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A graph consists of edges and vertices.
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A vertex u is a neighbor of v, if there is an edge
from v to u.  We say u is adjacent to v.  The number

of neighbors of a vertex is called degree.
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A weighted graph has a value associated with its edges.
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 Direction of edges does not matter in a undirected graph.
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In a complete graph, every vertex is 
connected to every other vertices.
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A path consists of a sequence of 
vertices adjacent to each other.
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A cycle is a path that starts 
and ends with the same vertex.
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A graph is acyclic if it contains no cycle.
It is cyclic otherwise.
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A undirected graph is connected 
if there is a path between any two vertices.

10



A undirected graph is bipartite if we can partition
the vertices into two sets and there are no edges

between two vertices of the same set.

11



A unconnected graph consists of two connected components.
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A connected, undirected, acyclic graph is called a tree.
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	 A weighted graph G = (V, E, w), 
where 

•  V is the set of vertices

•  E is the set of edges

•  w is the weight function

14



	 V = { a, b, c }

	 E = { (a,b), (c,b), (a,c) }

	 w = { ((a,b), 4), ((c, b), 1), ((a,c),-3) }
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adj(v) : set of vertices adjacent to vertex v

adj(a) = {b, c}

adj(b) = { }

adj(c) = {b}
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• How many edges are there in a undirected 
complete graph with N vertices?

Review Questions
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Review Questions

∑

u∈V

|adj(u)| = ?
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Example Applications
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Representing a social network. 
(u,v) in E if u knows v.
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Jeffrey Heer’s Social Network from Friendster
(47471 people, 432430 edges)
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Social network of 9/11 terrorists

22



Representing places and routes.   (u,v) exists if there is a direct 
route from u to v.  Weight w(u,v) is the distance or cost.  We are 
often interested in finding the cheapest path between between 

two places.
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Possible moves in Rush Hour.  Blue represents solutions.  
Green represents the shortest paths to solving the puzzle.

(from www.aisee.com)
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Implementation
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Adjacency Matrix: Use a 2D array.  Store w(u,v) in a[u]
[v] if edge (u,v) exists.  Store an invalid value otherwise.
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Adjacency List: Use an array of link list.  a[u] 
stores adj(u) and the associated weight.
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• How long does it take to delete an edge for

(a) adjacency matrix ?

(b) adjacency list ?
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• How long does it take to go through all 
neighbors of a vertex v for

(a) adjacency matrix ?

(b) adjacency list ?
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• How much space is needed to store a graph 
of size N if we are using

(a) adjacency matrix ?

(b) adjacency list ?
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Adjacency List in Matrix: Use a 2D array.  Each row is 
an array-representation of the adjacency list.
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Avoid using pointers in competitive 
programming.

Most of the time, graph are static (no insert/
delete after initialization).

Maximum size is often given.
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typedef struct neighbor {
   int id;
   int weight;
} neighbor;

// N is max num of vertices;
neighbor graph[N][N];
int num_of_vertices;
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Edge List: Use a linked list of edges.
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Edge List: Use a array of edges.
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Degree
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typedef struct edge {
   int from;
   int to;
   int weight;
} edge;

edge graph[MAX_NUM_OF_EDGES];
int num_of_edges;
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Pick the simplest implementation that meets 
the requirements.
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Graph Traversal
How to systematically visit the whole graph?
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Breadth-First Search
or BFS
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• Basic idea: pick a source and visit the 
vertices in increasing distance from the 
source 

• visit all vertices one hop away

• visit all vertices two hops away etc.

• Note:  A vertex u is k-hop away from the v if 
the shortest path from u to v consists of k 
edges.
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Example: 
F is 3-hop away from A.  
E is 2-hop away from A.
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Let A be the source.  We first visit the source.  
I colored visited vertices yellow.
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Next, visit the vertices that are one-hop away.
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Next, visit the vertices that are two hops away.
(i.e, all unvisited vertices that are neighbors of one-hop 

neighbor of A.
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Edges that lead to undiscovered node during traversal
are colored brown.
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These edges form the breadth-first tree. Level of 
vertices in the tree is the hop distance from source.
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• An implementation needs to keep track of 
vertices we have discovered.

