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ABSTRACT
We collected traces of how 37 users interacted with 9 pregrely

We conducted a user experiment with 37 users interacting wit
9 meshes. We log the user’s actions while they interact ae vi

streamed and rendered 3D meshes. We analyze the tracesand di the meshes in a mock online shop. We present the analysies# th

cuss the insights that we learned in relation to design ofiefft
and scalable progressive mesh streaming systems. Ous trace
dicate that user actions are predictable and exhibit skewedss
pattern. This finding could lead to design of efficient prestiéng
and caching techniques for progressive mesh streaming.

Categories and Subject Descriptors .3.2a[Graphics Systems):
Distributed/Network Graphics

General Terms Human Factors, Measurements, Performance
Keywords Progressive Meshes, Interaction, User Behavior

1. INTRODUCTION

Advances in 3D scanning, range data collection, and diggtalpt-
ing techniques have eased the creation of high quality 30heses
These meshes are increasingly being shared over the Ihtieroegh
progressive streaming, in applications such as virtuahesirtual
art gallery, and online shops. 3D meshes are typically detteand

traces in this paper, and highlight findings that are sigaifi¢o the
design of efficient and scalable progressive mesh streanyisg
tems. In particular, we found that (i) in certain scenarigser ac-
tions are highly predictable, making pre-fetching usefuthese
cases; (ii) users’ viewpoint concentrates on part of thehegs
making caching these popular spots useful.

Figurel: Meshesused in experiment. Left toright: Thai Statue

demand high network bandwidth and computational power. For (5 million vertices), Dragon (3.6 million vertices), and Happy

example, a regular mesh like thbai Satue (Figure 1, left) has 5
million vertices (122 MB after gzip) takes 16 minutes to déved

Buddha (0.5 million vertices).

even at 1 Mbps. When these meshes are viewed on portable de-

vices with low bandwidth and slow CPUs, delays in both trafism
ting and rendering become unavoidable. To minimize negaiber
experience, the streaming system needs to prioritize dataks
according to user needs and efficiently cache the most fréigue
viewed data. Designing such systems requires a thorougérund
standing of user behaviors in viewing 3D meshes.

Most previous work on user interactions with 3D objects &sall
on design of specific interaction techniques (e.g., theydtydChen
et. al [2] and Hinckley et. al [4]). This paper, however, sésduser
behavior from the system design point of view, such as ptaklilc
ity (for prefetching) and locality of access patterns (faclsing),
similar to the spirit of the landmark studies for the Web [B{idile
system [7]. No such prior study exists for progressive meshhis
paper presents our first step towards filling this gap.
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2. USER STUDY

Meshes. Three 3D meshes are chosen from the freely available
Stanford 3D Scanning RepositéryHappy Buddha, Dragon, and
Thai Satue. These meshes vary in complexity (amount of vertices),
orientation, and symmetry in space from default viewingcliion.
Happy Buddha is the simplest, is vertically oriented, and has a de-
fault viewing direction orthogonal from the face of the Bhdd
From that direction, the mesh is asymmetric between froat an
back. The geometric shape dappy Buddha is somewhat repre-
sentative of all human-like statud3ragon is more complex and is
horizontally oriented. The default viewing point is fromeoside of
the body. UnlikeHappy Buddha, it is front-back symmetric relative
to the default viewing direction. The geometric shapéoigon
is somewhat representative of most mammadleai Satue is the
most complex and is actually a compound mesh composed @f thre
identical sides, each with three different objects: a Geddan ele-
phant, and a dragon, stacking vertically from top to bottdimese
three sides connect to form a triangular cylinder. Theretlamee
possible default viewing directions, one each from threees of
the triangular mesh. Théhai Satueis included as an example of
complex compound mesh.

http://graphics.stanford.edu/data/3Dscanrep/



We replicate each mesh above twice, generating nine meshes i
total. We added one localized visual defect, by denting allsma
region, to each replicated mesh without changing its nunaber
vertices or faces. The reason for adding the defects willxbe e
plained later. The location and nature of the defects vatyéen
the meshes. A#lappy Buddha is relatively simplier and has a
smooth surface, its defect is more obvious tiagon and Thai
Satue. Defects for the later two meshes, due to the irregular sur-
faces, are hard to find unless the user zooms in considerably.

