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Abstract. We present an automatic approach to detecting symmetry
relations for general concurrent models. Despite the success of symme-
try reduction in mitigating state explosion problem, one essential step
towards its soundness and effectiveness, i.e., how to discover sufficient
symmetries with least human effort, is often either overlooked or over-
simplified. In this work, we show how a concurrent model can be viewed
as a constraint satisfaction problem (CSP), and present an algorithm
capable of detecting arbitrary symmetries arising from the CSP which
induce automorphisms of the model. Unlike previous approaches, our
method can automatically detect both various process and data symme-
tries as demonstrated via a number of systems. Further, we propose an
inductive approach to inferring symmetries in a parameterized system
from the symmetries detected over a small set of its instances.

1 Introduction

In practice, a certain (sometimes rich) degree of symmetries is ubiquitous in con-
current and distributed systems [29,42]. The authors in [29] investigate the au-
tomorphism groups of a number of representative real-world complex networks,
including a broad selection of biological, technological and social networks. All
these systems have been found to have a nontrivial symmetric structure. In the-
ory, given a model, a symmetry is an automorphism of its underlying state space
(which can be viewed as a graph). A naive (and complete) symmetry detection
method thus needs to explore the complete space. In general, if a symmetry
detection method is performed on a state space, then the complete state space
is required to be constructed in prior. It is not only computationally expensive
or impossible, but also against the original goal of symmetry reduction to re-
duce the explored state space. A practical and popular approach is to use static
analysis to derive symmetries at model level [24, 40].

Existing symmetry detection approaches have two main limitations. First,
the soundness and efficiency highly depend on human effort. It is generally too
difficult for machines to look through the behavior of concurrent models to pin
down symmetries correctly. Most approaches require users to provide correct
symmetries, which is tedious and error-prone. Some languages provide dedicated
instructions for specifying symmetries [24, 36, 37]. For instance, Mury provides a



special data type with a list of syntactic restrictions. All values of a variable that
belongs to this type are equivalent. Although there are automatic approaches
which do not need expert insights, they are designed for specific languages [26,
25], or require models to be written in specific patterns [14, 15]. Thus they trade
off generality for efficiency, and consequently a user has to transform his prob-
lem into a form amenable to the approach. Second, existing approaches can only
handle a specific class of symmetries and largely ignore other classes of symme-
tries which could reduce state space significantly. As a result, symmetries in the
underlying state space are only partially discovered.

In this work, we develop a novel approach for symmetry detection which
addresses these two limitations. Not restricted to a particular modeling language,
our approach works for general concurrent models (i.e., concurrent composition
of finite-state machines which could communicate through channels, synchronous
events or shared memories) in a fully automatic way. Further, it is able to detect
much more kinds of process symmetries and data symmetries together. The
approach workflow is shown below.

Concurrent Sequential Constraint Colored | Sauc Group Model
Model Model Satisfaction Problem Graph Generators Checker

First, a concurrent model is translated into an equivalent nondeterministic
sequential model using existing approaches [3,27]. The motivation behind is
two-fold. First, it is nontrivial to analyze concurrent models whose behaviors
are not obvious, such as subtle flexible communication patterns and numerous
possible interleavings between processes. Second, we can take advantage of well-
developed static analysis techniques for sequential models. Note that the idea of
linking concurrent models to nondeterministic sequential models goes back to the
work of Ashcroft and Manna [3] for proving the correctness of parallel programs.
The translation has been also described in details in the book of Krzysztof and
Olderog [27]. A sequential model can be built by simulating the behavior of the
concurrent model and keeping track of local states of each process and global
states all the time. The worst complexity of the translation is linear to the total
number of atomic statements of all processes.

Second, we consider the problem of discovering symmetries from a new angle.
Our key insight is recognizing the similarity between the role of symmetries in
constraint programming and that in model checking. Our analysis transforms a
sequential model into a constraint satisfaction problem, and extracts a graphi-
cal representation of the CSP called colored graph. Each automorphism of the
colored graph is proved to correspond to one in the concurrent model, which is
effectively discovered by applying Saucy [10]. The detected symmetries can be
used later to speed up the performance of model checker.

The above steps can be performed fully automatically. The effectiveness and
efficiency of our approach have been demonstrated via a variety of systems.
Lastly, we extend the above approach to a parameterized system so that we can
obtain symmetries for all its instances. For a parameterized system, we first use
the above approach to detect symmetries over a sequence of its small instances,
then generalize the detected symmetries to parameterized permutations, and




validate whether each parameterized permutation is a real symmetry for all the
instances.

2 DMotivating Examples

In this section we introduce three example specifications. Each example high-
lights one particular scenario of symmetries, which is fairly hard or often impossi-
ble for current detection approaches to deal with. These examples also motivates
us to develop an automatic symmetry detection approach, which handles arbi-
trary types of symmetries no matter where they come from, i.e., homogenous
processes, data values of the system, or together.