• To visit the vertices in increasing order of hop 
distance, we need to visit the nodes the order 
we discover them (FIFO).
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Q = new Queue
enqueue source into Q

while Q is not empty
v = dequeue from Q
mark v as visited
for each neighbor u of v
   if u is not visited and not already in Q
      enqueue u into Q
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Review Questions

• Suppose we want to keep track of breadth-
first tree by marking the edges in the tree as 
brown.  How should we change the 
algorithm?
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Q = new Queue
enqueue source into Q

while Q is not empty
v = dequeue from Q
mark v as visited
for each neighbor u of v
   if u is not visited and not already in Q
      mark (v,u) as brown
      enqueue u into Q
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Review Questions

• Suppose we want to keep track of hop 
distance from the source.  How should we 
change the algorithm?
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Q = new Queue
enqueue source into Q
level[source] = 0
while Q is not empty

v = dequeue from Q
mark v as visited
for each neighbor u of v
   if u is not visited and not already in Q
      level[u] = level[v] + 1
      enqueue u into Q
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Review Questions

• Can we always visit every vertex using the 
previous algorithm?
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If we pick F as the source, then we can’t visit A, B, and C,
and need to visit them through another source.
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Mark all vertices as unvisited

for each vertex v
   if v is not visited
       use v as source and run BFS
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Applications of BFS
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On an unweighted graph,  the breadth-first tree tells us 
 the shortest path from source to all the other vertices.  
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The algorithm works for undirected graph too.
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?

We can check if two vertices are connected using BFS.
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Depth-First Search
or, DFS
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• Basic idea: Starting from a source, 
repeatedly visit a neighbor of the current 
vertex until we hit a dead-end (no unvisited 
neighbors), then backtrack. 

• After we visit a vertex v,  we visit all vertices 
reachable from v.
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Let A be the source.
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Visit a neighbor of A (say, C).
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Visit a neighbor of C (say, E).
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Visit a neighbor of E (say, D).
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D has no neighbor.  Back to E.  
E has no unvisited neighbor. Back to C.  
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Visit B. 
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Visit F. 
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F has no unvisited neighbor. Back to B.
B has no unvisited neighbor. Back to C.
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C has no unvisited neighbor. Back to A.
A, the source, has no unvisited neighbor.  Done!
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• An implementation needs to keep track of 
vertices we have discovered.

• When backtrack, we need to go back to the 
last vertex we visited. (LIFO).
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S = new Stack
push source onto S

while S is not empty
v = top of S
if v has a unvisited neighbor u
   mark u as visited
   push u onto S
else
   pop v from S     
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Mark all vertices as unvisited

for each vertex v
   if v is not visited
       use v as source and run DFS
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•  What is the color of a vertex:
(a) before it is inserted into the stack ?
(b) while it is inside the stack ?
(c) after it is pop from the stack ?

D has no neighbor.  Back to E.  E has no unvisited neighbor. Back to C.  
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A vertex can be in three states: unvisited,
visiting, visited.

D has no neighbor.  Back to E.  E has no unvisited neighbor. Back to C.  
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S = new Stack
push source onto S

while S is not empty
v = top of S
if v has a unvisited neighbor u
   mark u as “visiting”
   push u onto S
else
   pop v from S
   mark u as “visited”  

F DE
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proc DFS(u): 
// recursive version of DFS
mark u as “visiting”
for each unvisited neighbor v of u
    DFS(v)
mark u as “visited”

F DE

A

CB
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Review Questions

• True/False? :  There is always a path from the 
vertices in the stack to the vertex at the top 
of the stack.

