
Graph

Ooi Wei Tsang
School of Computing, NUS

1

A graph consists of edges and vertices.

2

A vertex u is a neighbor of v, if there is an edge
from v to u. We say u is adjacent to v. The number

of neighbors of a vertex is called degree.

v u

3

A weighted graph has a value associated with its edges.

4

3

-3

-1

2

0

4

 Direction of edges does not matter in a undirected graph.

5

In a complete graph, every vertex is
connected to every other vertices.

6

A path consists of a sequence of
vertices adjacent to each other.

7

A cycle is a path that starts
and ends with the same vertex.

8

A graph is acyclic if it contains no cycle.
It is cyclic otherwise.

9

A undirected graph is connected
if there is a path between any two vertices.

10

A undirected graph is bipartite if we can partition
the vertices into two sets and there are no edges

between two vertices of the same set.

11

A unconnected graph consists of two connected components.

12

A connected, undirected, acyclic graph is called a tree.

13

	 A weighted graph G = (V, E, w),
where

• V is the set of vertices

• E is the set of edges

• w is the weight function

14

	 V = { a, b, c }

	 E = { (a,b), (c,b), (a,c) }

	 w = { ((a,b), 4), ((c, b), 1), ((a,c),-3) }

a

b c

4
-3

1

15

adj(v) : set of vertices adjacent to vertex v

adj(a) = {b, c}

adj(b) = { }

adj(c) = {b}

a

b c

4
-3

1

16

• How many edges are there in a undirected
complete graph with N vertices?

Review Questions

17

Review Questions

∑

u∈V

|adj(u)| = ?

18

Example Applications

19

Representing a social network.
(u,v) in E if u knows v.

20

Jeffrey Heer’s Social Network from Friendster
(47471 people, 432430 edges)

21

Social network of 9/11 terrorists

22

Representing places and routes. (u,v) exists if there is a direct
route from u to v. Weight w(u,v) is the distance or cost. We are
often interested in finding the cheapest path between between

two places.

4

3

3

1

2

2

23

24

25

26

Possible moves in Rush Hour. Blue represents solutions.
Green represents the shortest paths to solving the puzzle.

(from www.aisee.com)

27

http://www.aisee.com
http://www.aisee.com

Implementation

28

0

1 2

4
-3

1

Adjacency Matrix: Use a 2D array. Store w(u,v) in a[u]
[v] if edge (u,v) exists. Store an invalid value otherwise.

∞ 4 -3

∞ ∞ ∞

∞ 1 ∞

0 1 2

0

1

2

29

0

1 2

4
-3

1

Adjacency List: Use an array of link list. a[u]
stores adj(u) and the associated weight.

0

1

2

1,4 2,-3

1,1

30

• How long does it take to delete an edge for

(a) adjacency matrix ?

(b) adjacency list ?

31

• How long does it take to go through all
neighbors of a vertex v for

(a) adjacency matrix ?

(b) adjacency list ?

32

• How much space is needed to store a graph
of size N if we are using

(a) adjacency matrix ?

(b) adjacency list ?

33

0

1 2

4
-3

1

Adjacency List in Matrix: Use a 2D array. Each row is
an array-representation of the adjacency list.

1,4 2,-3

1,1

0

1

2

34

Avoid using pointers in competitive
programming.

Most of the time, graph are static (no insert/
delete after initialization).

Maximum size is often given.

35

typedef struct neighbor {
 int id;
 int weight;
} neighbor;

// N is max num of vertices;
neighbor graph[N][N];
int num_of_vertices;

36

0

1 2

4
-3

1

Edge List: Use a linked list of edges.

1,4 2,-3 1,1

37

0

1 2

4
-3

1

Edge List: Use a array of edges.

1,4 2,-3 1,1

2 0 1

Edges

Degree

38

typedef struct edge {
 int from;
 int to;
 int weight;
} edge;

edge graph[MAX_NUM_OF_EDGES];
int num_of_edges;

39

Pick the simplest implementation that meets
the requirements.

40

Graph Traversal
How to systematically visit the whole graph?

41

Breadth-First Search
or BFS

42

• Basic idea: pick a source and visit the
vertices in increasing distance from the
source

• visit all vertices one hop away

• visit all vertices two hops away etc.

• Note: A vertex u is k-hop away from the v if
the shortest path from u to v consists of k
edges.

43

F DE

A

CB

Example:
F is 3-hop away from A.
E is 2-hop away from A.

44

F DE

A

CB

Let A be the source. We first visit the source.
I colored visited vertices yellow.