Ezxample 1. 1. Reader-Writer Problem The first example focuses on partially
symmetric systems. We borrow a variant of Reader-Writers problem from [39)].
The problem consists of two reader processes (with ids 0 and 1) and one writer
process with id 2. Each process may stay in one of three local states { N (the non-
critical section), T(the trying region), C(the critical section)} and its local
transitions are the following. Assume s; is the local state of process i,

— s, =T — s; = C, where either sg #C A sy # CANsy#Cori<2Asy#C
—Si:C%Si:N.

Every process may attempt to reach the critical section. If no process is currently
in the critical section, any process can enter it. A reader process can also enter
the critical section as long as the writer process is not in it. Thus these processes
are quite similar but slightly different. The global behavior of the system is not
totally but approximately symmetric. The automorphism group of this system
arises from process symmetries of the two reader processes.

Existing approaches [24, 36,37, 26,25, 14, 15] are rather coarse grained and
none of them supports statement-level detection. They either target at interfaces
or communication structures [26,25, 14,15], or disallow such subtle statement-
level difference that relies on the concrete process ids [24, 36, 37]. So they fail to
detect the symmetries of this system.

Ezample 2. 2. Message Routing in a Hypercube Network The second
example focuses on distributed systems with complicated communication pat-
terns and arithmetic operations on process ids. We consider a system of message
routing in a hypercube interconnection network in [13]. Hypercube is a popu-
lar implementation model of parallel computation applications. A d-dimensional
hypercube is a special case of a d-dimensional n; X ny X --- X ng array when
n; = 2 for 1 < i < d. The hypercube has 2¢ processors, each of which is di-
rectly connected to d other neighboring processors. The identifier of a processor
node is a binary string (x1,x9, -, ;). Two nodes are neighbors if and only
if their identifiers differ in only one position. Figure 6 shows an example of a
3-dimensional hypercube network.



101 111

/ /

00] — ——XXXXX X 011

100 110

/

000 010

Fig.1: A 3-dimensional hypercube

Algorithm 1 Static message routing algorithm

1: For each node wu:

2: while true do

3: receive a message whose destination node is v
4 if uw = v then

5 process message

6 choose a new destination node ¢

7 vi=t

8 end if

9 send message to its neighbor z whose id has one more bit in common with v
10: end while

This example models a parallel system where messages are routed through the
hypercube architecture used in Algorithm 1. Upon receiving a message attached
with the id = of the recipient, a node checks its own id with z. If they are the
same, the node would process the message. Otherwise, the node would forward
the message to its neighbor whose id differs from z only in one bit position. For
example, a messages is sent from a node (0,0,0) destined for a node (1,1,1).
The track of this message may be (0,0,0) — (0,1,0) — (1,1,0) — (1,1,1). The
system is highly symmetric and has 2¢ x d! automorphisms.

Static channel diagram approach [13] is the only one which is able to au-
tomatically detect process symmetries from such a complex network topology.
However, it has a substantial restriction dealing with the arithmetic and rela-
tional operations. It requires user to rewrite each arithmetic or relational op-
eration by enumerating all the possible values of all variable involved and only
using the logical disjunction of all satisfiable assignments. Take a 3-dimensional
hypercube network as an example. The neighbor’s id z at line 9 in Algorithm 1 is
decided by the following expression where the current process id v € {0,1,--- ,7}



Algorithm 2 Nondeterministic 2-hop coloring with degree bound d

For each agent u:

State variables:

color,, An integer recording the color of agent u, whose value is between 0 and
dx (d—1).

F, A bit array whose size is d X (d — 1) — 1, indexed by colors.

The interaction between an initiator agent v and a responder agent v:

1: if Fy[color,] # Fy[color,] then

2: assign an arbitrary color from {0..g — 1} to color,,

3: Fy[colory] < Fylcolory]

4: else

5: F,[colory] < 1 — Fy[colory]

6: F,[colory] < 1 — Fylcolors]

7: end if

, the destination process id v € {0,1,---,7} and u # v is satisfied.

if((u XOR v)&(2°)) =2°) {z:= (2°)XOR u}
elseif(((u XOR v)&(2Y)) =2 {z:= (2")XOR u}
elseif(((u XOR v)&(2%)) = 2%) {z:= (2)XOR u}

Then the expression must be rewritten to the following format:

ifflu=0Av=1){z:=1}

else if(u=0Av=2){z:=2}
else if(u=0Av=3){z:=1}
else if(u=0Av=3){z:=2}

eése if(fu=1Av=0){z:=0}
else if(u=1Av=2){z:=0}
else if(u=1Av=2){z:=3}

;32296 iffu=7Av=06){z:=6}

It will become cumbersome, impractical and more importantly, slow down the
approach significantly when the sizes of variable domains are large.

