
Identifying “Representative” Workloads in Designing
MpSoC Platforms for Media Processing

Alexander Maxiaguine1 Yanhong Liu2 Samarjit Chakraborty2 Wei Tsang Ooi2
1Computer Engineering and Networks Laboratory, ETH Zürich

2Department of Computer Science, National University of Singapore
E-mail: maxiagui@tik.ee.ethz.ch, {liuyanho,samarjit,ooiwt}@comp.nus.edu.sg

Abstract— Workload design is a well recognized problem in the
domain of microprocessor design. Different program characteristics
that influence the selection of a representative workload include
microarchitecture-centric properties such as cache miss rates, instruc-
tion mix and accuracy of branch prediction. However, properties of
a workload that are pertinent to the context of system-level design
of multiprocessor SoC platforms are very different. Till date, the
problem of “representative workload design” in this specific context
has not been sufficiently addressed. This paper represents an attempt
to address this problem in the specific case of SoC platform design
for multimedia processing. Towards this, we present a method to
characterize properties of multimedia workload that are relevant to
SoC platform design. Based on such a characterization, we present
a technique for classifying different multimedia streams. Finally, we
show the utility of such a classification through a case study involving
the design of a multiprocessor SoC platform for MPEG-2 decoding.

I. INTRODUCTION

Recently there has been a lot of interest in designing multipro-
cessor System-on-Chip (MpSoC) platform architectures for multi-
media processing. Examples of such architectures are Eclipse and
Viper from Philips, which are targeted towards advanced set-top
boxes and DTVs. A typical design process of such an architecture
involves a thorough exploration of the available design space.
During this design space exploration, many different platform
configurations are evaluated and compared with each other with
the goal of identifying an architecture that would be most suitable
for a set of target applications. Usually this process heavily relies
on system simulations as a means of performance estimation of
the candidate architectures. Ideally, each implementation of an
application on a MpSoC architecture has to be evaluated for a
large number of possible inputs. However, this is an expensive
process since the simulation involved for each input might require
a considerable amount of time. For example, simulation of only
a few minutes of video, for a video decoding application, may
consume tens of hours [12]. This significantly limits the number
of different inputs for which simulations can be performed within
an allotted design time. Therefore, from a large library of possible
inputs, the system designer has to choose the smallest subset which
is “representative” of the workload that the architecture would
experience in practice. Simulations can then be restricted to this
subset only.

Selecting a good “representative” input set is of course not a new
concern—benchmark selection or workload design is a well recog-
nized problem in the domain of microprocessor design. However,
the main issues in that domain are microarchitecture-centric, where
a designer is mostly concerned with program characteristics like
instruction mix, data and instruction cache miss rates and branch
prediction accuracy. On the other hand, the concerns in the case

of system-level design of platform architectures are very different
and these are not suitably reflected in a benchmark suite designed
for microarchitecture evaluation.

In this paper we attempt to address this issue of workload design
in the specific context of system-level design of platform archi-
tectures for multimedia processing. Although simulation-oriented
design and evaluation are widespread in the domain of system-
level design, to the best of our knowledge the issue of methodically
selecting representative inputs for architecture evaluation has not
received any attention so far. Most of the work reported in the
Embedded Systems literature, on novel system models or simula-
tion schemes, shirk off this problem and leave the responsibility
of choosing a representative input or stimuli to the architecture on
the system designer (see, for example, [6]).

There are many reasons why this problem is interesting in
the specific case of multimedia processing on MpSoC platforms.
Firstly, many multimedia applications exhibit a large degree of
data-dependent variability that complicates the problem of choos-
ing a representative input set. Secondly, in contrast to general-
purpose architectures, MpSoC platforms that are optimized for
stream processing have heterogeneous parallel architectures. This
fact further complicates the problem. Thirdly, multimedia process-
ing is in general computationally intensive, which makes workload
selection an important problem.

