
An Analytical and Experimental Comparison of CSP
Extensions and Tools
(Technical Report)

Ling Shi1, Yang Liu2, Jun Sun3, Jin Song Dong1, and Gustavo Carvalho4

1 SoC, National Univ. of Singapore, {shiling,dongjs}@comp.nus.edu.sg
2 Temasek Lab, National Univ. of Singapore, tslliuya@nus.edu.sg

3 ISTD, Singapore Univ. of Technology and Design, sunjun@sutd.edu.sg
4 Centro de Informática, UFPE, Brazil, ghpc@cin.ufpe.br

Abstract. Communicating Sequential Processes (CSP) has been widely applied
to modeling and analyzing concurrent systems. There have been considerable ef-
forts on enhancing CSP by taking data and other system aspects into account. For
instance, CSPM combines CSP with a functional programming language whereas
CSP# integrates high-level CSP-like process operators with low-level procedure
code. Little work has been done to systematically compare these CSP extensions,
which may have subtle and substantial differences. In this paper, we compare
CSPM and CSP# not only on their syntax, but also operational semantics as well
as their supporting tools such as FDR, ProB, and PAT. We conduct extensive ex-
periments to compare the performance of these tools in different settings. Our
comparison can be used to guide users to choose the appropriate CSP extension
and verification tool based on the system characteristics.

1 Introduction

Communicating Sequential Processes (CSP) [3], a prominent member of the process
algebra family, has been designed to formally model concurrent systems. It represents
system behavior in terms of processes constituted by a rich set of compositional opera-
tors. CSP also provides algebraic laws such that equivalence of process expressions can
be rigorously established. It has been applied to a variety of safety-critical systems [23].

With the increasing size and complexity of concurrent systems, it becomes clear
that CSP has its limitations in modeling systems with non-trivial data structures (e.g.,
array) or functional aspects. To solve this problem, many considerable efforts on en-
hancing CSP have been made. The most noticeable is CSPM [15], a machine-readable
dialect of CSP, combining CSP with a functional programming language. Recently,
CSP# (Communicating Sequential Programs) [20] has been proposed to integrate high-
level CSP-like process operators with low-level program constructs such as assign-
ments and while loops. Although these languages support CSP-like modeling notations
and can deal with similar types of concurrent systems, there are subtle and substan-
tial differences between them. For example, concurrency is captured differently; CSPM

only supports synchronous channel communications, while CSP# supports both syn-
chronous/asynchronous channels and shared variables. In addition, those differences

can lead to different verification capabilities empowered by their respective analysis
tools, i.e., FDR (Failures Divergence Refinement) [10] and ProB [6] for CSPM , and
PAT (Process Analysis Toolkit) [21] for CSP#. Little work has been conducted to pro-
vide a comprehensive investigation of these CSP extensions so as to help users choose
appropriate languages/tools for various systems from the perspectives of modeling and
verification needs.

In this work, we systematically compare CSPM and CSP# in terms of three aspects,
i.e., language syntax, operational semantics, and reasoning power of their supporting
tools. Firstly, we show the syntactic differences, followed by comparing the operational
semantics. We also discuss the transformation between CSPM and CSP# models. Sec-
ondly, we characterize various reasoning techniques and verifiable properties of FDR,
ProB and PAT, respectively. Next, we explore the strengths and limits of the languages
and tools by modeling and verifying nine systems, each of which is designed to show
particular features of the languages or the tools. Lastly, we investigate reasons behind
the experiment results; particularly, the semantic differences between CSPM and CSP#
lead to different state spaces and optimizations in model checking.

We believe that the comparison is useful for the following reasons. Firstly, our
comparison may guide users to select an appropriate modeling language. The deci-
sion depends on system features (e.g., shared variables, etc.) and properties to prove
(e.g., compositional refinement checking, etc.). Secondly, our analysis of languages that
are designed for concurrent systems in terms of simplicity and expressiveness (e.g.,
communications via channels or shared memory) can act as a reference in designing
new programming languages of concurrent systems. Thirdly, the translation discussed
in the paper can help users to change their models between CSPM and CSP#, and
hence to utilize different reasoning power of their respective reasoning tools. Lastly,
our experiments with FDR, ProB, and PAT provide qualitative analysis of tool capabil-
ity/efficiency.

2 CSPM vs. CSP#: Syntax

CSPM enriches CSP with an expression language that is based on functional founda-
tions. It mainly uses event synchronization to specify concurrent systems, and supports
operators like linked parallel. CSP# not only inherits event synchronization and com-
positional process constructs from CSP, but also supports additional features like asyn-
chronous channel communication, imperative programs, etc. In this section, we elabo-
rate the differences between these two languages in terms of their syntax. Table 1 shows
common CSP, CSPM and CSP# process definitions, where P (and Q) is a process with
an optional list of parameters; a is an event name; A and A′ are sets of event names
and channel expressions; b is a Boolean expression; c and c′ are channel names; e is an
expression; x and x ′ are variables; and V is a set of accepted values. We illustrate the
detailed differences from two perspectives.
Data Perspective CSPM supports functional paradigm, where process parameters can
take in processes, functions, and channels. This is not available in CSP# which adopts
imperative paradigm, although this limitation may be resolved partially through ‘clever’
modeling. For instance, a CSPM concrete process System = P(Sys1,Sys2) associated

CSP CSPM CSP# Description
STOP STOP Stop deadlock
SKIP SKIP Skip termination
CHAOS CHAOS(A) - chaotic process
a → P a → P a → P event prefixing
c!e → P

c?x?x ′ : V !e → P
c!e → P channel

c?x → P c?[b]x → P communication
P 2 Q P [] Q P [∗] Q external choice
P u Q P |∼| Q P <> Q internal choice
P ; Q P ; Q P ; Q sequential composition
P

∖
A P

∖
A P

∖
A hiding

x := e - x := e assignment
P C b B Q if b then P else Q if b then P else Q conditional choice

P ‖ Q
P [| A |]Q
P [A || A′]Q P ‖ Q parallel composition
P [c < − > c′]Q

P ||| Q P ||| Q P ||| Q interleaving
P 4Q P/\Q P interrupt Q interrupt

Table 1. Similar syntax among CSP, CSPM and CSP#

with an abstract process P(P1,P2) = a → P1 [] b → P2 can be translated to a
CSP# concrete process System = a → Sys1 [∗] b → Sys2, here Sys1 and Sys2 are
processes. However, it may not be possible to specify abstract process behavior (e.g.,
process P in this example) in CSP#, whose parameters are processes.