The meshes are encoded progressively and streamed over a sim

ulated network of 320Kbps and 400ms round trip time.

Design and Procedure Our experiment mimics the following
general real world scenario. Customers are shopping in kmeon
antique store. Each product in the store has a number of itams
each item is represented by a 3D mesh closely resemblingthe ¢
responding real world item. These items vary in quality, aoche
have visible defects. Before purchasing, customers wikfcdly
examine the available items for a product in order to pickktest
item available for that product category.

We designed our experiment using a simple case of the above
scenario. Our online store has three different productsespond-
ing to the three different meshes mentioned earlier. EactHymt
has three available items in varying quality. Two of theméhaix
sual defects (note: defects are created without changingnash
characteristics). Due to the different complexity of eaash the
defects are easier to find in the simpler meshéappy Buddha)
compared to the more complex on@sdi Satue andDragon).

The participants were first instructed about the keyboard-co
mands to view and interact with the 3D meshes, and given brief
practice of these commands on a simple mesh before starting t
experiment. The participants were presented with an usenface
mimicking an online catalog with three products. For eaaidpr
uct, images of three items (i.e., three versions, one aligind two
with defects) are shown on the screen. The order of the pteduc
are randomized to avoid order effects. The participants’igoto
pick the best item among the three. Each item can be vieweatyin a
order and if desired, multiple times. When a participanésts an
item, a new viewing window (width of 14cm and height of 15cm,
with a resolution of 500x500 pixels) opens, and the 3D mesteeo
sponding to that item is progressively streamed and reddeithe
window. The participants can interact freely with the meskilu
they close the window. They would mark the item to be purctiase
after viewing all three items and move on to the next prodbeath
participant must go through all three products to comple¢eex-
periment.

During the experiment, users’ key press actions and viewtpoi
transformations were logged for offline analysis. The aidd
keys along with its abbreviations are as follows, revolakivise
(REC) and anti-clockwise (REAN), rotate clockwise (ROCHan
anti-clockwise (ROAN), move up (MU), move down (MD), move
right (MR), move left (ML), tilt back (TB), tilt forward (TF)zoom
in (ZIN) and zoom out (ZOUT). The rotate, revolve, and tileop
ations refer to rotating about the z-axis, y-axis, and »sadspec-
tively. The axes follow the standard OpenGL convention.

Participants. A total of 25 male and 12 female participants,
aged 19 to 36 (mean 23), mostly from the university community
participated in the experiment. None had any visual hapdica

3. RESULTSAND IMPLICATIONS

In this section, we present our analysis on the user behalier
present only on the analysis of the original (non-defedjuss,
unless otherwise specified. In addition, we also discusg imna
plications these results have on system design.

3.1 Session Length

Session length refers to the time each user spends in viewing
a mesh. Generally, the session length is short, with theageer
values of 107s, 76s, 47s fohai Statue, Dragon, andHappy Bud-
dha, respectively (see Table 1). Figure 2(a) shows the digtabu
The session length decreases with complexity of the meabex-
pected. The session length fits flog-normal distribution.

