Graph

Ooi Wei Tsang
School of Computing, NUS
A graph consists of **edges** and **vertices**.
A vertex u is a neighbor of v, if there is an edge from v to u. We say u is adjacent to v. The number of neighbors of a vertex is called degree.
A weighted graph has a value associated with its edges.
Direction of edges does not matter in an undirected graph.
In a complete graph, every vertex is connected to every other vertices.
A path consists of a sequence of vertices adjacent to each other.
A cycle is a path that starts and ends with the same vertex.
A graph is **acyclic** if it contains no cycle. It is **cyclic** otherwise.
A undirected graph is **connected** if there is a path between any two vertices.
A undirected graph is bipartite if we can partition the vertices into two sets and there are no edges between two vertices of the same set.
A unconnected graph consists of two connected components.
A connected, undirected, acyclic graph is called a tree.
A weighted graph $G = (V, E, w)$, where

- V is the set of vertices
- E is the set of edges
- w is the weight function
$V = \{ a, b, c \}$

$E = \{ (a,b), (c,b), (a,c) \}$

$w = \{ ((a,b), 4), ((c, b), 1), ((a,c),-3) \}$
\textbf{adj}(v) : set of vertices adjacent to vertex v

\text{adj}(a) = \{b, c\}

\text{adj}(b) = \{\}\

\text{adj}(c) = \{b\}
Review Questions

• How many edges are there in a undirected complete graph with \(N\) vertices?
Review Questions

\[\sum_{u \in V} |adj(u)| = ? \]
Example Applications
Representing a social network.

\((u,v) \in E \text{ if } u \text{ knows } v.\)
Jeffrey Heer’s Social Network from Friendster
(47471 people, 432430 edges)
Social network of 9/11 terrorists
Representing places and routes. \((u,v)\) exists if there is a direct route from \(u\) to \(v\). Weight \(w(u,v)\) is the distance or cost. We are often interested in finding the cheapest path between two places.
Possible moves in Rush Hour. Blue represents solutions. Green represents the shortest paths to solving the puzzle.

(from www.aisee.com)
Implementation
Adjacency Matrix: Use a 2D array. Store $w(u,v)$ in $a[u][v]$ if edge (u,v) exists. Store an invalid value otherwise.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>1</td>
<td>∞</td>
</tr>
</tbody>
</table>

Diagram:
- Edge from 0 to 1 with weight 4
- Edge from 1 to 2 with weight 1
- Edge from 2 to 1 with weight -3
Adjacency List: Use an array of link list. $a[u]$ stores $\text{adj}(u)$ and the associated weight.
• How long does it take to delete an edge for

 (a) adjacency matrix ?

 (b) adjacency list ?
• How long does it take to go through all neighbors of a vertex \(v \) for

(a) adjacency matrix?

(b) adjacency list?
• How much space is needed to store a graph of size N if we are using

(a) adjacency matrix?

(b) adjacency list?
Adjacency List in Matrix: Use a 2D array. Each row is an array-representation of the adjacency list.
Avoid using pointers in competitive programming.

Most of the time, graph are static (no insert/delete after initialization).

Maximum size is often given.
typedef struct neighbor {
 int id;
 int weight;
} neighbor;

// N is max num of vertices;
neighbor graph[N][N];
int num_of_vertices;
Edge List: Use a linked list of edges.
Edge List: Use an array of edges.

<table>
<thead>
<tr>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4</td>
</tr>
<tr>
<td>2,-3</td>
</tr>
<tr>
<td>1,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
typedef struct edge {
 int from;
 int to;
 int weight;
} edge;

edge graph[MAX_NUM_OF_EDGES];
int num_of_edges;
Pick the simplest implementation that meets the requirements.
Graph Traversal
How to systematically visit the whole graph?
Breadth-First Search

or BFS
• **Basic idea:** pick a source and visit the vertices in increasing distance from the source

• visit all vertices one hop away

• visit all vertices two hops away etc.