Ezxample 3. In the following, we use a non-deterministic 2-hop coloring proto-
col [2] as a running example. This protocol colors the agents deployed in a
network of a degree-bounded graph such that no two agents adjacent to the
same agent have the same color. Its goal is to enable each agent to distinguish
between its neighbors. Each agent has one integer recording its color and one bit
for each color. The transition rules applied during the interaction of two agents
are described in Algorithm 2. Starting from an arbitrary configuration, the pro-
tocol guarantees to eventually reach a state in which any two neighbors of each
agent have distinct colors after enough interactions.

The system exhibits both process and data symmetries. For ease of presen-
tation, we only focus on undirected ring topology where N > 3. Three colors



suffice for a ring of any size. Simple as the protocol is, it contains non-trivial
symmetries: (a) process symmetries that rotate every process clockwise or coun-
terclockwise; (b) data symmetries that swap any two colors; (c) another data
symmetries that swap the bit values; (d) the combinations of process and data
symmetries that permute processes, color values and bit values.

Existing data symmetry detection approaches [8,24] rely on scalarset anno-
tations. Although color values and bit values are fully symmetric respectively
in this case, the arithmetic operations on the data values prohibit the use of
scalarsets. Further, the protocol does not take asynchronous message-passing
paradigm, so the approaches [14, 15, 26, 25] for detecting process symmetries are
not applicable. Moreover, as far as we know, there is no approach that considers
process and data symmetries which are not both full symmetries at the same
time. In short, no existing approaches can find all symmetries in this example.

3 Preliminaries

This section is devoted to the background knowledge of symmetry reduction in
model checking, the format of the sequential model into which we transform a
concurrent model, and constraint satisfaction problems.

3.1 Model Checking with Symmetry Reduction

We present our work in the setting of Labeled Transition Systems (LTSs). An
LTS is a tuple £ = (S,init, ¥, —) where S is a finite set of states, init € S
is the initial state, X' is a finite set of events and —: S x X' x S is a labeled
transition relation. A permutation o is said to be an automorphism of an LTS £
iff it preserves the transition relation and the initial state, i.e., (Vs1,s2 € S;e €

Y. 815 50 = 0(s1) ) o(s2)) Ao(init) = init. A group G is an automorphism
group of L iff every ¢ € G is an automorphism of £. Given a set of propositions
P and events E which constitute an SE-LTL formula ¢, a permutation o is said
to be invariance iff the set of atomic state propositions and events is closed under
the application of o. Formally, o satisfies the following condition:

(VseS;peP.skEp < o(s)Ep)A(Ve€ E. o(e) =¢)

where s F p denotes that p holds at state s. Intuitively, o is invariance iff, after
permutation, the truth of any proposition in P remains and event in F remains
the same. A group 7T, is an automorphism group of an SE-LTL formula ¢,
T = {n:n(¢) = ¢}, where = denotes logical equivalence under all propositional
interpretations [17]. G is an invariance group of £ and ¢ iff every ¢ € G is an
invariance of £ and ¢. Given a state s € S, the orbit of s is the set 6(s) =
{t| Jo € G. o(s) = t}, i.e., the equivalence group which contains s. From the
orbit of state s, a unique representative state rep(s) can be picked such that for
all s and s’ in the same orbit, rep(s) = rep(s’). Intuitively, if o is an invariance
of ¢, states of the same orbit are behaviorally indistinguishable with respect to



¢. Based on this observation, an LTS £ can be turned into a quotient LTS Lg
where states in the same orbit are grouped together. Formally, a quotient LTS
is defined as follows.

Definition 1. Let £ = (S,init, X', —) be an LTS; G be an automorphism group
of L. Its quotient LTS Lo = (Sq, initg, X, —¢) is defined as follows:

— Sg = {rep(s)|s € S} is the set of representative states of orbits.
— initg = rep(init) is the initial representative state.

— (r,e,7") €= iff there exists "' € S such that r < " and rep(r'") = r'.

The following theorem [7] formalizes the idea that if G is an invariance group of
L and ¢, then L satisfies ¢ iff L satisfies ¢ [7]. It is proved by showing that the
relation (s, 6(s)) is a bi-simulation relation between £ and Lg.

Theorem 1. Let £ = (S,init, X, —) be an LTS; ¢ be an LTL formula. If G be
an invariance group of L and ¢, then LE ¢ iff Lo F ¢. d

There are two common types of symmetries for improving the performance
of model checking. A process symmetry is a permutation on identifiers of concur-
rent processes. A data symmetry is a permutation on data values. For example,
suppose a state st is (s1, S2,- -+ , S,) where s; is the local state valuation of pro-
cess i. If o is a process symmetry on the process ids {1,2,--- ,n}, then o acts
on st in the form o(st) = (55(1); Se(2);" " s Sa(n)); if it is a data symmetry, then
o acts on st in the form o(st) = ((s1),0(s2), -+ ,0(sn)).

