
Technical Report: BDD Library for
Model Checking Hierarchical Systems

Truong Khanh Nguyen1, Jun Sun2, Yang Liu1, and Jin Song Dong1

1 School of Computing, National University of Singapore
{nguyent9,liuyang,dongjs}@comp.nus.edu.sg

2 Singapore University of Technology and Design
sunjun@sutd.edu.sg

1 Introduction

Binary Decision Diagram (BDD) based symbolic model checking is capable of verify-
ing systems with a large number of states [1]. Its effectiveness was evidenced by the
recent success of the Intel i7 project, where BDD techniques have been applied to ver-
ify the i7 processor [2]. In this work, we report a BDD library which is designed to
facilitate application of BDD techniques to fully hierarchical systems.

The library works by firstly encoding primitive system components and then re-
peatedly composing encoded system components using a set of well-defined functions.
We assume that primitive system components (e.g., a compositional state which con-
tains no other compositional states, or a process which invokes no other processes)
are in the form of finite state machines, which are encoded using BDD in the stan-
dard way. In order to build a generally useful library, we take into account different
ways of communication between system components: communication through shared
memory; synchronous/asynchronous channel communication; and multi-party barrier
synchronization (e.g., CSP-style). Next, with process algebras like CSP and CCS in
mind, a rich set of system composition functions are supported by the library. Using the
provided functions, encoded system components can be composed in a variety of ways,
including parallel composition, sequential composition, interrupt, choice, etc. The com-
positions are based on classic process algebras, but extended to support different kind
of system communications. A symbolic encoding of a hierarchical system thus can be
gradually obtained from bottom up using the library.

2 BDD and ADD’s Operators

Before we represent how we encode expressions and systems, we would like to list
some important operators of BDD and ADD supported by the CUDD library. Based on
these operators, we extend them to describe more complex structure like If, While.

2.1 Logic Operators

Logic operators include three basic operators: and , or ,not . Each operator is a function
BDD x BDD → BDD. These operators are the same as logic operators for boolean



expressions. The second input may be missing in the case of not operator. For example,
the and of 2 BDDs is a new BDD representing the expression which is the result of the
and of the 2 corresponding expressions of the two BDD inputs.

2.2 Arithmetic Operators

Arithmetic operators include plus,minus, times, divide . Each operator is a function
ADD x ADD→ ADD. Similarly these operators are the same as arithmetic operators
for arithmetic expression. For example, the plus of 2 ADDs is a new ADD representing
the sum of the 2 corresponding expression of the two ADD inputs.

2.3 Relational Operators

Relation Operators include less, less equal , equal , greater , greater equal . Each oper-
ator is a function ADD x ADD→ BDD. At each leaf of the BDD, it is true if the config-
uration satisfies the corresponding relation expression, and false if vice versa. In other
words, the result BDD is the representation of the corresponding relational expression.

3 Encoding Expressions

This section is dedicated to discuss how to encode expressions including variable, arith-
metic expressions, logical expressions, and relational expression.

3.1 Encode Variables

Our library only supports the integer type and boolean type. Each variable is described
as a sequence of boolean variables in the CUDD. Based on the variable’s domain, we
will calculate the number of boolean variables required for that variable. For example,
the variable x can receive value from 0 to 5. Then the number of values that x can
receive is 6. So we need 3 boolean variables x0x1x2 to describe the value of x.

Boolean type is a simple case of integer type where the lower bound value is 0 and
the upper bound is 1. Our translator supports arithmetic and logic operator like add,
subtract, multiply, divide, module, and, or, not.

A variable is represented as an ADD. It is a function from the value of variable’s
boolean variables to the its corresponding value. Let’s take an example. There is a vari-
able whose range is (0, 3). Then it needs 2 boolean variables x0x1 to represent its value.
Fig 1 represents for the variable a.

3.2 Encode Arithmetic Expressions

The arithmetic expression is in the form of Expression1optExpression2 where opt are
in the set {add ,minus, times, divide}. Then the ADD for the result expression equals
ADD1optADD2” where ADD1, ADD2 are the ADDs of the Expression1, Expression2
respectively. Fig 2 below represents the expression a+b where a , b are integer variable
whose range is from 0 to 3. We will used 2 bits x0x1 for a and 2 bits x2x3 for b.



x0

x1

10

x1

2 3

Fig. 1. Example of ADD for variable

x0

x1 x1

x2x2 x2x2

x3x3 x3x3 x3x3 x3x3

0 1 2 3 4 5 6

Fig. 2. Example of ADD for arithmetic expression

3.3 Encode Boolean Expressions

Encoding a boolean expression is simpler. The boolean expression is in the form of
Expression1optExpression2”. The BDD for the result expression equals BDD1optBDD2”
where opt is in the set {and , or ,not}, and BDD1, BDD2 are the BDDs representing
Expression1, Expression2 respectively.