CSPM enables rich data expressions such as sequences, sets, Boolean, tuples, and
lambda calculus. It also allows users to define data types using the reserved word
“datatype”. CSP# directly supports integers, Boolean, array of integers or Boolean. In
addition, it supports user-defined data types and corresponding operations using imper-
ative languages like C#1, C, or Java. Functions can be declared in CSPM following the
functional paradigm, while in CSP#, they are encoded as processes or defined as static
C# methods (which can be invoked via method call in CSP# models).

A channel in CSPM is declared with an explicit type. Values communicated through
a channel must be in their type range; otherwise, an error is reported at run time by
FDR and ProB. Moreover, CSPM is dynamically typed in FDR, and there is no way to
declare the types of functions and variables (process parameters). While ProB can type
check the CSPM models in a dynamic or (optional) static way [7]. In contrast, CSP#
is weak typed (a.k.a. loose typing) and therefore no type information is required when
declaring a variable or channel. Channels are declared with its name and buffer size.
If the buffer size is 0, then it is declared as a synchronous channel, otherwise it is an
asynchronous channel. The process parameters and channel input variables can take in
values with different types at different time. As long as there is no type mismatch (e.g.,
using integer as a guard condition), the execution can proceed; otherwise, invalid type
casting exception is raised at run time.
Process Perspective One big difference is that CSP# directly supports shared variables.
Unlike CSPM which excludes assignments of shared variables [10], CSP# treats assign-

1 C# is the best supported language in PAT and used as the representative language in this paper.

ments as an important modeling feature. In CSP#, an event can be associated with an
imperative program, which is executed atomically together with the occurrence of the
event. For instance, an event associated with a program (referred to as a data operation)
is written as a{prog} → P where prog is the program and a is an event name. We re-
mark that a shared variable can be modeled as a process parallel to the one that uses the
variable (see [3] and [17]). Recently, shared variable analyzer (SVA) [17], a front-end
of FDR, is developed to convert programs (like C programs) with shared variables into
CSPM models, in which shared variables are modeled as variable processes; reading
from/writing to those shared variables are carried out over channels. We illustrate the
modeling of shared variables in Section 3.

Asynchronous channels, as a popular and practical type of communication mech-
anism for networked systems, are directly supported in CSP#. Given an asynchronous
channel ac with a positive buffer size, ac!e → P evaluates expression e with the current
variable valuation, puts the value into the tail of the respective buffer for ac and then
behaves as P . In contrast, ac?x → P (and ac?[b]x → P) gets the top element from
the respective buffer, assigns it to variable x and then behaves as P (the latter further
constrains the received data to satisfy the Boolean condition b). Buffers store messages
in a first-in-first-out (FIFO) order. Notice that asynchronous channels in CSP# are simi-
lar to those supported in Promela [4]. Although asynchronous channels are not directly
supported in CSPM , they can be modeled as buffer processes by event synchronization,
which will be shown in Section 3.

In CSPM , users are required to indicate synchronized events in three kinds of paral-
lel compositions, which are, sharing (P [| A |]Q), alphabetized parallel (P [A ‖ A′]Q),
and linked parallel (P [c ↔ c′]Q). On the other hand, CSP# supports only alphabetized
parallel composition and frees users from specifying explicit alphabets of processes in
parallel; a sophisticated procedure [20] calculates automatically a default alphabet of a
process which is the set of events that constitute the process expression. Nevertheless,
this procedure may not work when an event name consists of global variables or process
parameters which change through recursive calls; in such a case, users need to specify
the alphabet of a process. Notice that in order to avoid data race, data operations are not
a part of the alphabet and therefore are never synchronized.

In CSP#, an event can have the name tau to represent the invisible event τ in event
prefixing or data operations, e.g., tau → Stop or tau{prog} → Stop. With the support
of tau event, users can avoid using hiding operator to explicitly hide some visible events
by naming them tau . External and internal choices are supported in both languages.
Moreover, CSP# allows general choice P []Q in which the choice is resolved by any
event. This operator is more like the CCS + operator, which can be resolved by a τ
event performed by either process. Nonetheless, the general choice operator can be
simulated in CSPM [14].

Besides the common conditional choice, CSP# copes with two additional types of
conditional choices to facilitate modeling: atomic conditional choice ifa b {P} else {Q}
and blocking conditional choice ifb b {P}. With the former, the checking of condition
b is to be conducted atomically with the occurrence of the first event in P or Q . The
latter is blocked when b is unsatisfied.

CSPM CSP# Description
- a{prog} → P data operation prefixing

-
ac!e → P

asynchronous channel
ac?[b]x → P

- P [] Q general choice

if b then P else Q
if b {P} else {Q}

conditional choiceifa b {P} else {Q}
ifb b {P}

b&P [b]P Boolean guard
P [> Q - untimed time-out
P [[c < −c′]] - renaming
[]x : V@P [∗]x : V@P

replicated operators

|∼| x : V@P <> x : V@P
- []x : V@P
; x : S@P -
||| x : V@P ||| x : V@P
‖ x : V@[A′]P ‖ x : V@P
[| A |]x : S@P -
[c < − > c′]x : S@P -

Table 2. Additional syntax in CSPM and CSP#

Both CSPM and CSP# define Boolean guard b&P and [b]P respectively; process
waits until condition b becomes true and then behaves as P . Replicated process oper-
ators, such as replicated external/internal choices, replicated parallel and interleaving,
are also supported in both languages. Chaotic process (CHAOS(A)), event renaming
(P [[c ← c′]]), and untimed timeout (P [> Q) defined in CSPM are not directly handled
in CSP#. We discuss how to model these features using CSP# operators in Section 3.

Table 2 summarizes the different process operators of CSPM and CSP#, where S is
a sequence expression.

So far we have shown the syntactic differences between CSPM and CSP#. Both
CSPM and CSP# support dedicated syntax which is unavailable in the other. Some
special syntax operators in one can be indirectly achieved in the other. For instance,
the CHAOS process in CSPM can be defined in CSP# using choices and event prefixing
(discussed in the next section). Nonetheless, it is not always trivial to support some of
dedicated syntax operators, e.g., supporting shared variables in CSPM and modeling
multiple synchronization of channel communications in CSP# are nontrivial.

3 CSPM vs. CSP#: Operational Semantics

Operational semantics describes the sequences of computational steps that a model can
take. We illustrate the operational semantics of CSPM and CSP# in the form of labeled
transition systems (LTS). An LTS is 3-tupleL = (S , init ,→) where S is a set of system
configurations; init ∈ S is an initial system configuration and→: S ×Σ ∪{X, τ}× S
is a labeled transition relation. Note that Σ ∪ {X, τ} is the event space where Σ is the
set of visible events, X denotes a successful termination, and τ is an invisible event.