3.2 Linear Process Specification

In this work we transform a concurrent model into a sequential one in the form
of linear process specification (LPS). An LPS [19] is a process algebra with data
that describes a system as a set of guarded and nondeterministic transitions.
It is composed of three parts: a series of type and function declarations, one
single sequential process, so-called linear process equation (LPE) and its initial
form. The detailed syntax of a linear process specification is summarized in the
standard Backus-Naur form (BNF) as Figure 2 shows*. Let (prod) be a BNF
production rule. We use the following shorthand notations to refer to occurrences
of (prod) on the right hand side of other production rules.

— (prod)” denotes an optional occurrence of (prod);
— (prod)* denotes a sequence of zero or more occurrences of (prod);
=

(

prod)™ denotes a sequence of one or more occurrences of (prod);
prod-list, ¢') denotes a o-separated list of one or more occurrences of (prod).

* The syntax defined here is slightly different from the standard one [19]. We restrict
the forms of type declarations and require that a function be defined in the imperative
programming style instead of the functional programming style.



The language includes two elementary data types, integer and boolean, and
allows users to declare a restricted subrange of integers as a new type, like
newtype : 0..5. This kind of type is a subtype of integer. So integer constant
enumeration can be defined via this type. For each type elem there is a cor-
responding array type elem[]. An array type can have an arbitrary number of
dimensions. Note that in the (expr) production rule, o denotes an arithmetic
operator, such as 4, —, *, +, %; in the (guard) production rule, > denotes an
operator taken from the set {=,#, <, <,>,>}.

Figure 3 shows a linear process specification of the 2-hop coloring protocol,
where N denotes the number of nodes, and C' denotes the number of colors.
A linear process equation (LPE) is a parameterized recursive process definition.
The left-hand side of an LPE is a process name with a vector of data parameters.
Here we refer to these parameters as global variables. Addition operators in the
right-hand side of the LPE ‘sum’ a list of nondeterministic transitions, to which
we refer to as summands. A summand has a declaration of local variables followed
by an enabling condition, an action function and a next-state function from left
to right. Each local variable can be evaluated to any value of its type nonde-
terministically. It is read-only and cannot be of array type®. Executability of a
summand is decided by its enabling condition that is a Boolean expression. The
action of the summand is decided by the event name along with the data, which
are determined by the action function. The effect of the summand is decided by
its next-state function which updates the global variables. Each function is call-
by-reference and can take in multiple parameters and return multiple values. Its
definition is a declaration of function variables followed by a sequence of state-
ments. A statement can be an assignment, conditional, or while-loop statement.
For a function definition, we define the variables that will hold the values to be
returned by the function (the second (params) in the production rule (decl)).
These variables must be evaluated before the end of the function body in order
for the function to return values. Besides, there is an initial valuation of global
variables denoted by init, which is the entry where the LPS starts to execute.
The symbol * denotes the nondeterministic choice of all possible evaluations of
global variables.

An LPS is a symbolic representation of an LTS and has exactly one equiva-
lent LTS [20]. each state is represented by the values of its global variables. At
some state, if the enabling condition of a summand is true, then there exists a
transition labeled with its event which is attached with parameters returned by
its action function. This transition updates the global variables by invoking its
next-state function at the same time. For a concurrent model, its corresponding
LPS can be extracted in linear time as shown in Appendix A.

3.3 Constraint Satisfaction Problem

In the following, we introduce the terminology of constraint satisfaction problem
used in the rest of this paper.

5 If a local variable is an array, the language can be extended to support it easily.



(program) =
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(init

(body) ::=
(vardecl) ::=
(stmt) ==

(varassgn) ::

(expr) ::

(guard) ::=

(params) ::=
(args) :
(param) ::=

(arg

(num

)
)
)
(bl)

n= type (tid
== fun (fid)
(lpe) ::=
== init P((

(summand) ::=

(typespec)™ (decl)™ (Ipe) (init)
(num)..(num)

) :
({(params)){params) {(body)}
params)) =

rgs)))

proc P( (summand-list,’ +')

(
(a
(params)’ .[(guard))
(eid) ({fid) ({args))- P({fid) ({args)))
(vardecl)™ (stmt)”

(param) = (num) (b)) (vid);
(varassgn) := (expr);

lif ((guard)){(stmt)*} else {(stmt)"}

|[while ({(guard)){(stmt)*}

= (vid)
|(vid)[expr]™

= (num)
|(6l)
[{(vid)
|(vid)[expr]™
[{guard)
[(expr) o (expr)
Hexpr)
[(expr) < (expr)
[{guard)&&{guard)
|

