
Congestion Control in
Distributed Media

Streaming
Lin Ma and Wei Tsang Ooi

National University of Singapore

What is
“Distributed Media

Streaming”?

(aka multi-source streaming)

Receiver

Sender 1

Sender 2

Sender 3

Multiple senders collaboratively
stream media content to a receiver.

Sender 1, please send
me data packets x, y, z.

Sender 2, ...

Receiver coordinates between the senders using
a pull-based protocol to request different
segments from different senders.

• Exploits path diversity and server
diversity to increase resilient to
congestion and sender failure

• Using media coding scheme such
as MDC, the receiver can still
playback continuously (at a lower
quality) if a sender fails.

Congestion Control in
Distributed Media

Streaming

Per-flow Congestion Control ?

Using multiple flows is unfair to
other single flow applications.

• Similar problem observed in parallel
TCP flows:

1. TCP-P (Soonghyun Cho et al)

2. TCP-ROME (Roger Karrer et al)

3. Multi-priority TCP (Ronald Tse et al)

• The total bandwidth of flows, belonging to
the same task, on a link should be no larger
than other TCP flows on the same link
(experiencing similar network conditions).

Task-level TCP Friendliness

∑

fi∈L

Bi ≤ BTCP

Task-Level TCP Friendliness

Bottleneck

The Challenges

• Different media flows may
experience different congested links

• How to determine the “fair”
throughput of a media flow?

DMSCC :
Congestion Control

Algorithm

Receiver

Suppose (i) we know the topology, and
(ii) the topology is a tree.

Receiver

1. Find out where the congested link(s) are.

congestion

Receiver

2. Control the rate of the flows on congested links.

Each flow should
consume half

the bandwidth of a
TCP flow

Identifying Congested Links
Given end-to-end measurements on a set of
flows, determine which flows share bottleneck
link(s).

Controlling Throughput
Given a set of flows on a bottleneck link, how to
control the throughput of the flows so that they
satisfy ∑

fi∈L

Bi ≤ BTCP

Identifying Congested Links
Given end-to-end measurements on a set of
flows, determine which flows share bottleneck
link(s).

Controlling Throughput
Given a set of flows on a bottleneck link, how to
control the throughput of the flows so that they
satisfy ∑

fi∈L

Bi ≤ BTCP

Identifying Congested Links

• Non-trivial problem for one shared
bottleneck

• Rubenstein (TON’02), Kim (SIGCOMM ‘04)

• Even harder for multiple bottlenecks.

• We use Rubenstein’s method as a building
block.

Rubenstein’s Method

• SHARE(f, g): Does two flows f and g
share the same bottleneck?

• Observe the packet delay of flow f and g.

• Yes, if cross-correlation of f and g is larger
than auto-correlation of f.

Congestion Location
(one bottleneck)

• Suppose a packet from flow f is lost

• Find all other flows g such that
 SHARE(f, g) = true

• Find all common links of these flows

• Return the link furthest away from receiver

Congestion Location

A packet from this
flow is lost.

Congestion Location

These two flows
share a bottleneck

Congestion Location

Common links for
both flows

Congestion Location

Shared bottleneck

Congestion Location
(multiple bottlenecks)

• Keep a history of h previous bottleneck
detections.

• All links in this set are presumed to be
congested.

Identifying Congested Links
Given end-to-end measurements on a set of
flows, determine which flows share bottleneck
link(s).

Controlling Throughput
Given a set of flows on a bottleneck link, how to
control the throughput of the flows so that they
satisfy ∑

fi∈L

Bi ≤ BTCP

Sender 1, please send
me data packets x, y, z.

Sender 2, ...

Recall that we are running a pull-based protocol

To control the throughput, the receiver maintains
a “congestion window” for each sender and never
pulls more than the window allows.

window of sender 1 is 5
window of sender 2 is 6 ..

The window is adjusted according to AIMD when
packet transmission is successful or lost.

window of sender 1 is 5
window of sender 2 is 6 ..

How to adjust window?

• If we follows TCP’s algorithm, then we will
achieve similar throughput to a single TCP
flow.

• To achieve k (k < 1) times the throughput
of a TCP flows, we need to be less
aggressive in increasing our window.

Congestion
Window

(pkt)

Time

W

W/2

The window increases by α for every RTT;
Packet loss occur every 1/p packet .

Congestion
Window

(pkt)

Time

W

W/2

The window increases by α for every RTT;
Packet loss occur every 1/p packet .

W/(2α)

3W 2

8α
=

1
p

W =
√

α

√
8
3p

Considering the area under the curve, we get

To get k times the throughput of a TCP flow,
the increasing factor α should be k2

Identifying Congested Links
Given end-to-end measurements on a set of
flows, determine which flows share bottleneck
link(s).

Controlling Throughput
Given a set of flows on a bottleneck link, how to
control the throughput of the flows so that they
satisfy ∑

fi∈L

Bi ≤ BTCP

DMSCC :
Congestion Control

Algorithm

DMSCC Algorithm
On packet loss

• Find the set of bottleneck links

• For each bottleneck links l
 let n be number of flows on l
 set α of each flow on l to min(α, 1/n2)

If no packet loss for some time t

• Reset all α to 1

Simulation and Results

Network Topology

L0L1L2L3

Background Traffic

L0L1L2L3

Time 0 to 50

L0L1L2L3

L0L1L2L3

Time 50 to 100

Time 100 to 150

Background Traffic

L0L1L2L3

Time 150 to 200

L0L1L2L3

Time 250 to 350

L0L1L2L3

Time 200 to 250

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

0
5
10
15
20

1 51 101 151 201 251 301 351

DMS
TCP

0
10
20
30
40

1 51 101 151 201 251 301 351

0

20

40

60

1 51 101 151 201 251 301 351

0
20
40
60
80

1 51 101 151 201 251 301 351

L0

L1

L2

L3

Summary

• Distributed media streaming needs task-
level congestion control.

• Two sub-problems: identify congested links
and control sending rates.

If link A and B are congested at the same time,
shared congestion at B might not be detected.

B

A

Time

W

W/2

The window increases by α for every RTT;
Packet loss occur every 1/p packet .

Throughput control not as accurate
when packet losses are bursty.

Sender 1, please send
me data packets x, y, z.

Sender 2, ...

Pull-based protocol might not be the right thing
to do.

The End

