs to the recognition algorithm. Recognition showed two false
positives for degraded video (expectedly, false positives from face detection were
not recognized) and surprisingly five false positives for the original video. We used
only one face per person in the gallery for verification. Adding more faces per
person with different expressions might improve the recognition performance.

From our experiments, we can notice that the same type of degradation results
in different mutual information values depending on the image types. This is be-
cause computation of mutual information requires the reference image. Therefore,
in practice, two situations need to be considered: (i) finding the threshold on mu-
tual information for the given video and (ii) checking if mutual information for
current live frames exceeds the threshold. Since the original and degraded video
frames are required for computing mutual information, during the normal opera-
tion of the system, its value should be computed at the video source for each frame.
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The threshold value on mutual information can be found interactively during the
calibration stage of the system, by incrementally decreasing the video quality and
evaluating the performance of video analysis algorithms. Another way is to build
a table of typical thresholds values for different categories of images offline and use
corresponding values in particular live scenarios.

Experiments with artifact and mutual information metrics demonstrate that once
the corresponding threshold is found for a face detection or recognition algorithm,
it can be used to determine critical SNR qualities for different video adaptations,
e.g., JPEG compression or nearest neighbor scaling. To understand which metric
to use and what the metric’s threshold is, we reason about a video analysis al-
gorithm (understand what video features it relies upon) and a video adaptation
(determine how it degrades the video). Limited empirical experiments, however,
are still required for finding metric’s threshold for SNR quality.

6. CONCLUSION

In this paper, we evaluated the effect of video quality degradation on several typical
examples of face analysis algorithms. The surprising finding of the paper is that
the tested algorithms show very high tolerance towards large reductions in video
quality. Our experiments demonstrated that the accuracy of the algorithms show
no significant decrease until the video is degrade to a certain quality threshold,
which amounts to at least 10 times lesser video bitrate than video conventionally
encoded for human vision. We also argued that an algorithm-oriented video quality
metrics need to be developed. Metrics based on video artifacts, such as blockiness,
and mutual information were considered.

Due to heterogeneous and empirical nature of common video analysis algorithms,
our results cannot be generalized for all different algorithms. However, we believe
that non-trivial and useful video analysis algorithms can be grouped into a limited
number of categories that show similar responses in terms of accuracy to various
reductions in video quality. Often, algorithms either rely on empirical data or are
training based; hence, it is difficult to fully formalize their behavior. Therefore, the
idea that video analysis algorithms require lesser video quality than humans needs
to be supported with experiments using more examples of algorithms. Changes
in algorithms’ accuracy need to be studied for major video adaptations used in
practical systems, such as in MPEG-4 and H.264.

Overall, the results of the paper strongly suggest that it is impractical and in-
efficient to treat video analysis algorithms in the same manner as a human video
observer. Resource-efficient video analysis algorithms can, and should, be designed.
Video encoding algorithms designed for computer vision need to be developed, since,
in terms of video quality required, computer vision is very different from human
vision.
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