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Week 7: Sorting
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Why Sort?
Faster searching

Binary Search O(log n)
Linear Search O(n)

 

• Recall that searching in a sorted array using 
binary search is much faster than searching in 
an unsorted array. 

• There are many examples in our daily lives, 
where things are sorted according to some 
order.   
o Apartments/Room numbers 
o Dictionary 
o Phonebook 
o Books in the library 
o Calendar 
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Sorting Algorithms
Insertion Sort
Mergesort
Quicksort

 

• We will look at three different sorting 
algorithms: insertion sort, Mergesort and 
Quicksort. 
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For Each Algorithm
Idea
Example
Pseudo-code
Animation
Running Time

 

• This lecture will be organized as follows.  For 
each of the sorting algorithm, I will 
o Give you an idea about how the algorithm 

works 
o Give you an example 
o Show you some pseudo-code (part 

English, part Java) 
o Show you an animation of the sorting 

algorithm 
o Analyze the running time 
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Insertion Sort
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Idea
Sorted Unsorted

 

• The inputs are partitioned into two parts, one 
sorted, and one unsorted.   

• We take the first element from the unsorted 
partition, and insert it into the sorted partition 
(maintaining the sorted order).   

• Repeat until there are no more elements in the 
unsorted portion. 
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Example

5 35 16 46 2420

5 35 16 46 2420

20 35 16 46 245

 

• Consider this input.  First, we partition it to 
two parts of size 1 and size N-1 (where N is 
the size of the input). 

• A partition of size 1 is already sorted! 
• Now pick the first element (5) from the 

unsorted portion.  Move it into the sorted part 
(maintaining the sorted order). 
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How to insert

5 35 16 46 2420

20 35 16 46 2420

5

5

20 35 16 46 245 5

 

• Inserting into sorted linked list is easy.  If the input 
is an array, which is the case here, it is more 
tedious.  We will have to shift the elements to 
make way for the inserted element. 

• We first store 5 in a variable 
• Start from the end of the sorted partition, compare 

5 with each element. 
• If 5 is smaller than the current element, we shift 

the element one slot to the right. 
• If 5 is larger than the current element, we insert 5 

to the right of the current element. Done. 
• When we reach the beginning of the sorted portion.  

We insert 5 at the first slot. Done. 
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Continue

20 35 16 46 245

20 35 16 46 245

20 35 16 46 245

 

• Now the sorted partition grown to two 
elements.   

• The next element to consider is 35.  Since 35 
is larger than 20, it is already in its sorted 
position.  The sorted partition grown to 5, 20 
and 35. 

• The algorithm continues, until all elements are 
sorted. 
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Finally

16 20 35 46 245

16 20 35 46 245

16 20 24 35 465
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insertionSort(a, N)
for i = 1 to N-1

curr = a[i]
j = i
while j > 0 && a[j-1] > curr

a[j] = a[j-1]
j = j – 1

a[j] = curr

16
curr

20 35 16 46 245
a[i]

 

• Note that we start from the 2nd element (a[1], 
not a[0]).  

• Pseudo-code is not Java, but part Java, part 
English. 

• During exam, if you are asked to implement 
or write Java code, you cannot write pseudo-
code.  But if you are asked to describe an 
algorithm, you may use pseudo-code.  
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Recall: Big Oh
ignore multiplicative constant
ignore lower order terms

)(1005
)(4

22 NNN
NN

Ο∈+

Ο∈

 

• Now we will analyze the running time of 
insertion sort using Big O notation.  Recall 
that in Big O notation, we are more interested 
in the “order of magnitude”, so we can ignore 
multiplicative constant and lower order terms. 
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Recall: Big Oh

)()())(()(
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• Recall the different notation for algorithm 
analysis.  We are more interested in Big Oh, 
which is an upper bound of growth rate, and 
Big Omega, which is the lower bound of 
growth rate, and Big Theta, which indicates 
the same growth rate. 
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Running Time

for i = 1 to N-1
curr = a[i]
j = i
while j > 0 && a[j-1] > curr

a[j] = a[j-1]
j = j – 1

a[j] = curr

)()1(3 NN Θ=−= Ops of Num

 