A system configuration S in CSPM is a pair of processes and environment where
the latter maps variable identifiers to values such as data, processes, or a distinguished

error configuration. In CSP#, S is composed of two components (V ,P) where V maps
variable names (or channel names) to values (or sequences of items in buffers), and P
is a process expression. The operational semantics of a process construct is depicted
by associated firing rule(s). CSPM and CSP# share the very similar firing rules for
some process constructs like interrupt [15,19,20]. In this report, we elaborate different
operational semantics of all process constructs.

SKIP Process SKIP means termination; namely, X takes place followed by doing
nothing, as captured by Stop in CSP#. However, CSPM defines a special process term
Ω to denote any process that has already terminated. For simplicity, we use prefix M
to refer to CSPM firing rules (e.g., M skip), and # for CSP# (e.g., # skip) in the
following.

[M skip]

SKIP
X→ Ω

[# skip]

(V ,Skip)
X→ (V ,Stop)

Notice that in both CSPM and CSP#, X may only be the last event of a trace. This
semantic difference shown above thus will not result in different verification results in
FDR, ProB and PAT2. Nonetheless, it should be noticed that this difference leads to a
different semantics for parallel composition as we show later.

CHAOS Process CHAOS in Hoare’s CSP might not do nothing and might not refuse to
do nothing, although this process in CSPM denotes the most non-deterministic process
which does not diverge.

[M c1]

CHAOS(A)
τ→ STOP

a ∈ A
[M c2]

CHAOS(A)
a→ CHAOS(A)

CHAOS(A) is not directly supported by CSP# because of two main reasons. First, users
have to specify all the events in set A to model CHAOS, whereas CSP# is designed
to free users from specifying events associated with processes (if possible). Second,
CHAOS is more useful in the failures/divergence checking, whereas CSP# models fo-
cus more on states/LTL checking. CHAOS(A) can be manually captured in CSP# by
constructing an equivalent process including all events. For example, let set A contains
events a and b, one way to model CHAOS(A) process in CSP# can be as follows.

CHAOS A = tau → Stop [] a → CHAOS A [] b → CHAOS A

Channel communication Channel communications are crucial in concurrent systems
and they are classified into two types: synchronous and asynchronous. CSPM directly
supports the former, whereas CSP# supports both. Both languages have their own oper-
ational semantics to interpret channel communications, which is elaborated below. The
transformation of channel communication between CSPM and CSP# is discussed later.

2 except deadlock freeness checking which PAT performs different from FDR and ProB, namely,
to check whether a process is deadlock free, FDR and ProB just perform deadlock checking
whereas PAT has to perform both deadlock and non-terminating checking.

A general format to express a channel communication is cf → P , where c is a
channel name, f a sequence of communication fields, and P a process with the scope
of prefix. A communication field can be an output (by !e where e is an expression), an
unconstrained input (by ?x where x is a variable), or a constrained input (by ?x : V in
CSPM where V is a value range, and by ?[b]x in CSP# where b is a Boolean condition).

In CSPM , channels are synchronous and communications are achieved by means of
event synchronization. Specifically, assume the type of data communicated over channel
c is T , c!e → P outputs a communication c.v where v is the value of e and v ∈ T ,
and c?x → P accepts an input of the form {c.v | v ∈ T}; c?x : V → P imposes
an additional constraint for c.v , namely, v ∈ V . As a channel can be associated with
a sequence of communication fields in CSPM , multi-part communications involving
multiple data transfers can occur within a single action. For instance, c?x : V !e → P
engages communications of the form {c.v ′.v | v ′.v ∈ T ∧ v ′ ∈ V } where v is a
value of e . The firing rule of the CSPM channel communication is presented below,
where function comms(cf) returns the set of communications described by cf and
function subs(a, cf ,P) returns a process whose identifier in process P bounded by cf
is substituted by event a .

a ∈ comms(cf)
[M com]

cf → P
a→ subs(a, cf ,P)

In CSP#, a channel is defined as a buffer which stores messages in a first-in-first-
out (FIFO) order. Channels are synchronous when their buffer sizes are zero, in which
case communications are realized by the hand shaking mechanism. Channels are asyn-
chronous when their buffer sizes are bigger than zero, and their communications are
achieved by the message passing mechanism. Sending and receiving multiple messages
at one time are supported in both synchronous and asynchronous communications. In
addition, the data type of the messages are untyped in CSP#. We show below the firing
rules of CSP# for channel communications.

– A synchronous communication occurs when both processes c!e → P and c?x →
P (or c?[b]x → P) can be executed simultaneously and the messages passed match
(and condition b is true); event c.v is transferred where v is the value of e with the
latest valuation eva(V , e). In the following firing rule which is associated with
parallel composition (the case for interleaving is similar), process Q [eva(V , e)/x]
replaces x with the new value v .

(V , c!e → P)
c!eva(V ,e)→ (V ,P), (V , c?[b]x → Q)

c?[b]x→ (V ,Q),

(V ∧ x = eva(V , e)) ⇒ b
[# par1]

(V , c!e → P ‖ c?[b]x → Q)
c.eva(V ,e)→ (V ,P ‖ Q[eva(V , e)/x])

– An output process ac!e → P , whereac is an asynchronous channel, is enabled if
the associated buffer is not full. The process first evaluates e and then pushes the
value into the tail of respective buffer for ac (denoted by function app(V , ac!e)),
followed by the execution of P .

ac is not full in V
[# out]

(V , ac!e → P)
ac!eva(V ,e)→ (app(V , ac!e),P)

– A constrained input process ac?[b]x → P is enabled if the associated buffer size
is not empty and b is valid with the latest valuation (denoted by function top(ac)).
The process pops (denoted by function pop(V , ac?x)) and assigns the top element
from the buffer to x , followed by the execution of P . Note that the checking of b is
unnecessary for an unconstrained input process.

ac is not empty in V ∧ (V ∧ x = top(ac)) ⇒ b
[# in]

(V , ac?[b]x → P)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x])

Example 1. We exemplify below how CSP# captures CSPM multi-part synchronous
channels and how CSP# asynchronous channels are represented in CSPM . The event-
like channel communication in CSPM can be modeled as alphabetized event-based syn-
chronization in CSP#. We capture the channel communication by expanding the channel
values according the type values. Specifically, an output process c!e → P is translated
to a process c.e → P in CSP#, and an input process is transformed into a CSP# model
which enumerates all possible communications using the general choices ([]) to com-
bine relevant event prefixing processes. Taking the following CSPM model of a vending
machine (VM) as an example,

1. datatype Drink = Sprite | Coke | Tea | Coffee
2. channel offer : Drink
3. VM = offer?x : diff (Drink , {Coffee})→ VM

where process VM can perform any communication in the form {offer .x | x ∈
diff (Drink , {Coffee}) ∧ x ∈ Drink}; function diff (Drink , {Coffee}) restricts that
a vending machine can offer any drink except coffee. This VM can be captured by the
following CSP# process where all possible communications are explicitly specified.