(guard) || (guard)
[V(vid) : (tid).(guard)
(param-list,” ")

= (arg-list," )
(tid) ()]

[int[(num)]*

(vid)
(vid)

[bool [(num)]|* {(vid)

2= (vid) |(num) (b1 |{ (num)-list,” " [} {(bl)-list,” ' ]}
(fid), (eid), (vid), (tid) ::

string

1= an integer

::= a bool

Fig. 2: Syntax of linear process specification



type NS:0..N —1
type CS:0..2
type BITS:0..1
fun upd; (NS u, NS v, CS ¢, CS[N] color, BITS[N][3] F)CS[N] color’, BITS[N][3] F’
{color[u] := ¢; F[u][color[v]] := F[v][color[u]]; color’ := color; F' := F;}
fun upds (NS u, NS v, CS[N] color, BITS[N][3] F)CS[N] color’, BITS[N][3] F'
{F[u][color[v]] := 1 — F[u][color[v]]; F[v][color[u]] := 1 — F[v][color[u]]; color’ := color; F' := F;}
proc Interaction(CS[N| color, BITS[N][3] F) =
NS u1.NS v1.CS c.[(v1 = (u1 — 1)mod N V vy = (u1 + 1)mod N) A F[ui][color{vi]] # F[vi][color[ui]]]
.Interaction(updy (u1,v1, ¢, color, F)) +
NS uz.NS va.[(va = (uz — 1)mod N V va = (uz + 1)mod N) A Flus][color[va]] = F[va][color{us]]]
Interaction(updz (uz, v, ¢, F))

init Interaction(x);

Fig. 3: Linear Process Specification of the 2-hop Coloring Protocol

Many CSPs naturally exhibit symmetries which induce a number of equiv-
alent solutions. A number of approaches on detecting and breaking symmetries
of solutions have been proposed. The last decade has witnessed a revolution of
these approaches in speeding up the search for large practical CSPs involving tens
of thousands of variables and constraints [30-32, 38, 28, 35]. Besides, constraint
programming and model checking share much similarity as investigated in [11,
12]. This presents a real opportunity to leverage these advances for detecting
symmetries in model checking.

A constraint satisfaction problem (CSP) is a triple (V,D,C) where V is
a finite set of wariables, D is a set of finite domains and C is a finite set of
constraints. Fach variable v; € V has an associated domain D; € D of possible
values. A literal is a statement of the form v; = d where v; € V and d € D;.
For any literal | of the form v; = d, we use var(l) to denote its variable wv;.
The set of all literals is denoted by x. An assignment is a set of literals, each
of which is a variable valuation of the CSP. A solution of a CSP is a complete
assignment which satisfies each constraint in C. A constraint c is defined over a
set of variables, and the set is denoted as Var(c).

A solution symmetry is a permutation of literals that preserves the set of
solutions. A constraint symmetry is a solution symmetry that preserves the
constraints of the CSP. For a CSP P = (V,D,C), a variable symmetry o is
a permutation on V such that for any constraint ¢ € C, {vi=a1, - ,v,=a,}
satisfies ¢ iff {o(v1)=a1, - ,0(vy)=a,} satisfies ¢; a value symmetry o is a per-
mutation on D such that for any constraint ¢ € C, {vi=ay, - ,v,=a, } satisfies
c iff {vi=0(ay), - ,v,=0(ay)} satisfies c¢. A variable-value symmetry is a per-
mutation of the literals (i.e., V x D) that is a constraint symmetry. Note that a
variable-value symmetry is not necessarily a composition of a variable symmetry
and a value symmetry.



Algorithm 3 Overview of our approach

autos := 0; VL := 0; csps := (;

identify the set of global variables VG

for each summand sum in an LPE do
identify the set of local variables locals
VL := VLU locals;
for each function or enabling condition f in sum do

csps := csps U {Transform(f)};

end for

end for

csps := csps U {(Transform(init))};

csp := Merge(csps);

autos := DetectSymmetry (csp, VG,V L);

4 Automatic Symmetry Detection

In the section, we describe an automatic approach to detecting the symmetries
of an LPS. It translates an LPS into a constraint system whose symmetries can
be exploited using the state-of-the-art detection approaches for CSPs. There are
two main steps. The first step, conversion, transforms each function in an LPE
and its init statement to a semantics-equivalent CSP as shown by Procedure
Trans form. These CSPs are then merged into one single CSP. The second step,
detection, detects variable and value symmetries in the merged CSP, as described
in Procedure DetectSymmetry. Further, we prove that each detected symmetry
is a real automorphism of the LTS of the original concurrent model. Lastly, we
present two lightweight but effective optimization methods.