3.4 Encode Relational Expressions

The relational expression is in the form of Expression1optExpression2 where opt is
in the set {less, less equal , equal , greater , greater equal}. Similarly the result BDD
represents the expression which equals ADD1optADD2” where ADD1, ADD2 are the
ADDs representing Expression1, Expression2. Let’s consider the expression a + b ≥
4 where a, b are the variables in the last example. Since the Expression2 is a constant,
the encoding is easier. Fig 3 shows the BDD for the a + b ≥ 4.



x0

x1 x1

x2 x2x2

x3

0 1

Fig. 3. Example of BDD for relational expression

4 Encode Commands

4.1 Encode Assignment

To encode a transition, each variable needs 2 copies. One represents the variable before
the transition and another represents the variable after the transition. Assignments tells
how the variables are changed after the action. In other word, assignment is actually the
relational expression whose operator is equal . The assignment is in the form variable =
value. The BDD corresponding this assignment equals ariableADDequalValueADD
where VariableADD , ValueADD are the ADDs of the variable expression on the
second copy and the value expression.

4.2 Encode If Command

Basically our library supports encoding variable, arithmetic expression, relational ex-
pression, boolean expression, and assignment. With these structures, our library is ca-
pable of describing transition, how the variable changed after transition. However, to
provide more powerful specification language, our library also support to encode the If,
While command to BDD.

The If command is in the form of ”If b Then exp1 Else exp2” (the if command
without else is similar). This command will be encoded as ((bBDD and exp1BDD)
or ((not bBDD) and exp2BDD)) where bBDD is the BDD of the if condition b,
exp1BDD is the BDD of exp1, and exp2BDD is the BDD of exp2.



4.3 Encode While Command

Supporting While command is more complex. We start with all valuations of variables.
At each time we loop the While body part until there is no valuation satisfying the while
condition. At each loop, any valuation whose values of variables after the action do not
satisfy the while condition will be added to the result. The valuations satisfying the
while condition are stilled used in the next loop. Let’s take example:
i = 0; while (i < 5) i = i + 2; where i is a variable whose value in the range 0..6. We
use the (a, b) to denote the valuations i = a ∧ i’ = b. After the first loop, we have 5
valuations {(0,2), (1, 3), (2, 4), (3, 5), (4, 6)}. We add the valuations (3, 5), (4, 6) to the
result because the value of i’ does not satisfy the while condition. These pairs tell the
value of i after exiting the loop based on the value of i before the loop. For example,
if the value of i before the while is 3 then the value of i when exiting the loop is 5.
Afterward, we continue with the other pairs. At the end of the second loop, we have
3 valuations (0, 4), (1, 5), (2, 6). Similarly we add the valuations (1, 5) and (2, 6) to
the result. Last, running the third loop there remains only one valuation (0, 6) which is
then added to the result. We will stop the loop since there is no more valuation. So the
boolean formula of the above while is ”(i = 0 ∧ i’ = 6) ∨ (i = 1 ∧ i’ = 5) ∨ (i = 2 ∧ i’ =
6) ∨ (i = 3 ∧ i’ = 5) ∨ (i = 4 ∧ i’ = 6)”.

5 Encoding Hierarchical Systems

This section explains how the library works, i.e., how it encodes primitive system com-
ponents and how encoded components can be composed in a hierarchical manner.

5.1 Encoding Primitive System Components

Without loss of generality, we assume that a primitive system component takes the form
of a finite state machines. A finite state machine has finitely many local control states
and local variables (with finite domains). A transition is from one local control state to
another state, which is labeled with a guard condition (constituted by global/local vari-
ables), an optional event and a transaction . An event can be a channel input or output,
or a (compound) name constituted by local variables as well as global variables. We
remark an event (besides channel input/output) can serve as a synchronization barrier
(see later on parallel composition). A transaction is a sequential program which possi-
bly updates global/local variables. Note that a finite state machine may communicate
with others in different ways.