Arbitrarily selecting inputs to form the “representative” input
set is certainly not a good idea. The goal of “representative”
workload design should be to select inputs that represent corner
cases for the target architecture, i.e. those inputs which impose
worst- and best-case loads on different parts of the architecture.
However, determining what constitutes a “corner case” is not a
trivial undertaking due to the complex nature of most multimedia
workloads. Attempts towards using some qualitative technique to
judge the properties of multimedia streams based on their content
(for example, by simply viewing video clips to be processed by the
architecture and classifying them based on experience or intuition)
might easily fail. Hence, a quantitative methodology is necessary,
using which it should be possible to objectively assess and compare
the properties of different multimedia streams. Based on such a
comparison, a small representative subset of a large library of
samples can then be chosen.

In this paper we propose such a methodology to classify
multimedia streams, which can be used to identify a small rep-
resentative set meant for architecture evaluation. Towards this, we
first hypothesize that all the characteristics of multimedia streams
that influence the performance of a MpSoC platform architecture,
are related to their “variability”. Such variability manifests itself

as data-dependent fluctuations of (i) execution time requirements
and (ii) input-output rates associated with multimedia processing
tasks. These fluctuations stem from the fact that execution time
requirements of the tasks and the amount of data consumed and
produced by the tasks depend on the properties of particular
audio/video samples being processed. Now, given a library of
multimedia streams, we classify two streams as similar if both
of them exhibit the same kind of variability with respect to
execution time requirements and input/output rates as mentioned
above. Therefore, given a set of video streams which are similar,
it would be sufficient to simulate an architecture with only one
video stream from this set, as all the other streams would “stress”
the architecture in the same way. To quantitatively characterize the
variability associated with a stream, with respect to an architecture,
we use a novel concept called variability characterization curves
(VCCs) [9] which is summarized in Section II. As an illustration
of our methodology, throughout the presentation we use a case
study of an MPEG-2 decoder application.

We would like to point out here that the kinds of variabilities
that should be considered in a multimedia stream for an effective
classification would depend on the architecture and the application
at hand, and a detailed discussion of this is beyond the scope
of this paper. The contribution of this paper is to point out that
the properties of multimedia streams, that should be considered
for representative workload identification in the context of
performance evaluation of SoC platforms, can be expressed in the
form of VCCs.

Related Work: The construction of representative workloads for
performance evaluation of computer systems has always been
an area of active research since early 70s (see [11] and refer-
ences therein). Since then the term workload has been widely
understood as a mix of programs (or jobs, or applications) for
which the performance of a computer system was evaluated.
Domain-specific collections of such programs, called benchmarks,
have been designed and widely used as a standard means to
evaluate and compare computer architectures. Examples of these
are MediaBench [8] and the Berkeley multimedia workload [10].
Design of such representative workloads was mainly concentrated
on proper selection of the programs to be included in the workload.
The selection of corresponding input data sets was limited to the
definition of their size (e.g. sampling rate, resolution etc.) The
dependency of program behavior on the values of the input data
sets did not receive enough consideration in the process of forming
such representative workloads.

Recently Eeckhout et al. [1] have shown that the workload
design space may be very complex and therefore should be
systematically explored during the construction of representative
workloads. Their workload design space consists of program-input
pairs that capture both, the variety of programs as well as various
input data sets to those programs. They use techniques such as
principle component analysis and cluster analysis to efficiently
explore the space of possible workloads and select representative
program-input pairs from it.

The problem of reducing simulation time has been addressed
using trace sampling techniques (see [5] and references therein).
The goal of such techniques is to identify representative fragments
in the program execution and simulate only those fragments,

thereby eliminating the need for simulating the entire program.
Trace sampling techniques heavily rely on the characterization and
classification of the workload imposed on the architecture by the
different fragments in the program execution trace. However, it
should be noted that all the above mentioned research efforts were
primarily targeted towards characterization and composition of
representative workloads in the domain of microprocessor design.

