
Neat Ideas in
Computer Science

Ooi Wei Tsang
School of Computing

1

a personal view of what’s neat

not rigorous

not comprehensive

DISCLAIMER

2

some problems can’t be solved by a computer

some problems can be solved easily in one
way but difficult in the reverse direction

some problems can be solved randomly (but
still gives right solution most of the time)

3

Is it possible to pose an Algo*Mania contest
problem that is impossible to solve?

4

Given a program P with input I,
will the program halt?

HALT?
P

I
YES: P(I) eventually halt
NO: P(I) loops forever

5

Write another program

X(P) {
 while (HALT(P, P)) {
 // loop forever if P halts
 }
}

What is the output of HALT(X,X)?

6

X(P) {
 while (HALT(P, P)) {
 // loop forever if P(P) halts
 }
}

Suppose HALT(X,X) is YES
(that is HALT tells us X(X) will halt)

Then the while loop will loop
forever, meaning X(X) will not halt!

7

X(P) {
 while (HALT(P, P)) {
 // loop forever if P(P) halts
 }
}

HALT(X,X) must be false!
(that is, HALT says X(X) will loop forever)

But if HALT(X,X) is false, the while loop
won’t execute and X(X) will exit.

8

Halting Problem

First problem shown to be non-computable

9

Why is this neat?

10

Computer can’t program better than human!

11

Given two programs P1 and P2,
are they equivalent?

12

Is a given program buggy?

13

Given a program P,
output optimized version of P

14

Computer can’t replace mathematician

15

Fermat’s Last Theorem

xn + yn = zn has no non-zero integer
solution for n > 2

16

Fermat() {
 for all possible non-zero integer values
 of x, y, z, and n > 2 do
 if xn + yn = zn // found a solution
 return true
}

HALT(Fermat, nil) would proved
Fermat’s Last Theorem by returning NO

17

Other Non-computable Problems

Given a set of substitution rules,
and two strings s and t,
can we transform s to t

by applying the set of rules?

18

P and NP

Not all problems has known efficient solutions

19

some problems are known to
have efficient solutions

e.g. shortest path on a graph

20

some problems have
no known efficient solutions

e.g. longest path on a graph

21

No one knows if
integer factoring

can be done efficiently

22

2799783391122132787082946763872260162107
0446786955428537560009929326128400107609
3456710529553608560618223519109513657886
3710595448200657677509858055761357909873
4950144178863178946295187237869221823983

Factor the following 200-digit integer:

23

27997833911221327870829467638722601621070446786955
42853756000992932612840010760934567105295536085606
18223519109513657886371059544820065767750985805576
13579098734950144178863178946295187237869221823983
=
35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349
x
79258699544783330333470858414800596877379758573642
19960734330341455767872818152135381409304740185467

Christmas 2003 - May 2005
Equivalent of 55 years of CPU time on a 2.2 GHz CPU

24

Some problems are easy to compute one way,
but computing the reverse is difficult

(unless you know a secret)

A x B = C

given A and B, find C is easy
given C, find A and B is hard

25

Why is this neat?

26

Easy: encrypt a message

Hard: decrypt the message
(unless know the secret)

Public Key Cryptography

27

publish C (product of two large
primes A and B)

encrypt message using C

can only decrypt the message if we
know A and B

Public Key Cryptography

28

Sender and receiver no longer have
to agree on a common key before
communication!

29

A hash function transforms
input into a fixed length string.

hash(input) = k

e.g., MD5(“Algo*Mania”) =
2e8f46a660fb57201b93ed9c1cf86d08

30

hash(input) = k

good hash function:
slight change in input gives totally different k

e.g., MD5(“Algo*Mania”) =
2e8f46a660fb57201b93ed9c1cf86d08

MD5(“algo*mania”) =
92ae377f2f5cccf585eb84ccd7c8156c

31

hash(input) = k

good hash function:
given k, hard to guess input

e.g., MD5(?) =
2e8f46a660fb572012343ed9c1cf86d08

32

build data structures (hash tables)

store passwords

verify file integrity

use as fingerprint to identify files

33

Authenticated Messages
with common secret

Sender: h = hash(msg + secret)
send msg and h

Receiver: compute h’ = hash(msg’ + secret)
if h’ = h then very likely msg = msg’

34

Mitigate Spam

Sender must spend some effort to show it’s
sincerity before receiver accepts the email.

35

Sender must find a number X such that
first k bits of

hash(X + time + receipient email)
are zeros.

include X in the email
X-Hashcash: 1:20:060408:adam@cypherspace.org::1QTjaYd7niiQA/sc:ePa

36

mailto:adam@cypherspace.org
mailto:adam@cypherspace.org

Receiver verifies that the first
k bits of the hash are all zeros

37

Other one way function can be used.

Recipient can also issue a challenge
(e.g. factor this!) to sender

38

Integer factoring is especially hard
if the number is a

product of two very large primes.

39

How to test if a number is prime?

40

IsPrime? (n) {
 for (k = 2 to n-1) {
 if n is divisible by k then
 return not a prime
 }
 return it’s a prime
}

41

Sieve of Eratosthenes

(Animation from Wikipedia)

42

35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349

is

prime?

43

I can be 99.9999% sure
this number is a prime

by looping only 20 times.

44

Fermat showed that if n is prime then

an-1 = 1 mod n

for all values of a in [1 .. n-1]

45

but if n is not prime then

an-1 = 1 mod n

for at most half the values of a in [1 .. n-1]

46

IsPrime? (n) {
 repeat k times

 randomly pick a from between 1 and n-1
 if an-1 != 1 mod n then

 return not a prime

 return it’s a prime // with prob >= 1 - 1/2k

}

A Probabilistic Algorithm

47

3532461934402770121272604
9781984643686711974001976
2502364930346877612125367
9423200058547956528088349

I can tell if

is a prime with a probability 0.999999 by
looping 20 times instead of 10100 times

48

NOTE: The above discussion ignores the existance
of Carmichael numbers, which are odd composites

that satisfies Fermat’s little theorem.

49

some problems can’t be solved by a computer

some problems can be solved easily in one
way but difficult in the reverse direction

some problems can be solved randomly (but
still gives right solution most of the time)

50

The End

51