• Let’s look at the outer loop first, the outer 
loop has three operations, and are executed N-
1 times.  So the total running time is  Θ(N). 
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Running Time

for i = 1 to N-1
curr = a[i]
j = i
while j > 0 && a[j-1] > curr

a[j] = a[j-1]
j = j – 1

a[j] = curr

)(
2

)1(1..21 2NNNN Ο∈
−

=−+++≤    Ops of Num

 

• The inner loop is executed at most i times, 
where i is the count of the outer loop. Hence 
the number of times it is executed is the 
summation of i, for i = 1 to N-1.  This is an 
arithmetic series, and the value is equal to 
N(N-1)/2.  By ignoring lower terms and 
multiplicative constant, the running time of 
the inner loop is O(N2). 

• Question: Why do we use Big-O instead of 
Big-Θ? 
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Running Time

General Case:  O(N2)
Reverse Sorted:  Θ(N2)   
Sorted:  Θ(N)

 

• The previous slides show the analysis for 
general inputs.   

• Let’s consider the special cases, when the 
input is reversely sorted, and when the input is 
already sorted.  The running time for these 
two cases are Θ(N2) and Θ(N) respectively.  
As an exercise, look at the algorithm in the 
previous slide, and figure out why this is the 
case. 
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Merge Sort
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Recall: Recursion
Given a problem P with input I
Know how to solve P if I is trivial
Assume you know how to solve P for 
simpler I
Solve P for I
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Idea

Sort

Merge

 

• The idea of Mergesort is to split the input 
array into half, recursively sort each half.  
Then you take the two sorted halves, and 
merge them together into a sorted array. 

• Note: You should know how to merge two 
sorted list/array by now.  This part of the 
algorithm will be skipped! 
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Example: Splitting

13 26 1 2 2724 38 15

13 26 124 2 27 38 15

13 26 124

13 26 124 13 26 124
:

 

• We first partition the original array into halves 
and recursively sort the two halves.  This 
means we take the first half, and partition it 
into two halves again.  Repeat until we have a 
partition of one element, which is trivially 
sorted. 
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Example: Merging

13 26 124 13 26 124

13 24 1 26

1 13 24 26 2 15 27 38

1 2 13 15 24 26 27 38

:

 

• We merge the sorted partitions, when we step 
out of the recursive calls.  Note that to merge 
two arrays, we need a temporary array. 
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mergeSort(a, temp, l, r)
if (l < r)

center = (l+r)/2
mergeSort (a, temp, l, center)
mergeSort (a, temp, center + 1, r)
merge(a, temp, left, center+1, right)

 

• Here is the pseudo-code. temp is the 
temporary array. 

• Question: Does this algorithm follow the first 
three rules of recursion? Why? 
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First call

mergeSort(a, temp, 0, N-1)

 

• The first time you call mergeSort, pass in 0 
and N-1 as the value of l and r. 
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Running Time
Merging N elements Θ(N)
How many merges are there?

 

• Merging two lists with a total of N elements 
takes Θ(N) times. 

• Question: Why? Verify this! 
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Running Time

1

N/2N/2

N/4 N/4 N/4 N/4

1 1 1 1 1 1 1 1

N

: :

O(log2N)

 

• If we visualize the algorithm like this, we can 
see that there are actually Θ(log N) levels, 
since at each level, we half the array.  

• Question: Look back at the algorithm analysis 
of binary search.  Do you see a similarity 
here? 

• Question: Is the height of the tree still Θ(log 
N) if N is not a power of two?  Why? 

• Merging each level takes Θ(N) times because 
at level i, we are merging 2i arrays, each with 
N/2i elements.  So we always merge a total of 
N elements, even though they are not being 
merged into the same array.  

• Question: Verify this by calculating the 
number of merged that occurs at the lowest 
level, the first level and the second level. 

