CS1102 Semester 2 AY 2003/2003
Annotated Solutions for Lab 4A
Problem 40: Augmented Binary Search Tree
Introduction
This problem is meant to be a easy problem, that could be completed within two hours.

To solve this problem, you need to understand how the given code works. Drawing pictures of BSTs,
and thinking about how insertion/deletion can change the five data fields are important. Trying to
solve this problem straight away before understanding the code or how insert/delete can affect the tree
would cause wasted hours of debugging. It also requires knowledge of how to delete and insert from
a doubly linked list.

The given source code is shown in the appendix. The unrelated part of the source code has been
removed for simplicity. Therefore the line numbers referred to in this document does not match those
in the java file. Let’s look at how each data field can be affected by insertion and deletion. We will
begin by looking at the simplest one, the parent.

Parent

The parent of a node N should either point to itself, if N is a root, or points to the parent. Therefore,
the parent of node N changes, if either N becomes a new root, or if some other node sets its left or
right child to N.

When can a node becomes a new root? This happens when the member “root” of BinarySearchTree
changed and only happens in line 2 to 10.

We can reset the parent pointer here:

2 public void insert (KeyedItem newItem)
3 {
4 root = insertlItem(root, newltem);
root.parent = root;
5 }
6
7 public void delete (Comparable searchKey) throws TreeException
8 {
9 root = deleteltem(root, searchKey);
if (root '= null) root.parent = root;
10 }

Note that we do not have to check if root is null after insertltem.

The other case where a parent pointer could change is when some other node has changed its child
pointer. This happens in line 135 to 146.

We can update the parent pointer here:

135 public void setLeft (TreeNode left)
136 {
137 // Sets the left child reference to left.
138 leftChild = left;
if (left '= null) left.parent = this;
139 }
140
141 public void setRight (TreeNode right)
142 {
143 // Sets the right child reference to right.

144 rightChild = right;

if (right !'= null) right.parent = this;

145 }
146 }
Size and Height

Initialization of size and height are easy. When a new TreeNode is created, just set both of them to 1.

Since size and height of a node N indicate the number of nodes and the height of the subtree rooted at
N, these two data fields need to be updated whenever the subtree of N is changed. The subtree rooted
at a node N can only be changed when an item is inserted/deleted from one of its subtree. For
insertion, this happens between line 24 and 34 after insertltem() is called on either the left or right
subtree.

23 // search for the insertion position
24 if (newItem.getKey () .compareTo (nodeltem.getKey()) < 0) {
25 // search the left subtree
26 newSubtree = insertItem(tNode.getLeft (), newltem);
27 tNode.setLeft (newSubtree) ;
tNode .updateSizeAndHeight () ;
28 return tNode;
29 }
30 else { // search the right subtree
31 newSubtree = insertItem(tNode.getRight (), newltem);
32 tNode.setRight (newSubtree) ;
tNode .updateSizeAndHeight () ;
33 return tNode;
34 }

For deletion, this happens in four different places, whenever deleteltem or deleteLeftmost is called.

49 // else search for the item

50 else if (searchKey.compareTo (nodeltem.getKey()) < 0) {

51 // search the left subtree

52 newSubtree = deleteltem(tNode.getLeft (), searchKey);

53 tNode.setLeft (newSubtree) ;
tNode.updateSizeAndHeight () ;

54 }

55 else { // search the right subtree

56 newSubtree = deleteltem(tNode.getRight (), searchKey);

57 tNode.setRight (newSubtree) ;
tNode.updateSizeAndHeight () ;

58 }

90 // retrieve and delete the inorder successor

91 else {

92 replacementItem = findLeftmost (tNode.getRight());

93 tNode.setItem(replacementItem) ;

94 tNode.setRight (deleteLeftmost (tNode.getRight ())) ;

tNode .updateSizeAndHeight () ;

95 return tNode;

96 }

97 }

99 protected TreeNode deleteleftmost (TreeNode tNode)
100 {

101 if (tNode.getLeft () == null) {

102 return tNode.getRight () ;

103 }

104 else {

105 tNode.setLeft (deletelLeftmost (tNode.getLeft ()));

tNode.updateSizeAndHeight () ;