VM = offer .Sprite → VM [] offer .Coke → VM [] offer .Tea → VM

An asynchronous channel in CSP# can be modeled as a CSPM process which represents
the FIFO buffer by sending/receiving messages to/from other processes. We provide
such a CSPM process below, where a sequence is defined in process Buffer to store the
message in the FIFO order and rcv and snd are channels.

1. Buffer(c, 〈 〉,N) = rcv?c?x → Buffer(c, 〈x 〉,N)

2. Buffer(c, s a 〈a〉,N) = #s < N − 1&rcv?c?x → Buffer(c, 〈x 〉a s a 〈a〉,N)
3. [] snd !c!a → Buffer(c, s,N)

In the above Buffer process, line 1 describes the situation where the buffer is empty,
namely, only receiving messages from other process is allowed. Lines 2 and 3 depict
message receiving and sending when the buffer is not full. This Buffer process can
be used to run in parallel with other process, say P , to perform asynchronous channel
communication; for instance, a communication over an asynchronous channel ac with
buffer size 2 can be modeled as P [snd ↔ rcv , rcv ↔ snd]Buffer(ac, 〈 〉, 2). We
remark that asynchronous channel can be regarded as a special kind of shared variables,
which is discussed in the next section; the way that asynchronous channels are modeled
in CSPM is similar to handle shared variables in CSPM later.

Shared variables Shared variables are important in modeling shared resources. Vari-
ables in Hoare’s CSP processes are local and disjoint. We elaborate below how shared
variables are supported by CSP# directly and CSPM indirectly.

CSP# uses shared variables to model data states and operations in a procedural style.
The operations are modeled as terminating sequential programs in the form a{prog} →
P , where programs prog can contain local variables3, if-then-else statements, while
loops, the invocation of external libraries written in C#/Java (through the reflection
techniques). The execution of the programs is atomic together with the occurrence of
associated events. In the following firing rules, function upd(V , prog) returns a mod-
ified valuation function according to the particular semantics of the program; in prog ,
both shared and local variables can be used and updated.

[# dataOp]

(V , a{prog}4 → P)
a→ (upd(V , prog),P)

Shared variables can be modeled in CSPM indirectly as discussed in [17]. To be
specific, a shared variable is represented by a variable process which is executed con-
currently with other user processes which invoke the variable. Variable processes are
modeled as read/write operations, and hence user processes can read from/write to the
shared variables by CSPM synchronous communication. For example, the following
processes Var(v , val) and Var A(j , v , val) execute together as a variable process to
denote a shared variable v , where val is the value of v and j denotes a unique id of a user
process which invokes v . The constraint that only one process is allowed to read/write
v is specified in Var A which is triggered by event start at?j !v from Var .

1. Var(v , val) = read?i !v !val → Var(v , val)
2. [] write?i !v?x → Var(v , x) [] start at?j !v → Var A(j , v , val)
3. Var A(j , v , val) = read .j !v !val → Var A(j , v , val)
4. [] write.j !v?x → Var A(j , v , x) [] end at?j !v → Var(v , val)

Example 2. The following CSP# model and CSPM model represent the same system
which sums three process parameters, where the processes are selected non-deterministically
from three processes. In the CSP# model below, sum and count are shared variables
with initial value 0, and their updates are executed atomically with the occurrence of
event add in process P(i).

1. P(i) = [count < 3]add{sum = sum + i ; count = count + 1; } → P(i);
2. System() = ||| i : {1..3}@P(i);

In the CSPM model, the shared variables sum and count are modeled as variable pro-
cesses Var(sum, 0) and Var(count , 0). In addition, process P(i) is defined (lines
2 to 4) by a sequence of variable access events (e.g., events start at !i !count and
end at !i !count for count).

3 The scope of local variables is within prog , and they are not stored in valuation function V .
4 Event a can also be an invisible event, denoted as tau , then the transition event becomes τ .

1.datatype VarDt = count | sum T = {1..3} Range = {0..10}
2. P(i) = start at !i !count → read !i?count?x → x < 3 & add
3. → start at !i !sum → read !i?sum?y → write!i !sum!(y + i)
4. → write!i !count !(x + 1) → end at !i !sum → end at !i !count → P(i)
5. Processes() = ||| i : {1..3}@P(i)
6. Variables() = Var(count , 0) ||| Var(sum, 0)
7. SharedEvent = {read .t .v .val , write.t .v .val , start at .t .v , end at .t .v |
8. t ← T , v ← VarDt , val ← Range}
9. System() = Variables() [| SharedEvent |] Processes()

As shown above, CSP# allows users to specify shared variables and their operations in
a way similar to imperative programming languages, which allows users to see variable
states at each simulation step. In contrast, CSPM supports shared variables by the means
of auxiliary processes and events; the additional operations may result in more system
states during model checking, as shown later in our experiments.

Parallel composition The firing rules of parallel composition P ‖ Q in CSPM and
CSP# are similar except the way of handling the X event. Both languages require dis-
tributed termination: process P ‖ Q terminates if both P and Q terminate. This re-
quirement is satisfied in CSP# by the following firing rule.

(V ,P)
X→ (V ,P ′), (V ,Q)

X→ (V ,Q′)
[# par2]

(V ,P ‖ Q)
X→ (V ,Stop)

In addition, CSPM allows the termination of a paralleled process to be independent
of its associated process. Firing rules [M par1] below describes that the termination of
P involves an invisible event τ and P becomes Ω; operator ‖

X

is a general form of three

kinds of parallel operators in CSPM .

P
X→ P ′

[M par1]

P ‖
X

Q
τ→ Ω ‖

X

Q

[M par2]

Ω ‖
X

Ω
X→ Ω

The firing rule for Q is similar to [M par1]. When both processes become Ω, the
parallel process terminates under the firing rule [M par2]. Notice that the verification
results especially on non-terminating checking of parallel composition in CSPM and
CSP# are the same although the former needs two more steps. Parallel processes in-
volving synchronous channels in CSP# have been discussed early in Section 3 (by the
firing rule [# par1]). Parallel processes involving asynchronous channels execute inde-
pendently, described by 14 rules from [# par3] to [# par16]. Firing rules [# par3],
[# par4], [# par5], [# par6], [# par7] and [# par8] describe two asynchronous
channel communications (input or output) run in parallel. ac1 and ac2 are asynchronous
channel names, which may be the same or not.

ac1 is not full in V
[# par3]

(V , ac1!e → P ‖ ac2!e → Q)
ac1!eva(V ,e)→ (app(V , ac1!e),P ‖ ac2!e → Q)

ac2 is not full in V
[# par4]