II. WORKLOAD CHARACTERIZATION

Clearly, workload characterization should be based on key prop-
erties that are important in a particular design context. Usually
these are properties that have a strong impact on the performance of
the architecture being designed. For instance, in microarchitectural
design such properties would be instruction mix, branch prediction
accuracy and cache miss rates [1]. As mentioned in the previous
section, our hypothesis is that on the system level the perfor-
mance of multimedia MpSoC architectures is largely influenced
by various kinds of data-dependent variability associated with the
processing of multimedia data streams. This hypothesis rests on
the observation that such variability is the major source of the
burstiness of on-chip traffic in such multimedia MpSoC platforms
[12]. The burstiness of the on-chip traffic necessitates the insertion
of additional buffers between architectural entities processing the
multimedia streams, and the deployment of sophisticated schedul-
ing policies across the platform. Both of these inevitably translate
into increased design costs and power consumption [3]. Therefore,
it is certainly meaningful to characterize multimedia workloads
w.r.t. their variability properties.

In this section we present a generic model that allows us to
quantitatively capture the variability found in multimedia streams.
It is based on the concept of variability characterization curves
(VCCs), details of which may be found in [9]; this concept is
briefly explained at the end of this section. But first we briefly
outline the structure of MpSoC platforms that we consider in this
paper and pinpoint the sources of workload variability associated
with the processing of multimedia streams on such platforms.

Platform architecture: A typical MpSoC platform consists of
a heterogeneous collection of interconnected processing ele-
ments (PEs) such as programmable processors and coarse-grained
application-specific co-processors. An application to be executed
on the platform is split into concurrent tasks that are assigned
for execution to different PEs of the architecture. The tasks
communicate with each other via unidirectional data streams. Such
data streams consist of a sequence of stream objects, i.e. units of
data consumed from (or produced to) a communication channel by
a task, when it is activated.

An example of such an MpSoC platform is shown in Figure 1.
The platform consists of two programmable processors, PE1 and
PE2, and input and output interfaces. Figure 1 also shows a
mapping of a MPEG-2 decoder application on to the platform.
PE1 executes a task performing VLD and IQ functions, whereas
PE2 executes a task performing IDCT and MC functions of the
MPEG-2 decoding algorithm. For the sake of brevity, we will refer
to these tasks as the VLD task and the IDCT task respectively.
In the system shown in Figure 1, stream objects belonging to
the input stream emerging from the network interface are single
bits. Stream objects sent from PE1 to PE2 are partially decoded

Fig. 1. MpSoC platform onto which an MPEG-2 decoder application is
mapped

macroblocks, whereas stream objects entering the video interface
are fully processed macroblocks.

What are the sources of variability that are usually associated
with the processing of multimedia streams on such MpSoC plat-
forms? Firstly, arrival patterns of multimedia streams at the input
of the system may have a bursty nature, i.e. stream objects may
arrive on the system’s input in highly irregular intervals. A typical
example of this is a multimedia device receiving streams from
a congested network. Secondly, each activation of a task may
consume and produce a variable number of stream objects from
the associated streams. For example, each activation of the VLD
task in Figure 1 consumes a variable number of bits from the
network interface, although, it always produces one macroblock
at its output. Thirdly, the execution demand of a task may vary
from activation to activation due to data-dependent program flow.
Both the tasks in our running example of the MPEG-2 decoder—
VLD and IDCT—possesses this property. Finally, stream objects
belonging to the same stream may require different amounts of
memory to store them in the communication channels. Again,
in the example architecture shown in Figure 1, we note that the
partially decoded macroblocks stored in buffer B1, depending on
their type, may or may not include motion vectors.

All these types of variability must be carefully considered and
characterized during the workload design process. In this paper,
we will be concerned with the variability of the execution demand
and the consumption and production rates of tasks. As mentioned
before, depending on the architecture and the application at hand,
it might be meaningful to consider other types of variabilities
as well. However, we show that the two types we consider here
already lead to meaningful results.