Finite state machines are encoded using BDD in the standard way. That is, a BDD
is used to encode a system configuration (i.e., valuation of variables, channels, etc.)
symbolically, e.g., n bits are used to encode K local control states such that 2n ≥ K .
A transition is encoded using two set of Boolean variables −→x and −→x ′, which represent
system configurations before and after the transaction. The encoding of transactions is
BDDs constituted by −→x and −→x ′. For instance, if the transaction is a simple assignment
of the form y := expr , then the encoding would denote that variables in −→x ′ which
encodes y is equivalent to value of expr (based on variables in −→x ) and the rest of



−→x ′ remains unchanged. Other program constructs like if -then-else or while-do are
encoded similarly (refer to [3] for details). An encoded transition is in the form: g ∧
e ∧ t such that g (over −→x ) is an encoded guard condition; e is an encoded event and t
(over −→x and −→x ′) is an encoded transaction.

A BDD encoding of a finite state machine, which is referred to as a BDD machine, is
a tuple B = (

−→
V ,−→v , Init ,Trans,Out , In) where −→V is a set of unprimed Boolean vari-

ables encoding global variables, event names and channel names3; −→v is the variables
for local variables and local control states; Init is a formula over −→V and −→v encoding
the initial valuation of the variables; Trans is a set of encoded transitions; Out (In) is
a set of encoded transitions labeled with synchronous channel output (input). Note that
transitions in Out and In are to be matched by corresponding input/output from the
environment.

5.2 Composing BDD Machines

In this section, we show how to compose BDD machines in order to model hierarchical
systems. We fix two BDD machines Bi = (

−→
V ,−→v i , Initi ,Transi ,Outi , Ini) of process

Pi where i ∈ {0, 1} in the following. We assume that −→v 0 and −→v 1 are disjoint (oth-
erwise variable renaming is necessary). Note that −→V is always shared. The following
shows some of the most common composition patterns as examples. Refer to [3] for the
complete list.

Parallel Composition The parallel composition of two components B0 and B1 is a BDD
machine (−→V ,−→v , Init ,Trans,Out , In) such that v = v0∪v1; Init = Init0 ∧ Init1; and
the encoded transitions are defined as follows. Trans contains three kinds of transitions.

– Local transitions: Transi ∧ event ′ = e ∧ (−→v 1−i = −→v ′1−i) where e is an asyn-
chronous channel input/output or e is an event which is not to be synchronized.

– Synchronous channel communication: Ini ∧ Out1−i
– Barrier synchronization: Transi ∧ Trans1−i

In contains following transitions:

– Ini ∧ (−→v 1−i = −→v ′1−i) The channel input of the composition includes the ones of
Bi and the local states of B1−i remain unchanged.

Out contains following transitions:

– Outi ∧ (−→v 1−i = −→v ′1−i)

Interleave Composition The interleave composition of two components B0 and B1 is
a BDD machine (

−→
V ,−→v , Init ,Trans,Out , In) such that v = v0 ∪ v1; Init = Init0 ∧

Init1. Trans contains two kinds of transitions.

– Local transitions: Transi ∧ (−→v 1−i = −→v ′1−i)
– Synchronous channel communication: Ini ∧ Out1−i

3 Note that −→V is fixed before encoding the system components.



In contains following transitions:

– Ini ∧ (−→v 1−i = −→v ′1−i)

Out contains following transitions:

– Outi ∧ (−→v 1−i = −→v ′1−i)

Channel Out Let B = (
−→
V ,−→v , Init ,Trans,Out , In) is the BDD machine of a?exps →

P0. We have v = v0∪{temp}; Init = ¬ temp. Trans contains the following transition

– temp ∧ Trans0 ∧ temp′

In contains the following transition

– temp ∧ In0 ∧ temp′

Out contains the following transition

– ¬ temp ∧ (counta < L) ∧ [
∧

i=1..exps.count(a[topa ][i ]
′ = exps[i ])] ∧ (sizea [topa ]

′ =
exps.count) ∧ (count ′a = counta + 1) ∧ topa = (topa + 1)%L ∧ temp′ ∧ Init0
where counta is the number of the elements in the channel buffer, topa is the po-
sition to put new element int the buffer, L is the buffer length of the channel a, and
sizea is an array to manage the number of the messages in the buffer. The guard
of the channel out transition includes temp is false, and the channel buffer is not
full. After the channel in transition, elements from the expression exps is pushed to
the buffer. The size of the expression is also updated to sizea [topa ]. Moreover the
channel buffer updates its size counta and tail position topa . temp is set false to
constrain the channel out transition to happen once and then pass the control to the
process P0.