 

nus.soc.cs1102b.week7

29

Running Time
MergeSort Θ(N log N)
Reverse Sorted? Θ(N log N)
Sorted? Θ(N log N)

 

• The running time of mergesort is hence Θ(N) 
x Θ(log N) = Θ(N log N) 

• The running time of mergesort is the same 
even if the array is already sorted, or is 
reverse sorted.   

• Question: Verify this!  Why? 
 
 

Quick Sort

 

• The next sorting algorithm is Quicksort. 
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Idea

x
Partition

≥x x≤x

≥xx≤x
Sort

 

• The idea is to pick an element from the input, 
called pivot, and use it to partition the array.  
Let’s say we pick x.  We partition the array, 
such that those that are less than or equal to x 
goes to the left hand side of x, and those that 
are greater or equal to x goes to the right hand 
side.  After partition, we can be sure that x is 
its rightful position in a sorted array.  (i.e. the 
position of x, if the array is sorted will be the 
same as its position now.)     

• Question: Why is x in its rightful position? 
• We now recursively sort the left partition of 

the array, and sort the right partition of the 
array.  After sorting the left and right 
partition, the whole array is sorted. 

• Important:  
o The pivot may move from its initial 

position after partition!   
o The partition may not be of equal length! 
o A partition can be empty!  (e.g., if x 

happen to be the maximum element) 
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Let’s ignore FOR NOW
how to pick a pivot
how to partition
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Example

13 26 1 2 2724 38 15

2 26 13 24 271 38 15

2 26 13 24 271 38 15

 

• We pick 2 as a pivot.    
• After partitioning, all elements less than 2 

(there are only one in this case, element 1) go 
to the left of 2, and all elements greater than 2 
go to the right of 2.   

• Recursively sort the left partition.  Nothing to 
do here, since it is already sorted. 

• Recursively sort the right partition.  Now, pick 
24 as pivot.  
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Example

2 15 13 24 271 38 26

2 13 15 24 271 38 26

2 13 15 24 271 38 26

 

• Elements less than 24 (13, 15) goes to the left.  
The rest of elements go to the right. 

• Recursively sort the left partition (13,15) 
• Recursively sort the right partition (27, 38, 

26). 
• Pick 38 as pivot. 
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Example

2 13 15 24 271 26 38

2 13 15 24 261 27 38

 

• Left partition has (27,26), right partition is 
empty. 

• Recursively sort (26,27) 
• DONE! 
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Pseudocode
quickSort (a, low, high) 

pivot = pickPivot (a, low, high)
i = partition(a,low, high, pivot)
quickSort(a, low, i-1)
quickSort(a, i+1,high)

 

• Here is the pseudo code, again we assume that 
there exists a method called pickPivot and a 
method called partition. 

• pickPivot takes in low and high, which are 
variables that tells us the portion of the array 
we are sorting.  It returns the value of the 
pivot. 

• partition takes in the array, the low and high 
index, and the index of the pivot.  It partitions 
the array and returns the new index of the 
pivot. 

• We then recursively sort the left and right 
partition. 
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Idea: Partition

x

i j

 

• The idea of partition() is to scan from both 
end of the array.  Maintain two cursors i and j.  
Move the cursors towards each other.  i is 
used to search for elements that are larger or 
equal to x, and j is used to search for elements 
that are smaller or equal to x. 
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Idea: Partition

x

a[i]≥x
a[j]≤x

≤x ≥x

 

• Stop when we encounter an item that is “out 
of place” (red items) 
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Idea: Partition

x≤x ≥x

 

• Swap them and continue. 
 
 

nus.soc.cs1102b.week7

40

Idea: Partition

≤x ≥x

i

j

 

• Until i crosses with j 
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Partitioning Algorithm
i = low
j = high
while TRUE

while a[i] < a[pivot] do i = i + 1
while a[j] > a[pivot] do j = j – 1
// a[i] ≥ a[pivot] ≥ a[j]
if i ≥ j then break
swap a[i] a[j]
i = i + 1
j = j - 1

 

• i and j are “cursors” into the array. 
• scan i from left, stop when we encounter an 

out-of-place element (an element that belongs 
to the right side) 

• scan j from right, stop when we encounter an 
out-of-place element (an element that belongs 
to the left side) 

• swap those elements if i hasn’t cross j. 
• Question: Trace through the algorithm using a 

simple array. 
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Running Time
pickPivot Θ(1)
partition Θ(N)

 

• Let’s assume for now we use a very simple 
method to pick a pivot, say, we pick the first 
element.  This can be done in Θ(1) time. 