Variability characterization curves: The basic concept behind
VCCs have been introduced and fully described in [9], where
VCCs were used for analytical performance evaluation of MpSoC
platforms. In this paper we present a fundamentally different
application of this concept.

VCCs are used to quantify best-case and worst-case
characteristics of sequences. These can be sequences of
consecutive stream objects belonging to a stream, sequences
of consecutive executions of a task implemented on a PE
while processing a stream, or sequences of consecutive time
intervals of some specified length. A VCC V is composed of
a tuple (Vl(k),Vu(k)). Both these functions take an integer
k as the input parameter, which represents the length of a
sequence. Vl(k) then returns a lower bound on some property
that holds for all subsequences of length k within some larger

sequence. Similarly, Vu(k) returns the corresponding upper bound
that holds for all subsequences of length k within the larger
sequence. Let the function P be a measure of some property
over a sequence 1, 2, If P (n) denotes the measure of this
property for the first n items of the sequence (i.e. 1, . . . , n), then
Vl(k) ≤ P (i + k)−P (i) ≤ Vu(k) for all i, k ≥ 1. As examples,
let us now consider the following different realizations of a VCC.

Workload curve γ = (γl, γu): Suppose we are given a stream
which is to be processed by a task T implemented on a PE. The
execution requirement of T for processing different stream objects
belonging to this stream is variable, and we would like to use a
VCC γ to quantify this variability. We use γl(k) to denote the
minimum number of processor cycles of the PE which is required
to complete a sequence of k executions of T . γu(k) is the
maximum number of processor cycles which may be necessary to
complete a sequence of k executions of T .

Consumption and production curves κ = (κl, κu) and π =
(πl, πu): Let an input stream be processed by a task T . Each
activation of T consumes a variable number of stream objects
belonging to the input stream, and results in the production of
a variable number of output stream objects, possibly of a different
type. This variability in the consumption and production rates of
T can be quantified using two VCCs κ and π, which we refer to
as the consumption and the production curves respectively.

κl(k) takes an integer k as an argument and returns the minimum
number of activations of T that will be required to completely
process any k consecutive stream objects. Similarly, κu(k) returns
the maximum number of activations of T that might be required
to process any k consecutive stream objects.

On the other hand, we define πl(k) to be the minimum number
of stream objects guaranteed to be produced due to any k consec-
utive activations of T . πu(k) is the maximum number of stream
objects that can be produced due to any k consecutive activations
of T . Therefore, k consecutive stream objects at the input of T
will result in at least πl(κl(k)) and at most πu(κu(k)) stream
objects at its output.

III. CLASSIFICATION OF STREAMS

We propose to classify streams based on the shapes of the VCCs
associated with them. If two streams are characterized by VCCs
having similar shapes, then their behaviors, in the worst/best-case,
will also be similar. Each stream might be associated with several
types of VCCs, characterizing different aspects of variability within
the stream. Therefore, if two streams have similarly shaped VCCs
of respective types, then they will impose similar workload on
the architecture (in the worst- and best-case). For example, the
maximum backlogs that such streams will create in the buffers of
the architecture as a result of their processing will almost be the
same.

For the classification of streams based only on a single variability
type, we first define a measure of dissimilarity between two
VCCs of the same type. In general, any measure of dissimilarity
between two objects depends on the specific problem at hand.
Each property, based on which two objects are to be compared,
is associated with a variable. Any valuation of the variables
associated with a set of properties, then constitutes a representation

of an object. The dissimilarity between two objects is found by
computing some metric defined over these variables. In our case,
a VCC, which is defined for a set of points k = 1, 2, .., n,
can be seen as an object described by n variables. Intuitively,
to see how dissimilar the shapes of two VCCs (of the same
type) are, we need to compare their values for each of the points
k = 1, 2, .., n. By noting that all n variables represent a VCC along
essentially separable dimensions, we can quantitatively measure
the dissimilarity between two VCCs using the City Block metric
[2]. We decided to use this metric as a measure of dissimilarity
because in comparison to other known metrics (e.g. Euclidean
Distance) it is more “sensitive” to differences in each of the
dimensions, i.e. in our case, the metric is more “sensetive” to the
differences in the shapes of two VCCs. Given below is a formal
definition of the dissimilarity between two VCCs, based on the
City Block metric.