106 return tNode;
107 }

108 }

109

Method updateSizeAndHeight() can be written as a method in class TreeNode as follows:

private void updateSizeAndHeight ()

{

if (leftChild == null && rightChild == null) {
size = height = 1;

} else if (leftChild == null) {
size = rightChild.size + 1;
height = rightChild.height + 1;

} else if (rightChild == null) ({
size = leftChild.size + 1;
height = leftChild.height + 1;

} else {
size = leftChild.size + rightChild.size + 1;
height = Math.max(leftChild.height, rightChild.height) + 1;

Someone observed that we can update the size and height in setLeft() and setRight(). This is correct
for this particular implementation. However, for other implementation, it might not be the case that
any modification to the subtree rooted at node N results in a change to the left or right child of N.

Predecessor and Successor

The predecessor and successor fields are not related to the structure of the tree, but to the values of the
items stored in the tree. An important observation is that these two references form a doubly linked
list. Thus, updates of predecessor and successor when insert/delete is performed on the tree are the
same as updates of next/prev references in a doubly linked list.

To insert a new item N, we first need to find out the position of N in the doubly linked list. This is
easy once you made the observation that the parent of N must be either the successor (if it is inserted
to the left) or the predecessor (if inserted to the right) of N. The next question is, when to update the
predecessor and successor? Obviously this must be done when a new node is created, that is, after
line 18. But at line 18, we have no access to the parent of the newly created tNode. We can solve this
by passing in the parent node to insertltem.

12 protected TreeNode insertItem(TreeNode tNode, KeyedItem newlItem,
TreeNode parent)
13 {
14 TreeNode newSubtree;
15 if (tNode == null) {
16 // position of insertion found; insert after leaf
17 // create a new node
18 tNode = new TreeNode (newlItem, null, null);
// if parent is larger than tNode,
// insert tNode before parent
// else
// insert tNode after parent
19 return tNode;
20 }

Finally, we consider how to update successor and predecessor when a node N has been deleted.
Deletion of a node is done in deleteNode, in which the argument tNode is removed from the tree.
Case 1, 2 and 3 are straight forward — since we are removing tNode from the tree, we just remove it
from the double linked list formed by the successor and predecessor reference. In case 4, tNode is not
deleted, but instead, was replaced by its successor. Hence, we do not remove tNode, but we remove
its successor instead.

63 protected TreeNode deleteNode (TreeNode tNode)

64 {
65 // Algorithm note: There are four cases to consider:
66 // 1. The tNode is a leaf.
67 // 2. The tNode has no left child.
68 // 3. The tNode has no right child.
69 // 4. The tNode has two children.
70 // Calls: findLeftmost and deletelLeftmost
71 KeyedItem replacementItem;
72
73 // test for a leaf
74 if ((tNode.getLeft () == null) &&
75 (tNode.getRight () == null)) {
// remove tNode from doubly linked list
76 return null;
77 }
78
79 // test for no left child
80 else if (tNode.getlLeft () == null) {
// remove tNode from doubly linked list
81 return tNode.getRight () ;
82 }
83
84 // test for no right child
85 else if (tNode.getRight() == null) {
// remove tNode from doubly linked list
86 return tNode.getLeft ();
87 }
88
89 // there are two children:
90 // retrieve and delete the inorder successor
91 else {
92 replacementItem = findLeftmost (tNode.getRight());
93 tNode.setItem(replacementItem) ;
94 tNode.setRight (deleteLeftmost (tNode.getRight ()));
// remove tNode’s successor from doubly linked list
95 return tNode;
96 }
97 }

One interesting note is that we can simplify the code for case 4 in deletion. We do not really need to
traverse the tree to find the replacement item using findLeftmost() anymore, because the successor of
tNode points to the replacement item directly.

Appendix: Original Source Code for Binary Search Tree.