• partition requires scanning the whole array. 
After we examine an element, we know which 
partition this element belongs to.  So we only 
need to scan the whole array once.  Hence, 
running time for partition is Θ(N). 
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Running Time: Balance 
Partition

1

N/2N/2

N/4 N/4 N/4 N/4

1 1 1 1 1 1 1 1

N

: :

log2N

 

• Recall that partition does not guarantee that 
we always divide the array into halves. So we 
have to analyze different cases.  Suppose 
partition always split the array evenly, then 
we get this picture, similar to merge sort.  
There will be Θ(log N) levels of recursion.   
Each level takes Θ(N).  So the running time is 
Θ(Nlog N). 
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Running Time (Worst Case)

N-11

1 N-2 N

N

1 N-3

1 1

 

• Suppose we pick our pivot badly, and every 
time we partition the array, one of the 
partition is always empty.  We end up with 
this case.  Note that now we have N levels. 

• The running time is thus O(N2). 
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Running Time

Θ (N log N)Average Case

Θ (N2)Worst Case

Θ (N log N)Best Case

 

• It turn out that balanced partition is the best 
we can get.  Quicksort, therefore, has the best 
running time of Θ(NlogN) and worst case 
running time of Θ(N2). 

• Luckily, the average running time of 
Quicksort is Θ(N log N).  The analysis of this 
is in the book, but is not covered in this 
course. 
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Bad Pivot Picking
Always use the first
pickPivot(a, low, high)

return low

Bad Input
Input is sorted

 

• We have seen that picking a good pivot is 
important.  An example of bad pivot picking 
is to always pick the first one.  This behaves 
badly if the input is sorted.   

• Question: Why? Verify by a simple example. 
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Better Pivot
Middle Element
pickPivot(a, low, high)

return (low + high)/2

Median of Three
pickPivot(a, low, high)

middle = (low + high)/2
return index of the median of a[low], 

a[middle], a[high]

 

• A better way to pick a pivot is to pick the 
middle element in the array.  Another way, 
used in the book, is to pick the median of the 
first/last and middle element as the pivot. 
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Small Arrays

x
Partition

≥x x≤x

≥xx≤x

Insertion
Sort

size<threshold?

 

• Since Quicksort has an overhead in picking 
pivot and partitioning the array, it is not the 
best algorithm for sorting small arrays, simple 
(but asymptotically slower) algorithm may be 
faster in this case. 

• An enhancement to Quicksort is to check the 
size of the partition: if it is smaller than a 
threshold or cutoff value, we use insertion sort 
to sort the partition and do not recur further. 

Recap
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Running Time

Worst CaseAverage CaseAlgorithm

O(N2)O(N2)InsertionSort

O (N log N)O(N log N)MergeSort

O (N2)O(N log N)QuickSort
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Question

Can we sort faster 
than O(N log N)?
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Answer

No!
but…

 

 

nus.soc.cs1102b.week7

55

Lower Bound
InsertionSort, Merge Sort and Quick Sort 
sort by comparing values only --
Comparison-based Sorting

It can be shown that the running time for 
comparison-based sorting is Ω(N log N).
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Linear-Time Sorting
If we assume certain knowledge about the 
inputs, we can do better than O(N log N)

Example: Radix Sort, Counting Sort

 

• Radix Sort and Counting Sort are two linear 
time sorting algorithms.  They can achieve 
linear time because they assume some 
properties in the input.  For example, 
Counting Sort can be use to sort integers 
within a given range.   
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Readings
Required

[Weiss] ch8.1 – 8.3
[Weiss] ch8.5 – 8.6

Fun
http://www.scs.carleton.ca/~morin/misc/sortalg/

 

 

 