Let θri(k) (k = 1, 2, .., n) denote a VCC of type r associated
with the ith stream. A measure of the pairwise dissimilarity
between two streams i and j, with respect to a VCC of type r, is
then defined as

drij =

n∑

k=1

ωr(k) |θri(k) − θrj(k)| (1)

where ωr(k) = 1/k are weights that are necessary to normalize
the differences |θri(k)− θrj(k)| w.r.t. the length k of the analysis
interval. The longer the analysis interval, the less critical is the
difference in the values of the two VCCs corresponding to this
interval. For example, suppose that we want to compare the
upper workload curves of two streams. From the workload curves,
suppose we know that any two consecutive stream objects (i.e.
k = 2) from the first stream may cause a maximum execution
demand of 100 units, while for the second stream this value is
150. Suppose that we also know that any 10 consecutive stream
objects (k = 10) from the first stream may cause a maximum
execution demand of 1000 units, and for the second stream it is
1150 units. Although the absolute difference between the curves
for k = 2 is smaller than that for k = 10, the difference in the
execution demand computed per stream object for k = 2 is larger
than for k = 10 (|100−150|

2
> |1000−1150|

10
). For k = 10 the

absolute difference is distributed over a larger number of stream
objects than in the case of k = 2, and therefore this difference
becomes less critical.

In many cases it might be useful to characterize streams using
more than one type of VCCs. How should the dissimilarity
between streams be quantified in such cases? We believe that
first, the measure of dissimilarity between VCCs having identical
types should be computed using Eqn. (1). These measures can
then be combined in various possible ways, one of them being
simply computing the sum of all the dissimilarity measures for
the individual VCC types. The pairwise dissimilarity between two
streams i and j w.r.t. VCCs of types r = 1, 2, .., p is then defined
as

dij =

p∑

r=1

drij (2)

To classify streams using the dissimilarity measure described
above, we use a conventional hierarchical clustering algorithm
based on the complete linkage algorithm [2] for computing dis-

index video clip index video clip
1 100b 080.m2v 7 pulb 080.m2v
2 bbc3 080.m2v 8 susi 080.m2v
3 cact 080.m2v 9 tens 080.m2v
4 flwr 080.m2v 10 time 080.m2v
5 mobl 080.m2v 11 v700 080.m2v
6 mulb 080.m2v

Source: ftp.tek.com/tv/test/streams/Element/MPEG-Video/

TABLE I
MPEG-2 VIDEO CLIPS USED IN OUR EXPERIMENTS

tances between clusters. The rationale behind the choice of the
complete linkage algorithm is the need to keep the clusters as
dense as possible.

IV. EMPIRICAL VALIDATION

To see how the stream classification method described in the
previous section performs on real data samples, we conducted a
number of experiments with MPEG-2 video streams. Since MPEG-
2 streams have a complex nature and a rich set of characteristics
[4], they represented an interesting target for our experiments.

The goal is to customize a generic MpSoC platform, such as the
one shown in Figure 1. The platform has to be customized such that
it supports real-time decoding of MPEG-2 video streams. Hence,
we need to study the impact of different MPEG-2 streams on the
platform and based on the results of our study, optimize the archi-
tecture accordingly. For this purpose we collected a large library
of video clips that we believe our architecture should be able to
support. However, due to time constraints we cannot afford to run
simulations for all the clips in the library. Furthermore, simulation
of an entire clip takes a prohibitively long time. Therefore, we are
constrained to simulate only a limited number of short fragments
extracted from selected video clips belonging to the library.