• (Alternatively: There is always a path from a 
vertex marked “visiting” to the current 
vertex.)
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Applications of DFS
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We can check if two vertices are connected using DFS.
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We can check if a graph is acyclic/cyclic using DFS.
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There is a cycle iff we found an edge from 
current vertex to a visiting vertex 

(called backward edge)
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proc DFS(u): 

mark u as “visiting”
for each neighbor v of u
  if v is marked as “visiting”

we found a cycle!
else if v is marked as “unvisited”  

DFS(v)
mark u as “visited”

87



Topological Sort

Goal: Given a directed acyclic graph, order 
the vertices such that if there is a path from u 

to v, then u appears before v in the output.
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BACFED?
BCAFED?
BFACED?

Goal: Given a directed acyclic graph, order 
the vertices such that if there is a path from u 

to v, then u appears before v in the output.
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Idea:  The first vertex marked “visited” can 
appear last in the topological order. 
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Now, we remove that vertex from consideration, 
and repeat -- the next vertex marked as visited can 
appear last in the topological sort order.
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proc DFS(u): 

for each unvisited neighbor v of u
    DFS(v)
push u onto a stack

To output in topological sort order, pop from stack 
and print after completing DFS.
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Dijkstra’s Algorithm
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• Problem: Given a weighted graph G and a 
vertex v in G, find the shortest (or least cost) 
path from v to all other vertices.

• Restrict ourselves to positive weight.

Single-Source 
Shortest Path
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Shortest Path from A to D = A-C-E-D (Cost = 8)
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• Must keep track of smallest distance so far.

• If we found a new, shorter path, update the 
distance.
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Let d[v] be the current known 
shortest distance from u to v.

d[v] = 6, d[w] = 10
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w
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We just found a shorter path from u to w.
Update d[w] = d[v] + cost(v,w).

We call this step relax(v,w).

2

u

v
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proc relax (v,w):

Let d = d[v] + cost(v,w)
if  d[w] > d 
    d[w] = d
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If d[w] is the smallest among the “remaining” vertices,
then d[w] is the smallest possible (can’t be relaxed further)
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At the beginning, we know d[A].  But the rest
is unknown and is set to infinity.
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Relax all neighbors of A.
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Pick a white vertex with smallest d[ ].  Color it yellow.
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Relax all neighbors of this vertex.

5

5

1
3

1

2

3
1

4

104



∞ 106

0

58

Repeat:  pick a white vertex with smallest d[ ].
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Relax its neighbors

5

5

1
3

1

2

3
1

4

106



∞ 86

0

58

5

5

1
3

1

2

3
1

4

107



11 86

0

58

5

5

1
3

1

2

3
1

4

108



11 86

0

58

5

5

1
3

1

2

3
1

4

109



11 86

0

58

5

5

1
3

1

2

3
1

4

Everyone is yellow.  Done!
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proc Dijkstra(s):

for each vertex v in G
    d[w] = infinity
    color[w] = white

d[s] = 0
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while there exists a white vertex

let u be a white vertex with smallest d
color[u] = yellow 
for each neighbor v of u
     relax(u,v)
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while there exists a white vertex

min = infinity
for each vertex v
    if color[v] is white and d[v] < min
       min = d[v]
       u = v

color[u] = yellow 
for each neighbor v of u

Array Implementation
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while there exists a white vertex

u = q.getMin() 
color[u] = yellow 
for each neighbor v of u
     relax(u,v)

Priority Queue 
Implementation
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proc relax (v,w):

Let d = d[v] + cost(v,w)
if  d[w] > d 
    d[w] = d
    q.decreaseCost(w, d)

Priority Queue 
Implementation

115



Summary: Graph

• Basic terms

• Representations

• Applications

• BFS

• find shortest path in unweighted path

• finding connected component
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Summary: Graph

• DFS

• finding connected component

• check for cycles

• topological sort

• Dijkstra algorithm

• finding shortest path from a single source in 
a weighted graph with positive weights.
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