(a) Session Length Distribution (b) Inter-stroke Time Distribution
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Figure2: (a) Session Length and (b) Inter-stroke Time

Mesh Session Length Think Time
Mean() | Max(s) | Meangns) | Max(s)
Thai Statue 107 376 593 25
Dragon 76 272 574 20
Happy Buddha a7 98 403 13

Table 1: Session Length and Think Time

3.2 Think Time

We refer to the time between two key strokesraier-stroke time.
Consecutive key strokes of the same type with inter-strake t
smaller than 2Gns are grouped together as oogeration. The
time between two operationstisink time. We choose the threshold
of 20 ms because there is an obvious gap betweers%and 35ns
in the CDF of inter-stroke times for all meshes (see Figubg)2(

We find that think time follows similar distributions for atif
the three meshes (Figure 3(a)). About 90% of the think time is
smaller than a second. There is a jump in the curve of think tim
distribution for all the three meshes — about 5% of the thiniet
clusters around 0.5 seconds. We hypothesize that thisateteto
the 0.4-second round trip time in our experiments. After erus
performs an operation, it takes 0.4 seconds before the asesee
progressive refinement of the mesh (although the systeromesp
to the change in viewpoirimmediately). Some users might wait
for the refinement to come before the next operation.

The mean and maximum think time are shown in Table 1. We
note that the maximum is up to 50 times larger than the mean.

To investigate the relation between think time and viewfsin
we classify the viewpoints into 4 regions: front-far (FFprit-near
(FN), back-far (BF), and back-near (BN), basedfimmt/back and
far/near. We find that the think time distribution is not affected by
the viewpoint (see Figure 3(b)).

3.3 Operations

Besides the session length and think time, it is also intiegto
see if user actions are predictable. If so, pre-fetchinglEansed
to improve the mesh quality and reduce response time.
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Figure3: Think Time (x-axisin log scale).

Figure 4(a) shows the probability of occurrences of 12 diife
operations on the traces from each of 9 meshes, displayelids a
ble chart. The bubble size indicates the probability of agrafion
occurring for a mesh. We can see that the most frequentlyafsed
erations are revolving (rotate around y-axis) and zoomingther,
zooming in is used more frequently than zooming out, indhcat
that users tend to zoom in to a comfortable distance to seadish

with more details. Indeed, we observe that many users zoom in

first, and then revolve around the y-axis.

With these distributions, we can do a simple prediction & th
next operation to be taken by a user without any other inftiona
The prediction could be more accurate, however, if we canstie
current viewpoint of the user and the previous action of ger.u

We first examine whether the probability of an operationtesla
to the viewpoint of the users. Figure 4(b) shows that theritist
tion of operations is different in the 16 regions fidtai Satue. For
example, the probability of zooming in (ZIN) is higher in thight-
top, front-far region (RTFF). Since the default viewpoieslin this
region, users tend to zoom in to a comfortable distance firdt a
then move to other region8ragon (Figure 4(c)), however, shows
different behavior. First, zoom-in is not as frequent in tlegault
view, sinceDragon has less details thahhai Satue and can be
viewed comfortably with the default distance. Second, si$e-
quently tilt, possibly due to the horizontal orientationfagon.
Our findings indicate that the viewpoint affects the probgbof
taking a next operation, but this effect depends on the sizk a
shape of the mesh, and thus is difficult to have a general frame
work for prediction based on viewpoints. Past history ofruse
teractions for a particular mesh, however, could be usednfme
accurate mesh-specific prediction.

Figure 4(d) shows the conditional probability of taking thext
operation given the previous operation Tdrai Satue. The shaded
diagonal shows that the same operation has the significianggr
probability (e.g., more than 0.93 for revolving) of beingea next.
The other meshes exhibit the similar pattern. Such highigtadall-
ity points to the efficacy of pre-fetching as a way to reduspoase
time and improve the viewing quality.

Finally, we consider the dependencies on viewpoint andiprev
ous operation together. Figure 4(e) shows the probabifitialo
ing a given operation in a given viewpoint region when the- pre
vious operation is zooming in fofhai Satue. Figure 4(f) gives
such probability when the previous operation of moving ddem
Dragon. Both figures show that the dependence on viewpoint is
non-negligible, but is still predictable for a given meshor -
stance, zooming out is more frequent after zooming in, ifvikev-
point is nearer to the mesh. This behavior is expected. Finer
sion of viewpoint regions should yield more accurate priafic

3.4 AccessPattern

Proxy caching of meshes is useful in reducing the servicé. loa
In this section, we show that the user traces exhibit accassrps
that can lead to efficient caching.