We assume that any video clip in the library contains only one
scene. In a visual sense, a scene is “a portion of the movie without
sudden changes in view, but with some panning and zooming”
[4]. Distinguishing between different scenes is necessary, because
even within a single MPEG-2 stream different scenes might have
substantially different characteristics. For example, characteristics
of MPEG-2 streams (such as bit rate) may significantly vary at a
large time scale, i.e. across different scenes, while at a short time
scale (i.e. within a scene) the variations are more moderate [4], [7].
If different scenes are not treated separately while deriving their
VCCs, due to the nature of VCCs, important information about
some scenes may be overshadowed by other scenes. Finally, we
note that in practice it is always possible to split a long movie into
a series of individual scenes (see [4] for the relevant references).

For our experiments, we used a library of MPEG-2 video clips
that is shown in Table I. Each clip in the library is a 8 Mbps
constant bit rate stream consisting of only one scene with a
resolution of 704×576 pels and a frame rate of 25 fps. We believe
that the variety of scenes represented by this library is sufficient
for a demonstration of our classification method.

To select representative streams for performance evaluation of
our architecture, we classified the streams in the library based
on (i) the variability in execution demand, and (ii) the variability
in the production and consumption rates of the tasks running on
the PEs of the platform. The VLD task has both these types of
variabilities. For each activation, it consumes a variable number of

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

14

16
x 10

7

macroblocks

cy
cl

es

γu

γl

 γu

 γl

video 5

video 10

Fig. 2. (γu
vld, γl

vld) for different fragments of video 5 and video 10

VCC max.dissim video VCC max.dissim video
γu

vld 57151356 4 γl
idtc 37220944 3

γl
vld 23548299 4 κu

vld 2146073 4
γu

idct 22903156 9 κl
vld 752238 4

TABLE II
MAXIMUM DISSIMILARITY BETWEEN FRAGMENTS OF THE SAME SCENE

bits from the input buffer and its execution demand also fluctuates.
Hence, we characterized it using the workload curves (γu

vld, γ
l
vld)

and the consumption curves (κu
vld, κl

vld). The IDCT task was
characterized using only the workload curves (γu

idct, γ
l
idct),

because its execution demand is variable but consumption and
production rates are constant.

Experimental Setup: Our simulation environment consisted of
the SimpleScalar instruction set simulator, a system simulator
and a MPEG-2 decoder program. The MPEG-2 decoder program
was used as an executable for the simulator and as a means to
obtain traces of bit allocation to macroblocks. The instruction set
simulator was used to obtain traces of execution times for the
VLD and IDCT tasks of the MPEG-2 decoding algorithm. Both
tasks worked at the macroblock granularity. The system simulator
consisted of a SystemC transaction-level model of the architecture
shown in Figure 1. We used it to measure backlogs in the buffers
resulting from the execution of the MPEG-2 decoder application
on the platform.

We used the sim-profile configuration of the SimpleScalar sim-
ulator and the PISA instruction set to model PE1 and PE2

of the architecture. Although this configuration does not model
advanced microarchitectural features of the processor, it allows
fast simulation and was therefore the most suitable choice. This
choice is also justified by the fact that advanced features in the
microarchitecture of a general purpose processors do not have
significant impact on the variability of multimedia workloads [3].

The VCCs were obtained from the collected execution traces. To
obtain an upper (lower) VCC we searched through the correspond-
ing trace with time windows of different lengths and identified
the maximum (minimum) execution requirements (or number of
bits) occurring in the trace within each of these time windows.
The maximum window size was determined by the maximum time

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

14

16
x 10

7

macroblocks

cy
cl

es

group 1
group 2
group 3
group 4

Fig. 3. Classification based on γu only

interval over which the streams were compared. For each design
scenario, this might be different. In our experiments we had set
the maximum window size to 12 frames. This corresponds to the
most frequently occurring length of group of pictures (GOP) in the
MPEG-2 bitstreams.