4.1 Step 1: Conversion

We describe how to convert a function or the init statement into the static single
assignment form (SSA) below, from which an equivalent CSP is derived. SSA is a
form of a semantics-preserving intermediate representation of a program, which
requires that each variable be assigned exactly once [9]. SSA significantly sim-
plifies and improves various compiler optimizations, e.g., constant propagation,
copy propagation, dead code elimination and register allocation. The key feature
of SSA is that each variable with the same name always has the same value in
everywhere in the program. The immutability of variables is the primary reason
why we transform each function into a constraint system by the use of SSA.
Converting ordinary source code into SSA is relatively straightforward. In
essence, it replaces the target variable of each assignment with a fresh name.
Every usage of this variable in the succeeding statements is replaced with the
new name, until a new assignment to the same variable occurs. We call the
existing variables original variables, and other new variables versioned variables.
Further, SSA defines an artificial function ¢ to represent the choice between
different branches of a conditional statement defined formally as follows. A new
Boolean variable b, called decision variable, is introduced to store the value of
the condition and the if and else branches are converted separately. For each

variable x defined in the if or else branch, an additional assignment z'” :=



o(a’, 2", b) is inserted at the end of the block to achieve branch selection, where
2’ and 2" are the last definitions of x in the if and else branches respectively.

¢(x', 2" b) = if b = true then z’ else x”

Still, converting a program to SSA form becomes more complicated when
while-loop statements are involved. A while-loop can be equivalently regarded
as an infinite number of nested conditional statements. But it is impractical to
transform it into such conditional statements. So the assumption here is that
any loop can be finished in a finite number of iterations. In this way, we reduce
the problem of converting a loop to converting a list of conditional statements.

Another challenge is handling array manipulation. The reason is that a new
assignment statement of an array does not necessarily kill all the old values
in the array. For instance, the meaning of the assignment A[i] := A[i] + 5 is
two-fold. First, it increases the value of the i*" element in the array A by 5.
Second, all the values of other elements are unchanged. We can not simply assign
the left-hand side with a new name, which loses the second meaning. Thus we
define a function ¢ as follows to handle array assignments. Suppose an array
assignment is arraylindex] := value and arrayg is the latest name of array
before the assignment in the SSA form. We replace the original assignment with
array; := p(array;, arrayy, index, value) where array; is a fresh name. Note
that ¢ can be a polymorphic function so as to handle multi-dimensional arrays.

array [index] = valueN

array; = g(arrayy, arrayo, index, value) = {W £ index. array[j] = arrayols]

The last challenge is handling function calls. Given a function F' with formal
parameters x1, s, -+ , T, and it is called with a list of arguments a1, az, - , ay,.
Assignments x; := a; are added before the function body to represent parameter
assignments. Return values of a function are handled similarly. Classic SSAs do
not handle shared variables. A shared variable may be used in multiple func-
tions, so renaming potentially breaks the dependency among functions caused
by it. For an LPS, local variables and global variables can be shared by multiple
functions. Because local variables are read only, it is unnecessary to consider
their side effects of function calls. For global variables, we first treat them like
function variables and then separately take care of the data flow across function
boundaries. Considering that the effect of other versioned variables is only in the
scope of a function, we only consider the original and last versioned of a global
variable as global variables, and other versioned variables as function variables.

The SSA form we obtain can be more succinct by applying copy propagation
technique, commonly used in compiler optimization. It eliminates unnecessary
temporary copies of a value generated by our transformation, and further facili-
tates our symmetry detection approach. An assignment is an identity assignment
if it is in the form x := y which assigns the value of y to x and y is either a vari-
able or a constant. Copy propagation is the process of replacing the occurrences
of targets of identity assignments with their values.

The SSA form of a program always has the same behavior as the original
program [9]. After the conversion of a function to SSA, the next conversion



V = {u1,v1,uz, vz, ¢, color[N], color1 [N], F[N][3], F1 [N][3], F2[N][3]}

D = {{0.N= T}, {0..N = 11,{0.N = 1} {0..N — 1}, {0..2}, {0..2}, {0..2}, {0..1}, {0..1}, {0..1}}
(v1 = (u1 — 1)mod N V vy = (u1 + 1)mod N)

AF[u1][color[v1]] # Flvi][color[u1]]

colori[ui] = ¢ A (Vt € NS.t # u1 — colory [t] = color[t])

F>[ui][colory[vi]] = Flvi][color[uy]]

A(Vt1 € NS.ta € CS.t1 # uy A ta # colori[vi] — Falt1][t2] = F[t1][t2])

(v2 # (u2 — 1)mod N A vy # (u2 + 1)mod N)

AF[uz][color[va]] = Flva][color|usz]]

Fy [uz][color[vs]] = ¢

A(Vt1 € NSt € CS.t1 # ua A ta # color[va] — Fi[t1][t2] = F[t1][t2])
Fsva][color[uz]] = 1 — Fy[va][color[usz]]

A(Vt1 € NS.to € CS.t1 # va A ta # color[us] — Falt1][tz] = Fi[t1][t2])
Vvt € NS.colori[t] = color(t]

Fig. 4: Constraint satisfaction problem of the 2-hop coloring protocol

from SSA to a CSP is straightforward. Each assignment is directly mapped to a
constraint by interpreting each assignment operator as an equivalence operator.
Both representations are very similar. It is easy to know the SSA and its CSP
representation have equivalent behaviors as the following proposition states.