1 class BinarySearchTree extends BinaryTreeBasis {

2 public void insert (KeyedItem newItem)

3 {

4 root = insertlItem(root, newltem);

5 }

6

7 public void delete (Comparable searchKey) throws TreeException
8 {

9 root = deleteltem(root, searchKey);
10 }
11
12 protected TreeNode insertItem(TreeNode tNode, KeyedItem newltem)
13 {
14 TreeNode newSubtree;
15 if (tNode == null) {
16 // position of insertion found; insert after leaf
17 // create a new node
18 tNode = new TreeNode (newItem, null, null);

19 return tNode;

20 }

21 KeyedItem nodelItem = (KeyedItem)tNode.getItem() ;

22

23 // search for the insertion position

24 if (newItem.getKey () .compareTo (nodeltem.getKey()) < 0) {
25 // search the left subtree

26 newSubtree = insertItem(tNode.getLeft (), newltem);
27 tNode.setLeft (newSubtree) ;

28 return tNode;

29 }

30 else { // search the right subtree

31 newSubtree = insertItem(tNode.getRight (), newlItem);
32 tNode.setRight (newSubtree) ;

33 return tNode;

34 }

35 }

36

37 protected TreeNode deleteltem(TreeNode tNode, Comparable searchKey)
38 {

39 TreeNode newSubtree;

40 if (tNode == null) {

41 throw new TreeException ("TreeException: Item not found");
42 }

43 else {

44 KeyedItem nodeItem = (KeyedItem)tNode.getItem()

45 if (searchKey.compareTo (nodeItem.getKey()) == 0) {
46 // item is in the root of some subtree

47 tNode = deleteNode (tNode); // delete the item
48 }

49 // else search for the item

50 else if (searchKey.compareTo (nodeltem.getKey()) < 0) {
51 // search the left subtree

52 newSubtree = deleteltem(tNode.getLeft (), searchKey);
53 tNode.setLeft (newSubtree) ;

54 }

55 else { // search the right subtree

56 newSubtree = deleteltem(tNode.getRight (), searchKey);
57 tNode.setRight (newSubtree) ;

58 }

59 }

60 return tNode;

61 }

62

63 protected TreeNode deleteNode (TreeNode tNode)

64 {

65 // Algorithm note: There are four cases to consider:
66 // 1. The tNode is a leaf.

67 // 2. The tNode has no left child.

68 // 3. The tNode has no right child.

69 // 4. The tNode has two children.

70 // Calls: findLeftmost and deleteleftmost

71 KeyedItem replacementItem;

72

73 // test for a leaf

74 if ((tNode.getLeft () == null) &&

75 (tNode.getRight () == null)) {

76 return null;

77 }

78

79 // test for no left child

80 else if (tNode.getLeft () == null) {

81 return tNode.getRight () ;

82 }

83

84 // test for no right child

85 else if (tNode.getRight() == null) {

86 return tNode.getLeft ();

87 }

88

89 // there are two children:

90 // retrieve and delete the inorder successor
91 else {
92 replacementItem = findLeftmost (tNode.getRight());
93 tNode.setItem(replacementItem) ;
94 tNode.setRight (deleteLeftmost (tNode.getRight ())) ;
95 return tNode;
96 }
97 }
98
99 protected TreeNode deletelLeftmost (TreeNode tNode)
100 {
101 if (tNode.getLeft () == null) {
102 return tNode.getRight () ;
103 }
104 else {
105 tNode.setLeft (deleteLeftmost (tNode.getLeft ()));
106 return tNode;
107 }
108 }
109
110 }
111
112
113 class TreeNode {
114 private Object item;
115 private TreeNode leftChild;
116 private TreeNode rightChild;
117
118 public TreeNode (Object newItem)
119 {
120 // Initializes tree node with item and no children.
121 item = newlItem;
122 leftChild = null;
123 rightChild = null;
124 }
125
126 public TreeNode (Object newlItem, TreeNode left, TreeNode right)
127 {
128 // Initializes tree node with item and
129 // the left and right children references.
130 item = newltem;
131 leftChild = left;
132 rightChild = right;
133 }
134
135 public void setLeft (TreeNode left)
136 {
137 // Sets the left child reference to left.
138 leftChild = left;
139 }
140
141 public void setRight (TreeNode right)
142 {
143 // Sets the right child reference to right.
144 rightChild = right;
145 }

146 1}