(V , ac1!e → P ‖ ac2!e → Q)
ac2!eva(V ,e)→ (app(V , ac2!e), ac1!e → P ‖ Q)

ac1 is not empty in V ∧ (V ∧ x = top(ac1)) ⇒ b
[# par5]

(V , ac1?[b]x → P ‖ ac2?[b]x → Q)
ac1?top(ac1)→ (pop(V , ac1?x),

P [top(ac1)/x] ‖ ac2?[b]x → Q)

ac2 is not empty in V ∧ (V ∧ x = top(ac2)) ⇒ b
[# par6]

(V , ac1?[b]x → P ‖ ac2?[b]x → Q)
ac2?top(ac2)→ (pop(V , ac2?x), ac1?[b]x → P

‖ Q[top(ac2)/x])

ac1 is not full in V
[# par7]

(V , ac1!e → P ‖ ac2?[b]x → Q)
ac1!eva(V ,e)→ (app(V , ac1!e),P ‖ ac2?[b]x → Q)

ac2 is not empty in V ∧ (V ∧ x = top(ac2)) ⇒ b
[# par8]

(V , ac1!e → P ‖ ac2?[b]x → Q)
ac2?top(ac2)→ (pop(V , ac2?x),

ac1!e → P ‖ Q[top(ac2)/x])

Firing rules [# par9], [# par10], [# par11] and [# par12] describe asynchronous
channel communication run in parallel with synchronous channel communication. Note
that c denotes synchronous channel name and ac denotes asynchronous channel name.

ac is not full in V
[# par9]

(V , ac!e → P ‖ c!e → Q)
ac!eva(V ,e)→ (app(V , ac!e),P ‖ c!e → Q)

ac is not empty in V ∧ (V ∧ x = top(ac)) ⇒ b
[# par10]

(V , ac?[b]x → P ‖ c!e → Q)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x] ‖ c!e → Q)

ac is not full in V
[# par11]

(V , ac!e → P ‖ c?[b]x → Q)
ac!eva(V ,e)→ (app(V , ac!e),P ‖ c?[b]x → Q)

ac is not empty in V ∧ (V ∧ x = top(ac)) ⇒ b
[# par12]

(V , ac?[b]x → P ‖ c?[b]x → Q)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x] ‖ c?[b]x → Q)

Firing rules [# par13], [# par14], [# par15] and [# par16] describe asynchronous
channel communication run in parallel with an event prefix process or a data operation
(denoted by process Q).

ac is not full in V
[# par13]

(V , (ac!e → P) ‖ Q)
ac!eva(V ,e)→ (app(V , ac!e),P ‖ Q)

ac is not full in V
[# par14]

(V , (ac?[b]x → P) ‖ Q)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x] ‖ Q)

(V ,Q)
a→ (V ,Q′), a 6∈ αP ∩ αQ

[# par15]

(V , (ac!e → P) ‖ Q)
a→ (V , (ac!e → P) ‖ Q′)

(V ,Q)
a→ (V ,Q′), a 6∈ αP ∩ αQ

[# par16]

(V , (ac?[b]x → P) ‖ Q)
a→ (V , (ac?[b]x → P) ‖ Q′)

Interleaving In CSPM , interleaving process P ||| Q executes processes P and Q
completely independently. The interleaving process in CSP# also executes P and Q
independently, except the circumstances which involve communication through shared
variables and synchronous channels. The firing rule on interleaving processes with syn-
chronous channel communication is as follows.

(V , c!e → P)
c!eva(V ,e)→ (V ,P), (V , c?[b]x → Q)

c?[b]x→ (V ,Q),

(V ∧ x = eva(V , e)) ⇒ b
[# int]

(V , c!e → P ||| c?[b]x → Q)
c.eva(V ,e)→ (V ,P ||| Q[eva(V , e)/x])

Boolean guard Boolean guard b&P or guarded process [b]P waits until condition b
becomes true and then behaves as P . CSPM shares the same semantics as CSP# in
Boolean guard process, shown below.

V � b, (V ,P)
e→ (V ′,P ′)

[# guard]

(V , [b]P)
e→ (V ′,P ′)

General choice CSPM and CSP# have the same interpretation of external choice which
is resolved by the occurrence of a visible event and internal choice which is resolved
nondeterministically. Additionally, CSP# supports general choice P []Q which is re-
solved by any event, either invisible or visible. We present the firing rules below asso-
ciated to the general choice in CSP# where a ∈ Σ ∪ {X, τ}.

(V ,P)
a→ (V ′,P ′)

[# gen1]

(V ,P [] Q)
a→ (V ′,P ′)

(V ,Q)
a→ (V ′,Q′)

[# gen2]

(V ,P []Q)
a→ (V ′,Q′)

Conditional choice CSP# supports three types of conditional choice: 1) classic condi-
tional choice ifb {P} else {Q} executes P if b is evaluated to be true, and else performs
Q (see rules [# con1] and [# con2]), 2) atomic conditional choice ifa b {P} else {Q}
behaves similarly to classic choice except that the condition checking is conducted
atomically with the occurrence of the first event in P or Q (see rule [# con3] and
[# con4]), and 3) blocking conditional choice ifb b {P} is similar to boolean guards
[b]P in CSP# (which is equivalent to b&P in CSPM) except that the checking of block-
ing condition and the execution of P are separated in ifb (see rule [# con5]). We remark

that CSPM supports only one type of conditional choice, which is equivalent to atomic
conditional choice in CSP#.

V � b
[# con1]

(V , if b {P} else {Q}) τ→ (V ,P)

V 6� b
[# con2]

(V , if b {P} else {Q}) τ→ (V ,Q)

V � b, (V ,P)
a→ (V ′,P ′), a ∈ Σ ∪ {X, τ}

[# cond3]

(V , ifa b {P} else {Q}) a→ (V ′,P ′)

V 6� b, (V ,Q)
a→ (V ′,Q′), a ∈ Σ ∪ {X, τ}

[# cond4]

(V , ifa b {P} else {Q}) a→ (V ′,Q′)

V � b
[# cond5]

(V , ifb b {P}) τ→ (V ,P)

Renaming CSPM supports renaming which renames a visible event when an associated
process is running, shown in the rule [M r3]. In theory, event renaming P [[R]] can
be represented in CSP# by a process Q which is almost the same as P except the
visible event from relation R being replaced. However, modeling the renaming process
manually in CSP# may not be easy when the renaming relation is complicated, and it
may lead to larger (LOC) specifications.