Note that obtaining the VCCs relies only on the instruction
set simulation and a simple trace-analysis algorithm, both of
which are orders of magnitude faster compared to a full system
simulation. Our proposed method therefore results in considerable
savings in design time.

Results and Discussion: Our first step was to compute the
maximum dissimilarity between VCCs obtained from different
fragments of the same scene. If this dissimilarity is sufficiently
low then we can randomly pick a short fragment from a long
video clip and use it as a representative of the whole video clip.
If this dissimilarity is too high, then we may need to adopt other
approaches to select short fragments. For example, fragments of
the same scene can be classified first. Then several fragments can
be chosen to represent that scene.

From each clip in our library, we extracted 10 unique fragments
of the same length (30 frames) and measured their VCCs. Figure 2
shows results of the measurements for (γl

vld, γ
u
vld) for two video

clips, i.e. clip numbers 5 and 10 from Table I. Video 5 represents a
natural full-motion scene, whereas video 10 is a video test pattern
displaying a small running timer on a still background. By inspect-
ing the plots in Figure 2 we can see that the dissimilarity between
fragments of video 5 is larger than those between fragments of
video 10. This can be explained by the higher degree of motion
present in the scene of video 5. Nevertheless, we can see that the
curves for different fragments of video 5 exhibit a similar behavior.
For other videos in the library, we observed very similar trends.

Using Eqn. (1) for each VCC type we computed pairwise
dissimilarities between fragments of the same scene and selected
their maximum value. Table II shows the obtained maximum values
taken over all the video clips. From this table we can observe that
video 4 probably contains a very complex and changing scene,
because almost all the VCC types of its fragments exhibit a higher
dissimilarity compared to those for the other clips.

For the classification of the (full length) video clips we decided
to randomly pick one fragment from each clip and then perform

0 0.5 1 1.5 2 2.5 3

x 10
9

 1
 7
 6
10
11
 2
 9
 5
 3
 8
 4

linkage distance

vi
de

os

motion videos

still videos

Fig. 4. Cluster tree

the classification based only on the selected fragments. For the
purpose of illustration, we first performed the classification based
on only one VCC type, γu. The results of the classification into
four groups, based on the shape of γu, are presented in Figure 3.
As we can see in the figure, our method could correctly identify
groups of curves having similar shapes. This indicates that the
measure of dissimilarity defined by Eqn. (1) leads to a meaningful
classification.

Figure 4 shows a dendrogram of the hierarchical cluster tree
obtained as a result of the classification based on all VCC types,
i.e. by using Eqn. (2). In this dendrogram we can clearly distinguish
between two major groups of clips: still and motion videos1. This
kind of a coarse-grained division into two groups would have
been possible to obtain just by viewing the videos on the screen.
However, a more refined classification would be difficult to achieve
using such a subjective technique. For example, before performing
the experiments, by simply viewing the clips we could not predict
that video 4 would have such different properties in comparison
to the other motion videos. However, we can easily see this in
the dendrogram: all other motion videos except video 4, form
a tight cluster with the maximum linkage distance almost three
times smaller than the maximum linkage distance when video 4 is
included into the cluster.

Finally, to see how the results of the stream classification
correlate with the actual impact of the streams on the architecture,
we performed simulations of the system shown in Figure 1. We
simulated the decoding of several full-length video clips from our
library. As a measure of the architectural impact we decided to use
maximum backlogs occurring as a result of the MPEG-2 processing
in the buffers B1 and B2. The backlog in the buffer in front of
PE1 was not taken into account due to its relatively small size.

