
CS2281

National University of Singapore
School of Computing

Programming Assignment 3 Semester 3 04/05

Deadline

Mon May 17 17:00:00 GMT-8 2004

Learning Keywords

structure, user-defined types, modules, static functions, creating library, void *, type cast-
ing, memory management, function pointer, macros, variable argument list.

Your Task

In this assignment, you are required to implement a C programming library that provides a
vector data structure similar to the Vector class in Java.

As you may recall, the Vector class in Java implements a growable array of items. Items
inside a Vector can be accessed directly using an integer index, just like an array in C.
However, the size of a Vector can grow or shrink when necessary, to accommodate insertion
and deletion of items. Furthermore, the Vector class in Java stores items of type Object.
Thus, any objects of non-primitive type can be stored in a Vector.

Your task is to implement a similar data structure in C called vector through a static
library libvector.a. Your library should provide a set of functions to manipulate the
vector type and a header file called vector.h that supply the declarations of the types
and functions. By providing both libvector.a and vector.h, you allow others to use your
library by #include "vector.h" in their C code and by -lvector when compiling with
gcc.

Besides type vector, your library should also provide a new type called vector item,
which is the type of the items stored in vector. To allow for arbitrary type to be contained
in your vector, vector item should be equivalent to void *. Since void * is 4 bytes on
32-bit architecture, it can be used to store any data less than 4 bytes directly (with proper
casting). For data that are larger than 4 bytes (say, a structure or long long) the vector
can store a pointer to the data instead. You can assume that the elements stored in vectors
are not-NULL (non-zero).

The type vector should internally maintain two numbers, size, which is the largest
index of any existing element in the vector, plus 1, and capacity, which is the maximum
number of elements your vector can hold. At any one time, capacity must be at least as
large as size. Your vector should expand when it ran out of space. For instance, if capacity
is 10, and the user requests an element to be inserted at position 30, the vector should grow
so that capacity is larger than 30. A good way to expand is to keep doubling its capacity
until there is enough space.

The set of functions that your library should provide are given in the next section.

API to vector type

vector *vector new(int capacity)
Create and return a new vector with the given capacity. Return NULL if errors.

void vector add element at(vector *v, int index, vector item element)
Add element into vector v at position index. Shifts the element currently at position
index (if any) and any subsequent elements to the right (adds one to their indices).

void vector add element(vector *v, vector item element)
Append element to the end of vector v.

void vector add elements(vector *v, vector item element, ...)
This is the variable argument list version of vector add element(). All elements passed
in will be appended to the end of vector v in the order they are passed in. The argument
list should be terminated with NULL.

int vector capacity(vector *v)
Return the current capacity of the vector v.

void vector clear(vector *v)
Remove all elements from vector v. The vector will become empty after this function
call returns.

vector *vector clone(vector *v)
Return a clone of vector v, which contains a shallow copy of all elements in v.

int vector contains(vector *v, vector item element)
Return 1 if vector v contains element, return 0 otherwise.

vector item vector element at(vector *v, int index)
Return the element stored at position index in vector v.

void vector free(vector **v)
Deallocate the vector v. v should points to NULL after this function returns.

int vector index of(vector *v, vector item element)
Return the index of element in v. If more than one occurrences of element appears
in v, return the smallest index of such occurrences. If element does not exist in v,
return -1.

int vector is empty(vector *v)
Return 1 if the vector v is empty, return 0 otherwise.

vector *vector map(vector *v, vector item (*f)(vector item))
Return a new vector w where each element in w is a result of applying function f on the
corresponding element in v. For example, if vector v contains strings ”luke”,”leia”,”han”
and f takes in a string and returns its length, then vector w contains the values 4, 4, 3.

For those who are familiar with scheme, this is similar to the map function in scheme.

Page 2

void vector remove element(vector *v, vector item element)
Remove the first occurrence of element from vector v. If the element is found, shift all
component in v that has a larger index than element to the left (reduce their indices
by 1).

vector item vector remove element at(vector *v, int index)
Remove the element at position index from vector v and return the element removed.
Each component in v with an index larger than index is shifted to the left (subtract
one to their indices). The size of v is decreased by one. If index is not valid, return
NULL.

int vector size(vector *v)
Return the current size of the vector v.

void vector trim to size(vector *v)
Shrink the vector capacity to be equal to the size of the vector.

Example Usage of vector type

#include "vector.h"

int main()

{

vector *v = vector_new();

vector_add_element(v, (vector_item)"one");

vector_add_element_at(v, 3, (vector_item)"four");

if (vector_contains(v, (vector_item)"4"))

vector_remove_element(v, (vector_item)"4");

}

You can download a simple test program from CS2281 website to test your vector pro-
gram. Feel free to change it to test your library.

Submission Requirement

You are required to submit the encrypted versions of four files, (i) vector.c, which imple-
ments the functions, (ii) vector.h, which provides functions declarations and type defini-
tions, and (iii) a Makefile, which compiles vector.c into libvector.a and links with a
test program main.c, (iv) main.c, which contains your test program.

Make sure you have read the submission instruction document posted on CS2281 website.
For this assignment, create a subdirectory under $HOME/CS2281 LABs/ called a3 and put your
encrypted files under the subdirectory. You must include your name as a comment in the
first line of your files. I will access your submission through the following pathname:

• $HOME/CS2281 LABs/a3/vector.c.pgp,

• $HOME/CS2281 LABs/a3/vector.h.pgp,

Page 3

• $HOME/CS2281 LABs/a3/main.c.pgp, and

• $HOME/CS2281 LABs/a3/Makefile.pgp.

It is your responsibility to make sure that the filenames are correct and permissions are set
properly according to the instructions given.

Additional Tips

• You should make sure that your library is modularly designed. A user of your library
should not be able to call a function in vector.c that is not part of the public API.

• When implementing a function from the API, you should try and reuse other vector
functions that you have written as much as possible.

• You should try and make use of the assert macros where appropriate to check for
invariants in your programs.

• You may find the following memory manipulation functions useful: memcpy, memset,
calloc and realloc. Check their man page to learn their usage.

Page 4