P
τ→ P ′

[M r1]

P [[R]]
τ→ P ′[[R]]

P
X→ P ′

[M r2]

P [[R]]
X→ Ω

P
a→ P ′, a R b, a, b ∈ Σ

[M r3]

P [[R]]
b→ P ′[[R]]

Untimed timout Process untimed timeout P [> Q executes P for an unspecified amount
of time followed by performing Q , same as (P |∼| STOP)[]Q , its firing rules are
shown below.

P
τ→ P ′

[unt1]

P [> Q
τ→ P ′[> Q

P
a→ P ′, a ∈ Σ

[unt2]

P [> Q
a→ P ′

[unt3]

P [> Q
τ→ Q

Discussion We have identified differences between CSPM and CSP# in terms of their
operational semantics, and also discussed some possible translations between these two
languages, especially their channel communications. Through the analysis, we can draw
some general guidelines of their modeling features: CSPM ’s adoption of functional
paradigm and support of more primitives such as CHAOS and renaming provide a re-
fined approach to specify concurrent systems involving multi-way event synchroniza-
tion; namely, starting with an abstract model first, then refining it to more concrete one.

CSP# supports more primitives for modeling different forms of communication (e.g.,
message passing), and it is feasible to specify concrete system behaviors which require
hand shaking, message passing and shared resources. In term of expressiveness, it can
be shown that CSPM and CSP# are equivalent as both CSPM and CSP# process can be
transformed into a normal form, which involves only event-prefixing, internal choice
and recursion only [15].

4 Verification Tool Support

CSPM is supported by FDR which is designed primarily for refinement checking in
terms of trace, failures, divergences, refusals and revivals. ProB was initially designed
as an animator and model checker for B method [1], and recently it supports CSPM with
improvements on static type checking and associative tuples [7]; ProB integrates type
checking, animation and model checking together. CSP# is supported by PAT which
is an extensible framework for system modeling, simulation and verification. PAT im-
plements a number of model checking techniques catering for different properties such
as LTL properties and refinement checking. In the following, Section 4.1 illustrates the
verification capabilities of FDR, ProB (for CSPM) and PAT (only its CSP module),
including properties supported and their model checking techniques; Section 4.2 inves-
tigates the efficiency of the three tools.

4.1 Verification

FDR, ProB and PAT support the analysis of many common properties such as deadlock,
livelock, determinism, and refinement checking which includes trace, failure and fail-
ures/divergences refinement. In addition, FDR supports two additional refinement mod-
els: the refusal testing model and the revivals model. PAT supports additional properties
like reachability analysis, i.e., if a system can reach a bad state (e.g., array overflow).

Model checking LTL properties is common in practice. Although it is not directly
supported in FDR, the relationship between refinement checking and LTL model check-
ing has been studied (e.g., [16,11]). Particularly, Leuschel et al. [8] applied emptiness
test in a refinement between an unexpected specification and a process; the process is
a synchronization of the implementation and a CSP process for an LTL formula. This
approach has to deal with the high complexity of synchronization in FDR, and the pro-
cess to construct CSP processes from LTL formulas is arduous. Lowe [9] used a refusal
testing model to conduct the refusal refinement between a CSP process which denotes
an LTL formula and its implementation; those supported LTL formulas exclude opera-
tors eventually (�), until (U), and negation. In contrast, ProB and PAT support various
LTL formulas and analysis directly. Moreover, these formulas can constrain both states
and events, and be analyzed under five types of fairness assumptions [21] in PAT.

FDR, ProB, and PAT all provide basic model checking techniques such as breadth
first search and (bounded) depth first search. In addition, PAT implements the anti-
chain approach in which the complete subset construction and computing the complete
state space of the product are avoided for checking refinement. Further, PAT applies
Loop/SCC searching algorithm for LTL verification under fairness assumptions. To

cope with the problem of state space explosion during verification, FDR and PAT de-
velop their own reduction techniques. To be specific, FDR proposes a hierarchical com-
pression approach consisting of six methods to process an LTS representing a CSPM

model [10,15,17]: enumerations, strongly node-labeled bisimulation, τ -loop elimina-
tion, diamond elimination, normalization, and factoring by semantic equivalence. On
the other hand, PAT deploys three techniques. First, using the atomic sequence con-
struct (denoted by atomic{P}), where a sequence of statements in a process executes
as one super-step without any inference, to realize simple partial order reduction (POR).
Second, applying POR dedicated to refinement checking to not only τ transitions but
also visible events (in some case which is not supported in FDR [21]). Last but not
least, providing process counter abstraction for parameterized systems under fairness
against LTL formulas [22]. We remark that the implementation of FDR’s hierarchical
compression methods for CSP# in PAT is nontrivial due to shared variables supported
in CSP#. For instance, a τ event in CSP# may update shared variables and therefore the
event cannot not be pruned for compression.

4.2 Experiment

In this section, we evaluate the efficiency of FDR, ProB and PAT by verifying nine
benchmark systems. The experiments with FDR and ProB are performed on an Intelr

CPU E6550 (2.33 GHz) PC with 4GB memory running on 32-bit Linux. PAT is exper-
imented with the same PC but on a 32-bit Windows.

We conduct five sets of experiments5. The first set investigates the performance of
refinement checking, by verifying the same model and assertion with different reduc-
tion techniques. The results are shown in Table 3, where N is the number of processes.
Column State shows the number of visited states, and column Time(s) records run-
ning time of the verification in seconds. Value “-” in a cell denotes that the experi-
ment is aborted due to either memory overflow or execution time exceeding two hours.
For readers/writers (R/W) models, although FDR applies some dedicated compression
techniques, PAT has better performance. For dining philosopher (DP) models, FDR
performs extremely well because of the strategy discussed in [18]. However, other ex-
periments show that this strategy may not be as efficient for other models. For MCS,
PAT is comparable to FDR in terms of the number of states per second. FDR processes
the LTS by applying its compression methods, whereas PAT applies a simple reduction
method, i.e., using the keyword atomic to give higher priority to local events which are
not synchronized, not updating any variable and not mentioned in the property.