Proposition 1. Given a program P and its SSA representation P, let Cp be the
CSP converted from P. If for an input I the execution of P produces valuations
V' for all variables, then I and V is a solution of Cp and vice versa.

For the init statement, we convert it into a constraint in a very similar way. Sup-
pose an LPE is P(Dom;y vy, - -+ , Dom,, v,,) and its init statement is P(aq, -+ ,ay).
It is converted to v1 = a; A --+ A v, = a,. Then we simply combine all the con-
straints derived from each function, enabling condition and the init statement
to build one large CSP for this LPS.

For the running example, the conversion step builds the corresponding CSP
for the LPS as shown in Figure 4. Since its nit statement represents all possible
evaluations of global variables, it has no effect on symmetry breaking in the CSP
and thus is skipped for simplicity.

4.2 Step 2: Symmetry Detection

Next, we explain the procedure to discover constraint symmetries in the merged
CSP which we denote as Cx in the following. First, we present the state-of-the-art
symmetry detection method for CSP, on which our detection approach is based.
However, considering the role each constraint plays in the sequential model, this
method is not completely suitable in terms of correctness and performance. To
cope with this problem, we describe our alternations on this method.

Our approach is based on the automatic symmetry detection method for
CSP proposed by Puget [35]. It allows us to detect variable symmetries, value
symmetries and non-trivial ones involving both variables and values. For each
constraint, the approach first calculates all the allowed assignments. Then the
graph of this constraint c is constructed in the following way. A variable node is
created for each variable in ¢. An array represents a collection of scalar variables.



So a distinct variable node is created for each element of the array. A constraint
node is created for c. A value node is created for each value of each variable in c.
An assignment node is created for each allowed assignment of c¢. Edges connect
each value node to its variable node, each assignment node to the value node
representing each variable-value literal occurring in the assignment, and each
assignment node to the constraint node. So the number of nodes in the colored
graph is the sum of the number of variables, literals, constraints and allowed
assignments, and the number of edges is the sum of the number of literals,
allowed assignments and the number of variables in allowed assignments.

The graphs for all constraints are combined into a single graph, called colored
graph. The coloring scheme for this graph is described as follows.

All constraint nodes representing the same kind of constraints have the same

unique color;

All variable nodes with the same domain have the same unique color;

— For a variable, all of its value nodes have the same unique color; if two
variables have the same color, their value nodes have the same color.

— For a constraint, its assignment nodes all have the same unique color; if two

constraints have the same color, their assignment nodes have the same color.

It addresses symmetries by computing the automorphisms of the colored graph.
It has been proved that each automorphism of this graph corresponds to a con-
straint symmetry as restated in the following theorem.

Theorem 2. Let P = (V,D,C) be a CSP. Its colored graph G is constructed as
illustrated above. Suppose o is an automorphism of G and s is an assignment of
P. For each constraint ¢ € C, s satisfies ¢ iff o(s) satisfies c. ad

Before applying this method to our problem, we have to address the concern
raised by the differences of ordinary CSPs and the CSP we convert an LPS
into. Some variables in an LPS are not used at the same time, local variables in
different summands for example. So for its corresponding CSP, it is unreasonable
to detect variable symmetries between those variables. Therefore, the original
coloring strategy is refined such that variable nodes which have the same domain
are of the same unique color iff

— each of them is a local variable of the same domain in the same summand,
— or each of them is an original global variable of the same domain,
— or each of them is the latest version of a global variable of the same domain.

It is not difficult to show that each automorphism found under the new coloring
strategy is also an automorphism under the original coloring strategy. So Theo-
rem 2 still holds. The soundness of our work is stated in the theorem below with
the proof presented in Appendix B.

Theorem 3. Let £ = (S, init, X, —) be its labeled transition system of an LPS
P. Each permutation o we get in Algorithm 3 is an automorphism of L. ad



Figure 5 shows a part of the colored graph obtained from the CSP of the
running example. Due to space restriction and graph complexity, we make the
following alternations for simplicity in order to help users better understand
its inherent symmetries while still preserving the essence of the graph. This
graph fragment shown is built from the first constraint in the CSP, i.e., (v1 =
(u1+1)mod NVvy = (u1—1)mod N) AF[Cxuy+color[vy]] # F[Cxvy+color[uy]].
We skip the representation of

— all nodes generated from (v, = (u1 + 1)mod N V v1 = (u3 — 1)mod N)

— the constraint node

— all nodes generated from an allowed assignment containing a literal color[t] :=
2 for all 0 <=t < N.