• **Note:** A vertex u is *k-hop away* from the v if the shortest path from u to v consists of k edges.
Example:

F is 3-hop away from A.
E is 2-hop away from A.
Let A be the source. We first visit the source. I colored visited vertices yellow.
Next, visit the vertices that are one-hop away.
Next, visit the vertices that are two hops away. (i.e, all unvisited vertices that are neighbors of one-hop neighbor of A.)
Edges that lead to undiscovered node during traversal are colored brown.
These edges form the **breadth-first tree**. Level of vertices in the tree is the hop distance from source.
• An implementation needs to keep track of vertices we have discovered.

• To visit the vertices in increasing order of hop distance, we need to visit the nodes the order we discover them (FIFO).
\(Q = \textbf{new} \) Queue
enqueue source into \(Q \)

\textbf{while} \(Q \) is not empty
\(v = \text{dequeue} \) from \(Q \)
mark \(v \) as visited
\textbf{for each} neighbor \(u \) of \(v \)
\textbf{if} \(u \) is not visited and not already in \(Q \)
enqueue \(u \) into \(Q \)
• Suppose we want to keep track of breadth-first tree by marking the edges in the tree as brown. How should we change the algorithm?
\[Q = \textbf{new} \text{ Queue} \]
enqueue source into \(Q \)

\textbf{while} \(Q \) is not empty
\begin{align*}
v &= \text{dequeue from } Q \\
&\text{mark } v \text{ as visited}
\end{align*}

\textbf{for each} neighbor \(u \) of \(v \)
\begin{align*}
&\text{if } u \text{ is not visited and not already in } Q \\
&\text{mark } (v,u) \text{ as brown}
\end{align*}
enqueue \(u \) into \(Q \)
• Suppose we want to keep track of hop distance from the source. How should we change the algorithm?
Let $Q = \text{new} \text{ Queue}$

enqueue source into Q

level[source] = 0

while Q is not empty

$v = \text{dequeue from } Q$

mark v as visited

for each neighbor u of v

if u is not visited and not already in Q

level[u] = level[v] + 1

enqueue u into Q
Review Questions

• Can we always visit every vertex using the previous algorithm?
If we pick F as the source, then we can’t visit A, B, and C, and need to visit them through another source.
Mark all vertices as unvisited

for each vertex v
 if v is not visited
 use v as source and run BFS
Applications of BFS
On an unweighted graph, the breadth-first tree tells us the **shortest path** from source to all the other vertices.
The algorithm works for undirected graph too.
We can check if two vertices are connected using BFS.
Depth-First Search

or, DFS
• **Basic idea**: Starting from a source, repeatedly visit a neighbor of the current vertex until we hit a dead-end (no unvisited neighbors), then backtrack.

• After we visit a vertex v, we visit all vertices reachable from v.
Let A be the source.
Visit a neighbor of A (say, C).
Visit a neighbor of C (say, E).
Visit a neighbor of E (say, D).
D has no neighbor. Back to E.
E has no unvisited neighbor. Back to C.
Visit B.
Visit F.
F has no unvisited neighbor. Back to B. B has no unvisited neighbor. Back to C.
C has no unvisited neighbor. Back to A.
A, the source, has no unvisited neighbor. Done!
• An implementation needs to keep track of vertices we have discovered.

• When backtrack, we need to go back to the last vertex we visited. (LIFO).
\[S = \textbf{new} \text{ Stack} \]

push source onto \(S \)

\textbf{while} \(S \) is not empty

\(v = \text{top of } S \)

\textbf{if} \(v \) has a unvisited neighbor \(u \)

mark \(u \) as visited

push \(u \) onto \(S \)

\textbf{else}

pop \(v \) from \(S \)

\text{Diagram of a graph:} A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F
Mark all vertices as unvisited

for each vertex v
 if v is not visited
 use v as source and run DFS
What is the color of a vertex:
(a) before it is inserted into the stack?
(b) while it is inside the stack?
(c) after it is pop from the stack?
A vertex can be in three states: unvisited, visiting, visited.