– temp ∧ Out0 ∧ temp′

Channel In Let B = (
−→
V ,−→v , Init ,Trans,Out , In) is the BDD machine of [b]a!exps →

P1. We have v = v0∪{temp}; Init = ¬ temp. Trans contains the following transition

– temp ∧ Trans0 ∧ temp′

In contains the following transition

– ¬ temp ∧ b ∧ (counta > 0) ∧ (sizea [(topa − counta)%L] = exps.count) ∧
[
∧

i=1..exps.count(exps[i ]
′ = a[(topa − counta)%L][i ])] ∧ (count ′a = counta −

1) ∧ temp′ ∧ Init0. The guard of the channel in transition includes temp is false,
the guard condition b is satisfied, the channel buffer is not empty and the size of
the message in the top of the buffer is equal to the size of the channel in expres-
sion. After the transition, variable in the channel in expression is updated with the
element in the channel buffer and the buffer also updates its size.

– temp ∧ In0 ∧ temp′

Out contains the following transition

– temp ∧ Out0 ∧ temp′



Unconditional Choice An unconditional choice between B0 and B1 is a BDD program
(
−→
V g ,−→v , Init ,Trans,Out , In) such that v = v0 ∪ v1 ∪ {choice} where choice is a

fresh Boolean variable, choice = i means Bi is selected; Init = Init0 ∧ Init1, the
variable choice is not initialized and thus B0 and B1 can be randomly selected. Trans
contains following transition

– choice = i ∧ Transi ∧ choice ′ = i where i ∈ {0, 1}

In contains following transition

– choice = i ∧ Ini ∧ choice ′ = i where i ∈ {0, 1}

Out contains following transition

– choice = i ∧ Outi ∧ choice ′ = i where i ∈ {0, 1}

Sequential The BDD machine of P0; P1 is (−→V g ,−→v , Init ,Trans,Out , In) such that
v = v0 ∪ v1 ∪ {terminated} where terminated is a fresh Boolean variable to man-
age whether B0 terminates; Init = Init0 ∧ ¬ terminated . Trans contains following
transition

– ¬ terminated ∧ Trans0 ∧ event ′ 6= X ∧ ¬ terminated ′

– ¬ termniated ∧ Trans0.t ∧ terminated ′ ∧ Init1 where Trans0.t is created by
getting terminative transition of Trans0 then setting the event to tau.

– terminated ∧ Trans1 ∧ termniated ′

In contains following transition

– ¬ terminated ∧ In0 ∧ ¬ terminated ′

– terminated ∧ In1 ∧ termninated ′

Out contains following transition

– ¬ terminated ∧ Out0 ∧ ¬ terminated ′

– terminated ∧ Out1 ∧ termniated ′

Interrupt A BDD machine of P0interruptP1 is (
−→
V g ,−→v , Init ,Trans,Out , In) such

that v = v0 ∪ v1 ∪ {terminated} where terminated is a fresh Boolean variable to
manage whether B1 interrupts B0; Init = Init0 ∧ Init1. Trans contains following
transition

– ¬ terminated ∧ Trans0 ∧ ¬ terminated ′ ∧ (−→v 1 = −→v ′1)
– Trans1 ∧ termninated ′

In contains following transition

– ¬ terminated ∧ In0 ∧ ¬ terminated ′ ∧ (−→v 1 = −→v ′1)
– In1 ∧ termninated ′

Out contains following transition

– ¬ terminated ∧ Out0 ∧ ¬ terminated ′ ∧ (−→v 1 = −→v ′1)
– Out1 ∧ termninated ′



Event Prefix A BDD machine of e → P0 is (−→V g ,−→v , Init ,Trans,Out , In) such that
v = v0 ∪ {temp} where temp is a fresh Boolean variable to manage whether the event
e happens and then pass the control to the process P ; Init = ¬ temp. Trans contains
following transition

– ¬ temp ∧ event ′ = e ∧ temp′ ∧ Init0
– temp ∧ Trans0 ∧ temp′

In contains following transition

– temp ∧ In0 ∧ temp′

Out contains following transition

– temp ∧ Out0 ∧ temp′

References

1. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. Inf. Comput., 98(2):142–170, 1992.

2. R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slobodová,
C. Taylor, V. Frolov, E. Reeber, and A. Naik. Replacing Testing with Formal Verification
in Intel CoreTM i7 Processor Execution Engine Validation. In CAV, volume 5643 of LNCS,
pages 414–429. Springer, 2009.

3. T. K. Nguyen, J. Sun, Y. Liu, and J. S. Dong. A BDD Library for Model Check-
ing Hierarchical Systems. Technical report, National Univ. of Singapore, Januray 2011.
http://www.comp.nus.edu.sg/˜pat/libreport.pdf.