The second set compares the performance of three model checkers on solving puz-
zles, inspired by work in [12]. The CSPM and CSP# models for these puzzles make the
best use of their modeling power: CSP# specifies the puzzles using shared variables,
which are solved by PAT through reachability analysis, whereas CSPM models the puz-
zles using multi-way synchronization, which are solved by FDR and ProB through trace
refinement. In addition, FDR simulates a bounded DFS algorithm by searching the di-
vergence of a new system, in order to find a smaller counterexample. The new system

5 All models are available at www.comp.nus.edu.sg/˜pat/compare.

www.comp.nus.edu.sg/~pat/compare

Model N Property FDR ProB PAT
State Time(s) State Time(s) State Time(s)

R/W 6 P [T= S 8 0.024 61365 125.94 9 0.04
R/W 200 P [T= S 202 1.434 - - 203 0.11
R/W 500 P [T= S 502 19.651 - - 503 0.057
R/W 1000 P [T= S 1002 156.162 - - 1003 0.108
DP 6 P [F= S 1 0.06 14510 82.42 1762 0.174
DP 8 P [F= S 1 0.071 - - 22362 2.995
DP 12 P [F= S 1 0.104 - - - -

MCS 20 P [FD= S 40 0.043 - - 60 0.114
MCS 50 P [FD= S 100 0.086 - - 150 0.143
MCS 100 P [FD= S 200 0.246 - - 300 0.53

Table 3. Experiment results on refinement checking

Model N FDR FDR-Div ProB PAT
State Time(s) State Time(s) State Time(s) State Time(s)

Solitaire 26 4048216 46.303 1 0.169 - - 11950 5.356
Solitaire 29 28249254 387.737 1 0.217 - - 104395 54.681
Solitaire 32 - - 1 5.318 - - 10955 5.301
Solitaire 35 - - 1 377.297 - - 443230 279.454
Knight 5 508450 3.522 1 0.037 - - 4256 0.29
Knight 6 - - 1 15.399 - - 129269 9.143
Knight 7 - - 1 94.713 - - 77238 6.754
Hanoi 6 729 0.052 N.A. N.A. 1667 57.84 5775 0.416
Hanoi 7 2187 0.086 N.A. N.A. 4969 196.5 92680 6.837
Hanoi 8 6561 0.181 N.A. N.A. 14853 660.59 150918 11.524

Table 4. Experiment results on solving puzzles

P ′, like a watchdog, can only perform up to N events of the target implementation pro-
cess P , and then performs an infinite number of events [12]. This approach can be used
provided that the target process P is loop-free. Table 4 shows the performance results,
where column FDR-Div records the results of states and time using this algorithm;
value N .A. means there is no model with divergence checking to solve the puzzle.
From Table 4, we can observe that the divergence checking approach can be used in the
solitaire and chess knight tour models. However, this approach cannot always signifi-
cantly improve the performance, because it depends on the searching order. Moreover,
it is costly to check if a system is loop-free or not, which is the premise for applying this
approach. PAT solves the two puzzles in a reasonable time, and it is faster in the knight
example than FDR and FDR-Div. For the hanoi puzzle, FDR has a better performance
because the compression techniques it uses can effectively reduce the state space.

The third set explores the performance of FDR and PAT on verifying two models
which involve shared variables. The first example is a concurrent stack which allows
multiple readers to access the shared variable at the same time, but only one writer to
update the value; readers cannot access the shared variable in the latter case. The mod-
eling of shared variables in CSPM follows the approach discussed in Section 3. Results
of this example in Table 5 show that PAT performs better than FDR for checking trace
refinement (P[T=S), and this is because PAT uses DFS with anti-chain algorithm in the
trace refinement. This algorithm is effective when the specification is non-deterministic.

Model N Property FDR PAT
State Time(s) State Time(s)

Concurrent Stack*2 3 P [T= S 453456 3.833 10860 1.023
Concurrent Stack*2 4 P [T= S - - 189920 75.915
Concurrent Stack*2 5 P [T= S - - 693828 293.382

Peterson 3 mutual exclusion 1011 1.192 3257 0.105
Peterson 4 mutual exclusion 105493 20.067 104686 3.776
Peterson 5 mutual exclusion 14810779 387.645 5722863 294.005

Table 5. Experiment results on shared variables

Model N Property Result FDR ProB PAT
State Time(s) State Time(s) State Time(s)

RW 6 2!error true 8 0.023 122722 104.8 15 0.059
RW 200 2!error true 202 1.455 - - 403 0.086
RW 500 2!error true 502 19.901 - - 1003 0.071
RW 1000 2!error true 1002 154.33 - - 2003 0.148
DP 6 23eat .0 false N.A. N.A. 2420 1.11 166 0.019
DP 8 23eat .0 false N.A. N.A. 13312 1.75 256 0.024
DP 12 23eat .0 false N.A. N.A. - - 460 0.049

Table 6. Experiment results on LTL checking

Here, N is the number of processes and ConcurrentStack ∗ 2 in the Model column
means that the stack size is 2. The second example is the Peterson algorithm. We obtain
the CSPM model from the shared variable analyzer (SVA) [17]. To be fair, the CSP#
model is specified at the same level of granularity as the CSPM model. The results show
that PAT performs better. This is because local events associated as atomic statements
in CSP# reduce the states significantly, whereas CSPM model defines additional events
to represent reading/writing operations of shared variables. Although these additional
events can be hidden as internal events to apply existing compression techniques in
FDR, the effect is minor because the type range of reading/writing channels and opera-
tions over different variables can easily lead to state space explosion.

The forth set explores the performance on verifying LTL properties. We adopt the
approach proposed by Lowe [9] to construct a CSPM process for the LTL formula and
use FDR to perform the refusal refinement checking. As this approach cannot deal with
operator eventually (3), we ignore the checking of property 23eat .0 in FDR. Table 6
indicates that PAT performs better than FDR and ProB. Notice that property 23eat .0
can be verified to be true using PAT under the strong or global fairness assumption.

Last but not least, we conduct a case study on translating CSPM model to CSP#
through a real world problem, namely, the battery monitor component of the elevator
control system described in [5]: the CSPM specification is translated from the battery
monitor Simulink diagram, and the CSP# model is translated from the CSPM model.
Then we analyze the Simulink diagram, using the Simulink simulator, to determine
which output the battery monitor should produce for every given input. Thus, to assess
if both models describe the same behaviour, we compose each one with parallel ob-
servers. We noticed that both CSPM and CSP# models provide the same output value
for all relevant scenarios. Besides this analysis, we also checked basic properties like
deadlock freeness and divergence freeness. Here, only one difference was found: the

Property Result FDR PAT
State Time(s) State Time(s)

Deadlock-free True 2700 0.286 2700 0.748
Livelock-free True 2700 0.296 2700 3.723

Table 7. Experiment results on battery monitor

CSP# specification is not deterministic. This is due to the fact CSP# does not support
passing processes as arguments for other processes. In the CSPM specification, each
Simulink block is modeled as a CSP processes in parallel with a sampler process, and
all blocks receives the same sampler definition as an argument. In the CSP# model, a
different sampler process was created for each CSP process and its internal events were
hidden to avoid undesired synchronization. This hiding brings some non-determinism
in the form of multiple τ -transitions. However, this does not affect the functional be-
haviour of the CSP# model as it is capable of outputting the same values of the CSPM

model. Although the result shows the equivalence between the two specifications, and
both models were reviewed by CSPM and CSP# specialists, a formal proof of equiva-
lence will be provided in our future work.