D has no neighbor. Back to E. E has no unvisited neighbor. Back to C.
\[S = \textbf{new} \text{ Stack} \]
\[\text{push source onto } S \]

\textbf{while} \ S \text{ is not empty}
\[v = \text{top of } S \]
\textbf{if} \ v \text{ has a unvisited neighbor } u
\[\text{mark } u \text{ as “visiting”} \]
\[\text{push } u \text{ onto } S \]
\textbf{else}
\[\text{pop } v \text{ from } S \]
\[\text{mark } u \text{ as “visited”} \]
proc DFS(u):
// recursive version of DFS
mark u as “visiting”
for each unvisited neighbor v of u
 DFS(v)
mark u as “visited”
Review Questions

• True/False? : There is always a path from the vertices in the stack to the vertex at the top of the stack.

• (Alternatively: There is always a path from a vertex marked “visiting” to the current vertex.)
Applications of DFS
We can check if two vertices are connected using DFS.
We can check if a graph is acyclic/cyclic using DFS.
There is a cycle iff we found an edge from current vertex to a visiting vertex (called backward edge)
proc DFS(u):

mark u as “visiting”

for each neighbor v of u

 if v is marked as “visiting”
 we found a cycle!
 else if v is marked as “unvisited”
 DFS(v)

mark u as “visited”
Topological Sort

Goal: Given a directed acyclic graph, order the vertices such that if there is a path from u to v, then u appears before v in the output.
Goal: Given a directed acyclic graph, order the vertices such that if there is a path from u to v, then u appears before v in the output.

```
BACFED?
BCAFED?
BFACED?
```
Idea: The first vertex marked “visited” can appear last in the topological order.
Now, we remove that vertex from consideration, and repeat -- the next vertex marked as visited can appear last in the topological sort order.
proc DFS(u):

for each unvisited neighbor v of u

 DFS(v)

push u onto a stack

To output in topological sort order, pop from stack and print after completing DFS.
Dijkstra’s Algorithm
Single-Source Shortest Path

- **Problem**: Given a weighted graph G and a vertex v in G, find the shortest (or least cost) path from v to all other vertices.

- Restrict ourselves to **positive** weight.
Shortest Path from A to D = A-C-E-D (Cost = 8)
• Must keep track of smallest distance so far.

• If we found a new, shorter path, update the distance.
Let $d[v]$ be the current known shortest distance from u to v.

$d[v] = 6, d[w] = 10$
We just found a shorter path from u to w. Update $d[w] = d[v] + \text{cost}(v,w)$. We call this step $\text{relax}(v,w)$.
proc relax (v,w):

Let \(d = d[v] + \text{cost}(v,w) \)

if \(d[w] > d \)

\[d[w] = d \]
If \(d[w] \) is the smallest among the “remaining” vertices, then \(d[w] \) is the smallest possible (can’t be relaxed further)
At the beginning, we know $d[A]$. But the rest is unknown and is set to infinity.
Relax all neighbors of A.
Pick a white vertex with smallest $d[\]$. Color it yellow.
Relax all neighbors of this vertex.
Repeat: pick a white vertex with smallest $d[]$.
Relax its neighbors
Everyone is yellow. Done!
proc Dijkstra(s):

for each vertex v in G
 d[w] = infinity
 color[w] = white

 d[s] = 0
while there exists a white vertex

let u be a white vertex with smallest d

color[u] = yellow

for each neighbor v of u

relax(u,v)
Array Implementation

while there exists a white vertex

\[\text{min} = \text{infinity} \]

for each vertex \(v \)

\[\text{if color}[v] \text{ is white and } d[v] < \text{min} \]
\[\text{min} = d[v] \]
\[u = v \]

\[\text{color}[u] = \text{yellow} \]

for each neighbor \(v \) of \(u \)
Priority Queue Implementation

while there exists a white vertex

\[u = q.getMin() \]
\[\text{color}[u] = \text{yellow} \]
for each neighbor \(v \) of \(u \)
\[\text{relax}(u,v) \]
proc relax (v,w):

Let $d = d[v] + \text{cost}(v,w)$

if $d[w] > d$

$d[w] = d$

q.decreaseCost(w, d)
Summary: Graph

- Basic terms
- Representations
- Applications
- BFS
 - find shortest path in unweighted path
 - finding connected component
Summary: Graph

- DFS
 - finding connected component
 - check for cycles
 - topological sort
- Dijkstra algorithm
 - finding shortest path from a single source in a weighted graph with positive weights.