DISCLAIMER

a personal view of what’s neat
not comprehensive
not rigorous
some problems can’t be solved by a computer

some problems can be solved easily in one way but difficult in the reverse direction

some problems can be solved randomly (but still gives right solution most of the time)
Is it possible to pose an Algo*Mania contest problem that is impossible to solve?
Given a program P with input I, will the program halt?

- **YES**: $P(I)$ eventually halt
- **NO**: $P(I)$ loops forever
Write another program

\[
X(P) \{ \\
\text{while } (\text{HALT}(P, P)) \{ \\
\text{// loop forever if P halts} \\
\}
\}
\]

What is the output of HALT(X,X)?
X(P) {
 while (HALT(P, P)) {
 // loop forever if P(P) halts
 }
}

Suppose HALT(X,X) is YES (that is HALT tells us X(X) will halt)

Then the while loop will loop forever, meaning X(X) will not halt!
X(P) {
 while (HALT(P, P)) {
 // loop forever if P(P) halts
 }
}

HALT(X,X) must be false!
(that is, HALT says X(X) will loop forever)

But if HALT(X,X) is false, the while loop won’t execute and X(X) will exit.
Halting Problem

First problem shown to be non-computable
Why is this neat?
Computer can’t program better than human!
Given two programs P1 and P2, are they equivalent?
Is a given program buggy?
Given a program P, output optimized version of P
Computer can’t replace mathematician
Fermat’s Last Theorem

$x^n + y^n = z^n$ has no non-zero integer solution for $n > 2$
Fermat() {
 for all possible non-zero integer values of x, y, z, and n > 2 do
 if $x^n + y^n = z^n$ // found a solution
 return true
}

HALT(Fermat, nil) would proved Fermat’s Last Theorem by returning NO
Other Non-computable Problems

Given a set of substitution rules, and two strings s and t, can we transform s to t by applying the set of rules?
P and NP

Not all problems have known efficient solutions
some problems are known to have efficient solutions

e.g. \textit{shortest} path on a graph
some problems have no known efficient solutions
e.g. **longest** path on a graph
No one knows if integer factoring can be done efficiently
Factor the following 200-digit integer:

2799783391122132787082946763872260162107
0446786955428537560009929326128400107609
3456710529553608560618223519109513657886
3710595448200657677509858055761357909873
4950144178863178946295187237869221823983
27997833911221327870829467638722601621070446786955
42853756000992932612840010760934567105295536085606
18223519109513657886371059544820065767750985805576
13579098734950144178863178946295187237869221823983
=
35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349
x
79258699544783330333470858414800596877379758573642
19960734330341455767872818152135381409304740185467

Christmas 2003 - May 2005
Equivalent of 55 years of CPU time on a 2.2 GHz CPU
Some problems are easy to compute one way, but computing the reverse is difficult (unless you know a secret)

\[A \times B = C \]

given A and B, find C is easy
given C, find A and B is hard
Why is this neat?
Public Key Cryptography

Easy: encrypt a message

Hard: decrypt the message (unless know the secret)
Public Key Cryptography

publish C (product of two large primes A and B)

encrypt message using C

can only decrypt the message if we know A and B
Sender and receiver no longer have to agree on a common key before communication!
A hash function transforms input into a fixed length string.

$$\text{hash(input)} = k$$

e.g., $\text{MD5(“Algo*Mania”) = 2e8f46a660fb57201b93ed9c1cf86d08}$
hash(input) = k

good hash function:
slight change in input gives totally different k

e.g., MD5("Algo*Mania") = 2e8f46a660fb57201b93ed9c1cf86d08

MD5("algo*mania") = 92ae377f2f5cccf585eb84ccd7c8156c
hash(input) = k

good hash function:
given k, hard to guess input

e.g., MD5(?) = 2e8f46a660fb572012343ed9c1cf86d08
build data structures (hash tables)

store passwords

verify file integrity

use as fingerprint to identify files
Authenticated Messages
with common secret

Sender: \(h = \text{hash}(\text{msg} + \text{secret}) \)
send msg and h

Receiver: compute \(h' = \text{hash}(\text{msg}' + \text{secret}) \)
if \(h' = h \) then very likely msg = msg'
Mitigate Spam

Sender must spend some effort to show it's sincerity before receiver accepts the email.
Sender must find a number X such that first k bits of
$\text{hash}(X + \text{time} + \text{recipient email})$
are zeros.

include X in the email

X-Hashcash: 1:20:060408:adam@cypherspace.org::1QTjaYd7niiQA/sc:ePa
Receiver verifies that the first k bits of the hash are all zeros
Other one way function can be used.

Recipient can also issue a challenge (e.g. factor this!) to sender.
Integer factoring is especially hard if the number is a product of two very large primes.
How to test if a number is prime?
IsPrime? (n) {
 for (k = 2 to n-1) {
 if n is divisible by k then
 return not a prime
 }
 return it's a prime
}
Sieve of Eratosthenes

(Animation from Wikipedia)
is

35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349

prime?
I can be 99.9999% sure this number is a prime by looping only 20 times.
Fermat showed that if n is prime then

\[a^{n-1} = 1 \mod n \]

for all values of a in \([1 \ .. \ n-1]\)
but if n is not prime then

$$a^{n-1} \equiv 1 \mod n$$

for at most half the values of a in $[1 \ldots n-1]$
A Probabilistic Algorithm

IsPrime? (n) {
 repeat k times
 randomly pick a from between 1 and n-1
 if $a^{n-1} \not= 1 \mod n$ then
 return not a prime
 return it's a prime // with prob $\geq 1 - 1/2^k$
}
I can tell if

3532461934402770121272604
9781984643686711974001976
2502364930346877612125367
9423200058547956528088349

is a prime with a probability 0.9999999 by looping 20 times instead of 10^{100} times
NOTE: The above discussion ignores the existence of Carmichael numbers, which are odd composites that satisfies Fermat’s little theorem.
some problems can’t be solved by a computer

some problems can be solved easily in one way but difficult in the reverse direction

some problems can be solved randomly (but still gives right solution most of the time)
The End