We have just compared the performances of PAT and FDR to check deadlock and di-
vergence freeness because PAT will surely be faster in the determinism assertion as the
CSP# model is non-deterministic (a counter-example will be found, whereas it would
not be found in the CSPM model).The comparison was performed as a controlled ex-
periment and we ran each assertion 30 times. By applying common statistics testing
methods (particularly, Shapiro Wilk and Mann-Whitney U) to experiment data, we can
state that the difference between PAT and FDR performance is large. From Table 7, we
can observe that the visited states in FDR and PAT are the same, and performance of
these two tools is similar using the same verification algorithm. Note that the time for
deadlock-freeness property in PAT consists of time for deadlock and nonterminating
checking. We have not included ProB in this comparison as it is unable to recognize the
CSPM syntax for this example.

Discussion We have explored the supporting tools of CSPM and CSP#, namely, FDR,
ProB and PAT, by comparing their model checking techniques and analyzing their ver-
ification capabilities through nine benchmark systems. Our exploration leads to the fol-
lowing four general and practical rules for choosing these tools. First, FDR can be the
best candidate when powerful built-in compression techniques are applicable in refine-
ment checking. Second, PAT is a better choice to verify properties of models which
involve shared variables. Third, to verify LTL properties, we can use ProB for CSPM

models or FDR for some model where LTL formula can be verified by refusal checking,
and PAT for CSP# model. Lastly, PAT may be a better option to handle models where
atomic reductions are applicable (e.g., readers/writers and Peterson algorithm).

5 Conclusion

In this work, we presented a comprehensive comparison of CSPM and CSP#, and their
supporting tools FDR, ProB and PAT. We explored their modeling features from the
view of their syntax and operational semantics. We also investigated the reasoning

power of CSPM and CSP# in terms of the capability and efficiency of their supporting
tools. Our work can guide users to select and assess appropriate modeling languages
and reasoning tools for specifying and verifying concurrent systems. 1) CSPM may
be more suitable to model systems with abstract behavior, and systems which involve
multi-part event synchronization. On the other hand, CSP# could be a better candidate
to handle systems which implement hand shaking or message passing communication
mechanisms, and systems which need shared variables. 2) To perform the refinement
checking, the decision relies on the reduction techniques which are more applicable
(compression methods in FDR, atomic reduction in PAT) to the models. To verify LTL
properties, we can use ProB for CSPM models or FDR for some model (discussed in
Section 4), and PAT for CSP# models. Lastly, PAT may be a better option to verify
systems with shared variables.

As for related work, Carvalho et al. have made an initial step to explore the differ-
ences between CSPM and CSP# [2]. They compare the two languages from the data
and behavioral aspects. Our work here substantially extends their step by considering
an in-depth and a wider range of comparisons; for instance, we investigate their in-
trinsic differences from the operational semantics aspect. Roscoe has briefly described
tools which can animate, analyze, and verify CSP models6; these tools include FDR,
ProB, PAT, ARC [13] and so on. He introduces these tools with strengths and limits
from a high level. Our work can be considered as a concrete guideline for these tools,
in particular, FDR, ProB for CSPM , and PAT for CSP#, with intensive experiments.

The comparison of FDR, ProB and PAT so far has been focusing on the classical
model checking techniques. In the future, we plan to extend the comparison to other
techniques such as SAT-based FDR and BDD-based PAT. Proofs of the semantic equiv-
alence of the translations and implementations of the translators are also our goals.

Acknowledgment The authors would like to thank Bill Roscoe for the review and
suggestions on benchmarks for FDR, Michael Leuschel for the help on using ProB, and
Augusto Sampaio, Alexandre Mota and Tarciana Dias for the valuable comments.

References

1. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University Press,
New York, NY, USA, 1996.

2. G. H. P. Carvalho, T. Dias, A. Mota, and A. Samppaio. Analytical comparison of refinement
checkers. In SBMF, pages 61–66, 2011.

3. C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
4. G. Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley

Professional, 2003.
5. J. Jesus, A. Mota, A. Sampaio, and L. Grijo. Architectural verification of control systems

using csp. In ICFEM, pages 323–339, 2011.
6. M. Leuschel and M. Butler. ProB: A model checker for B. In FME, pages 855–874, 2003.
7. M. Leuschel and M. Fontaine. Probing the Depths of CSP-M: A new FDR-compliant Vali-

dation Tool. ICFEM, pages 278–297, 2008.

6 The description is at http://www.cs.ox.ac.uk/ucs/CSPtools.html.

http://www.cs.ox.ac.uk/ucs/CSPtools.html

8. M. Leuschel, T. Massart, and A. Currie. How to Make FDR Spin LTL Model Checking of
CSP by Refinement. In FME, pages 99–118, London, UK, UK, 2001. Springer-Verlag.

9. G. Lowe. Specification of communicating processes: temporal logic versus refusals-based
refinement. Form. Asp. Comput., 20(3):277–294, May 2008.

10. Formal Systems (Europe) Ltd. Failures-Divergence Refinement - FDR2 User Manual (ver-
sion 2.91).

11. T. Murray. On the limits of refinement-testing for model-checking csp. Form. Asp. Comput.,
pages 1–38, 2011.

12. H. Palikareva, J. Ouaknine, and A. W. Roscoe. Faster fdr counterexample generation using
sat-solving. Electronic Communications of the EASST, 23, September 2009.

13. A. N. Parashkevov and J. Yantchev. Arc - a tool for efficient refinement and equivalence
checking for csp. In ICA3PP, pages 68–75, 1996.

14. A. Roscoe. CSP is Expressive Enough for Pi. 2010.
15. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, 1997.
16. A. W. Roscoe. On the expressive power of CSP refinement. Form. Asp. Comput., 17:93–112,

August 2005.
17. A. W. Roscoe. Understanding Concurrent Systems. Springer-Verlag New York, Inc., 2010.
18. A. W. Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hulance, D. M. Jackson, and J. B.

Scattergood. Hierarchical compression for model-checking csp or how to check 1020 dining
philosophers for deadlock. In TACAS, pages 133–152, 1995.

19. B. Scattergood. The Semantics and Implementation of Machine-Readable CSP. PhD thesis,
University of Oxford, 1998.

20. J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating specification and programs for system
modeling and verification. In TASE, pages 127–135, 2009.

21. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness.
In CAV, pages 702–708, 2009.

22. J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong. Fair model checking with process
counter abstraction. In FM, pages 123–139, 2009.

23. J. Woodcock, P. G. Larsen, J. Bicarregui, and J. S. Fitzgerald. Formal methods: Practice and
experience. ACM Comput. Surv., 41(4), 2009.

	An Analytical and Experimental Comparison of CSP Extensions and Tools (Technical Report)