45

F DE

A

CB

Next, visit the vertices that are one-hop away.

46

F DE

A

CB

Next, visit the vertices that are two hops away.
(i.e, all unvisited vertices that are neighbors of one-hop

neighbor of A.

47

F DE

A

CB

Edges that lead to undiscovered node during traversal
are colored brown.

48

3 22

0

12

These edges form the breadth-first tree. Level of
vertices in the tree is the hop distance from source.

49

• An implementation needs to keep track of
vertices we have discovered.

• To visit the vertices in increasing order of hop
distance, we need to visit the nodes the order
we discover them (FIFO).

50

F DE

A

CB

Q = new Queue
enqueue source into Q

while Q is not empty
v = dequeue from Q
mark v as visited
for each neighbor u of v
 if u is not visited and not already in Q
 enqueue u into Q

51

Review Questions

• Suppose we want to keep track of breadth-
first tree by marking the edges in the tree as
brown. How should we change the
algorithm?

52

F DE

A

CB

Q = new Queue
enqueue source into Q

while Q is not empty
v = dequeue from Q
mark v as visited
for each neighbor u of v
 if u is not visited and not already in Q
 mark (v,u) as brown
 enqueue u into Q

53

Review Questions

• Suppose we want to keep track of hop
distance from the source. How should we
change the algorithm?

54

F DE

A

CB

Q = new Queue
enqueue source into Q
level[source] = 0
while Q is not empty

v = dequeue from Q
mark v as visited
for each neighbor u of v
 if u is not visited and not already in Q
 level[u] = level[v] + 1
 enqueue u into Q

55

Review Questions

• Can we always visit every vertex using the
previous algorithm?

56

F DE

A

CB

57

F DE

A

CB

If we pick F as the source, then we can’t visit A, B, and C,
and need to visit them through another source.

58

Mark all vertices as unvisited

for each vertex v
 if v is not visited
 use v as source and run BFS

59

Applications of BFS

60

3 22

0

12

On an unweighted graph, the breadth-first tree tells us
 the shortest path from source to all the other vertices.

61

2 22

0

11

The algorithm works for undirected graph too.

62

?

We can check if two vertices are connected using BFS.

63

Depth-First Search
or, DFS

64

• Basic idea: Starting from a source,
repeatedly visit a neighbor of the current
vertex until we hit a dead-end (no unvisited
neighbors), then backtrack.

• After we visit a vertex v, we visit all vertices
reachable from v.

65

F DE

A

CB

Let A be the source.

66

F DE

A

CB

Visit a neighbor of A (say, C).

67

F DE

A

CB

Visit a neighbor of C (say, E).

68

F DE

A

CB

Visit a neighbor of E (say, D).

69

F DE

A

CB

D has no neighbor. Back to E.
E has no unvisited neighbor. Back to C.

70

F DE

A

CB

Visit B.

71

F DE

A

CB

Visit F.

72

F DE

A

CB

F has no unvisited neighbor. Back to B.
B has no unvisited neighbor. Back to C.

73

F DE

A

CB

C has no unvisited neighbor. Back to A.
A, the source, has no unvisited neighbor. Done!

74

• An implementation needs to keep track of
vertices we have discovered.

• When backtrack, we need to go back to the
last vertex we visited. (LIFO).

75

F DE

A

CB

S = new Stack
push source onto S

while S is not empty
v = top of S
if v has a unvisited neighbor u
 mark u as visited
 push u onto S
else
 pop v from S

76

Mark all vertices as unvisited

for each vertex v
 if v is not visited
 use v as source and run DFS

77

F DE

A

CB

• What is the color of a vertex:
(a) before it is inserted into the stack ?
(b) while it is inside the stack ?
(c) after it is pop from the stack ?

D has no neighbor. Back to E. E has no unvisited neighbor. Back to C.

78

F DE

A

CB

A vertex can be in three states: unvisited,
visiting, visited.

D has no neighbor. Back to E. E has no unvisited neighbor. Back to C.

79

S = new Stack
push source onto S

while S is not empty
v = top of S
if v has a unvisited neighbor u
 mark u as “visiting”
 push u onto S
else
 pop v from S
 mark u as “visited”

F DE

A

CB

80

proc DFS(u):
// recursive version of DFS
mark u as “visiting”
for each unvisited neighbor v of u
 DFS(v)
mark u as “visited”

F DE

A

CB

81

Review Questions

• True/False? : There is always a path from the
vertices in the stack to the vertex at the top
of the stack.