Table III summarizes the simulation results. Our measurements
show that, for example, videos 1 and 7 produce very similar
maximum backlogs in the both buffers. The maximum backlogs
produced by videos 9 and 2 are less similar than the backlogs
produced by videos 1 and 7. For videos 9 and 2, the differences
in the backlogs in B1 and B2 are 2110 and 245 macroblocks
respectively. We can also see that video 9 is more similar to video
2 than to video 3. The maximum backlogs for video 3 and video
9 differ by 4935 and 405 macroblocks in B1 and B2 respectively.
Hence, we can see that the simulation results exhibit the same
tendency as that shown by the classification in Figure 4.

1Since video 10 is mostly still, it was assigned to the group of still
videos by our method.

video B1 B2 video B1 B2

1 8282 9433 4 4443 8732
2 5128 9027 7 8390 9593
3 7953 8867 9 3018 9272

TABLE III
MEASURED MAXIMUM BUFFER BACKLOGS

V. CONCLUDING REMARKS

In this paper we presented a promising approach for workload
design for the specific context of system-level design of MpSoC
platforms. Our two main contributions were: (i) identifying VCCs
as a means for representing properties of multimedia workloads
for system-level design of media processing platforms, and (ii)
a classification method based on VCCs to cluster multimedia
streams which exert similar influences on a platform architecture.
We presented preliminary results that show the usefulness of
this approach. However, there is considerable scope for further
research in this direction. For example, a more systematic study
needs to be done to identify “variability types” beyond the ones
considered in this paper. We are not aware of any previous
work in this direction and hope that this paper will encourage a
systematic study of this problem, especially since simulation time
is a widely recognized deterrent in the case of simulation-based
performance evaluation of embedded systems.

Acknowledgements: This work is partially funded by the NUS URC
grant R-252-000-190-112, through the project ASTRA: System-Level
Design and Analysis of Architectures for Streaming Applications.

REFERENCES

[1] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload
design: Selecting representative program-input pairs. In IEEE PACT,
pages 83–94, 2002.

[2] A. D. Gordon. Classification. Chapman & Hall/CRC, 1999.
[3] C.J. Hughes, P. Kaul, S.V. Adve, R. Jain, C. Park, and J. Srinivasan.

Variability in the execution of multimedia applications and implica-
tions for architecture. In ISCA, pages 254–265, 2001.

[4] M. Krunz and S.K. Tripathi. On the characterization of VBR MPEG
streams. SIGMETRICS Perform. Eval. Rev., 25(1):192–202, 1997.

[5] T. Lafage and A. Seznec. Choosing representative slices of program
execution for microarchitecture simulations: a preliminary application
to the data stream. In Workload characterization of emerging
computer applications, pages 145–163. Kluwer Academic Publishers,
2001.

[6] K. Lahiri, A. Raghunathan, and S. Dey. System level performance
analysis for designing on-chip communication architectures. IEEE
Trans. on Computer Aided-Design of Integrated Circuits and Systems,
20(6):768–783, 2001.

[7] A.A. Lazar, G. Pacifici, and D.E. Pendarakis. Modeling video sources
for real-time scheduling. Multimedia Syst., 1(6):253–266, 1994.

[8] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: a
tool for evaluating and synthesizing multimedia and communicatons
systems. In ACM/IEEE MICRO, pages 330–335, 1997.

[9] A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F. Wong. Tuning SoC
platforms for multimedia processing: Identifying limits and tradeoffs.
In CODES+ISSS, 2004. To appear.

[10] N.T. Slingerland and A.J. Smith. Design and characterization of
the Berkeley multimedia workload. Multimedia Syst., 8(4):315–327,
2002.

[11] K. Sreenivasan and A. J. Kleinman. On the construction of a
representative synthetic workload. Commun. ACM, 17(3):127–133,
1974.

[12] G.V. Varatkar and R. Marculescu. On-chip traffic modeling and
synthesis for MPEG-2 video applications. IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, 12(1):108–119, January 2004.