Caching for Mesh Streaming. In mesh streaming, vertices are
often grouped into chunks [3] for transmission. These churan
be cached at a proxy to reduce server overhead. To study ¢he us
fulness of proxy caching, we look at the access pattern talchu

We first replay the log of operations from the users, and gdaer
a list of chunks accessed by users during the experimentm Fro
these chunk traces, we count the number of times each chunk is
accessed. We then sort the chunks in decreasing order af¢tbesa
count, and plot the cumulative access count versus rankgiaré&i
5(a). We normalize both axes to between 0 and 1 so that we aain pl
all three meshes on the same graph. Figure 5(a) shows how many
requests we can satisfy (i.e., hit rate) by storing the nresfiently
requested chunks in a proxy. The x-axis denotes the number of
chunks stored in the proxy, as a fraction of total number ohéls
requested. It can be observed that by building a static ctwtte
stores 20% of the most frequently accessed chunks, the jgaoxy
achieve more than 70% hit rate fédhai Satue and Dragon, and
55% forHappy Buddha.
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Figure5: Cumulative Access Count versus Rank

Caching of Remote Rendering. For rendering on mobile de-
vices [1] or for protection of mesh data [6], the server caédd a
rendered image directly according to the users’ viewpdimtthis
scenario, the caching proxy can cache the rendered imagesaiV
similarly find the viewpoints “visited” by the most users. few-
point visited multiple times by the same user is only courttece,
since the user can keep the received image locally and need no
request it the second time. Figure 5(b) shows a plot sinol&id-
ure 5(a), but for access frequency of viewpoints. The fighmvs
the hit rate at the caching proxy if we choose to store prelessd
images corresponding to the most frequently accessed wiatgp
The distribution is not as skewed as access count for chimiks,
still, caching the rendered images for 20% of the most fratiye
accessed viewpoints can yield 40 - 50% hit rate.

Caching of Vertices and Pixels. Caching mesh data in graphic
card memory (e.g. using VBO (Vertex Buffer Object) and PBO
(Pixel Buffer Object) supported in OpenGL), could signifidg
increase the rendering speed when the memory bandwidtle is th
bottleneck. For graphic cards without enough memory teestoe
whole mesh, we could just store the most frequently viewetigia
the mesh in the graphic card memory.

We replay all the user traces, and count the number of tings ea
face is viewed. We normalized the number of views of each face
and visualize them with a heat map (Figure 6(a)). We can s&e th
the most frequently viewed region bliappy Buddha (viewed 4205
times) is the base between the two legs because it is vigibhe f



(a) Unconditional Operation Frequency (b) Conditional Operation Frequency:Thai Statue (c) Conditional Operation Frequency:Dragon
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Figure 4: Frequency of User Actions

both the front and the back. Figure 6(b) plots the normalzedu-
lative view count of faces versus rank, similar to Figure % &&n
see that the locality is slightly less than that in the presitwo sce-
narios, but foHappy Buddha andThai Statue, hit rate of 40% can
be achieved by storing 20% of the most frequently viewedSace
the graphic card memory. The meBhagon has the least locality.

We hypothesize that this is because people tend to Deagon

at many different viewpoints due to its complex shape, legqdd

more evenly distributed viewpoints around the mesh.
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Figure 6: (a) The normalized number of views for each face.
(b) Thehit rateif we partially cache faces on the graphic card.

4. CONCLUSION

The analysis of user traces reveals that user actions atietaiele
to certain extent. The prediction based on previous actisimiple
and effective. Further, locality exists in both data andwieint
access. By storing the most popular mesh data in cachinggs;ox

the server overhead could be significantly reduced.

In particular, we are interested in understanding the siselérance
level to delay and bandwidth in the network, the two factbes af-
fect the time and rate at which a mesh refines its resolution.
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