• (Alternatively: There is always a path from a
vertex marked “visiting” to the current
vertex.)

82

Applications of DFS

83

?

We can check if two vertices are connected using DFS.

84

?

We can check if a graph is acyclic/cyclic using DFS.

85

?

There is a cycle iff we found an edge from
current vertex to a visiting vertex

(called backward edge)

86

proc DFS(u):

mark u as “visiting”
for each neighbor v of u
 if v is marked as “visiting”

we found a cycle!
else if v is marked as “unvisited”

DFS(v)
mark u as “visited”

87

Topological Sort

Goal: Given a directed acyclic graph, order
the vertices such that if there is a path from u

to v, then u appears before v in the output.

88

F DE

A

CB

BACFED?
BCAFED?
BFACED?

Goal: Given a directed acyclic graph, order
the vertices such that if there is a path from u

to v, then u appears before v in the output.

89

F DE

A

CB

Idea: The first vertex marked “visited” can
appear last in the topological order.

90

F DE

A

CB

Now, we remove that vertex from consideration,
and repeat -- the next vertex marked as visited can
appear last in the topological sort order.

91

proc DFS(u):

for each unvisited neighbor v of u
 DFS(v)
push u onto a stack

To output in topological sort order, pop from stack
and print after completing DFS.

92

Dijkstra’s Algorithm

93

• Problem: Given a weighted graph G and a
vertex v in G, find the shortest (or least cost)
path from v to all other vertices.

• Restrict ourselves to positive weight.

Single-Source
Shortest Path

94

F DE

A

CB

Shortest Path from A to D = A-C-E-D (Cost = 8)

5

5

1
3

1

2

3
1

4

95

• Must keep track of smallest distance so far.

• If we found a new, shorter path, update the
distance.

96

10

6

Let d[v] be the current known
shortest distance from u to v.

d[v] = 6, d[w] = 10

2

u

v

w

97

8

6

We just found a shorter path from u to w.
Update d[w] = d[v] + cost(v,w).

We call this step relax(v,w).

2

u

v

w

98

proc relax (v,w):

Let d = d[v] + cost(v,w)
if d[w] > d
 d[w] = d

99

8

6

If d[w] is the smallest among the “remaining” vertices,
then d[w] is the smallest possible (can’t be relaxed further)

u

6
12

11
w

100

∞ ∞∞

0

∞∞

At the beginning, we know d[A]. But the rest
is unknown and is set to infinity.

5

5

1
3

1

2

3
1

4

101

∞ ∞∞

0

5∞

Relax all neighbors of A.

5

5

1
3

1

2

3
1

4

102

∞ ∞∞

0

5∞

Pick a white vertex with smallest d[]. Color it yellow.

5

5

1
3

1

2

3
1

4

103

∞ 106

0

58

Relax all neighbors of this vertex.

5

5

1
3

1

2

3
1

4

104

∞ 106

0

58

Repeat: pick a white vertex with smallest d[].

5

5

1
3

1

2

3
1

4

105

∞ 86

0

58

Relax its neighbors

5

5

1
3

1

2

3
1

4

106

∞ 86

0

58

5

5

1
3

1

2

3
1

4

107

11 86

0

58

5

5

1
3

1

2

3
1

4

108

11 86

0

58

5

5

1
3

1

2

3
1

4

109

11 86

0

58

5

5

1
3

1

2

3
1

4

Everyone is yellow. Done!

110

proc Dijkstra(s):

for each vertex v in G
 d[w] = infinity
 color[w] = white

d[s] = 0

111

while there exists a white vertex

let u be a white vertex with smallest d
color[u] = yellow
for each neighbor v of u
 relax(u,v)

112

while there exists a white vertex

min = infinity
for each vertex v
 if color[v] is white and d[v] < min
 min = d[v]
 u = v

color[u] = yellow
for each neighbor v of u

Array Implementation

113

while there exists a white vertex

u = q.getMin()
color[u] = yellow
for each neighbor v of u
 relax(u,v)

Priority Queue
Implementation

114

proc relax (v,w):

Let d = d[v] + cost(v,w)
if d[w] > d
 d[w] = d
 q.decreaseCost(w, d)

Priority Queue
Implementation

115

Summary: Graph

• Basic terms

• Representations

• Applications

• BFS

• find shortest path in unweighted path

• finding connected component

116

Summary: Graph

• DFS

• finding connected component

• check for cycles

• topological sort

• Dijkstra algorithm

• finding shortest path from a single source in
a weighted graph with positive weights.

117