Each blue square node labeled ¢ in the top part is the variable node representing
F[i]; each purple triangle node labeled j in the bottom part is the variable node
representing color[j]; each yellow node labeled val is a value node representing
value val of variable F[i]; each green circle node labeled val’ is a value node
representing value val’ of variable color[i]; each white pentagon node is an as-
signment node. The nodes in the dotted rectangle are the same nodes of variables
F[0], F[1] and color[0] and their values, which are only for making the symme-
tries easy to discover. In this figure, the assignment nodes connected with dotted

Fig. 5: Part of the colored graph of the running example’s CSP

edges, the assignment nodes on their left and the assignment nodes on their left
are isomorphic; swapping any literals of the form F[i] := 0 and F[i] := 1 for all
0 <=1 < 3x N in all the assignments gets the same graph; swapping any literals
of the form ¢[i] := 0 and c[i] := 1 for all 0 <=4 < N in all the assignments gets
the same graph.

FEzxample 4. For the running example, assume there are three processes with
ids 0, 1 and 2, it has 6 process symmetries from rotating the processes of an
undirected ring, i.e., (0)(1)(2), (1,2), (1,0), (0,2), (0,1)(1,2), (0,2)(1,2)%; it has 6

6 Permutations are written in the cyclic notation. If a1, asz, - - - , an, are distinct elements
of 2, then the cycle (a1,az2, - ,an) denotes the permutation o on 2, i.e., for 1 <
1 <n, o(a;) = ait1, o(an) = a1 and for any b € 2\ {a1,a2, - ,an}, o(b) =b.



data symmetries from swapping all the possible colors, i.e., (0)(1)(2), (1, 2), (1,0), (0, 2),
(0,1)(1,2), (0,2)(1,2); it has 2 data symmetries from swapping all the possible

bit values, i.e., (0)(1),(0,1). Further, new symmetries are introduced by the
product of these groups. Therefore, we discover 72 symmetries in total.

4.3 Optimization

In the step of symmetry detection, we perform two lightweight but effective
optimization techniques, one to speed up the construction of the colored graph
and the other to remove symmetries which are useless for model checking.

Breaking down array writing constraints For a constraint with n variables, it may
have O(m™) possible assignments in the worst case, where m is the size of the
largest domain. The time complexity of computing allowed assignments of one
constraint is O(m™), and the time complexity of constructing the colored graph
for a CSP accumulates to t X O(m™) where t is in the number of constraints.
Each array writing constraint is involved with at least all the variables of two
arrays, which often becomes a performance bottleneck. In order to reduce the
time consumption, one straightforward way is keeping n as small as possible. We
transform it into K + 1 simple constraints each involving much fewer variables
in the following way” where K is the array size, and refine the coloring strategy
such that elements of different arrays have different colors.

array; [index] = value A (V5 € {0,--- , N — 1}.j # index — arrayi[j] = arrayolj])

arrayi [index] = value
arrayi[0] = arrayo|0]
array:[1] = arrayo[l]

arrayi [N — 1] = arrayo[N — 1]

The soundness is established with a theorem, which is presented in Appendix C.

Removing redundant value symmetries The colored graph may contain some
values of a variable which do not satisfy any constraint transformed from an
enabling condition or the init statement. It means those values are impossible
to appear at any time during the execution of the system. Take the CSP (V =
{z,y},D ={{0,1,2},{2,3,4}},C = {x > 1,y = x + 1}) as an example. A value
symmetry o = (z := 0,2 := 1) exists in the CSP. Suppose the constraint x > 1
is originally the enabling condition and y = x + 1 is the next-state function of
the same summand in the LPS. So neither z := 0 nor = := 1 is valid in any
state which makes ¢ useless for reducing the state space. Therefore, it is safe
and appropriate to remove these values during the graph construction in order to
avoid redundant symmetries later. For each variable’s value, we record whether
it appears in at least one allowed assignment of a constraint representing an
enabling condition or the init statement. If not, it will be removed.

" For ease of presentation, we only show how to transform a writing constraint of a
one-dimensional array. It can be easily extended to multi-dimensional arrays.



5

Case Studies

We have implemented the colored graph construction described in Section 4.
The resulting graph is input to Saucy [10] which produces the generators of the
automorphism group of a graph. Then the generators are input to GAP [21]
which produces all the permutations in the group. The examples are briefly
introduced in the following. Part of the experiment data is presented in Table 1.
All relevant experiment information is available online [1].

1.

Reader-Writer problem. [39].

2. Peterson’s mutual exclusion protocol [34]. The N-process protocol manip-

ulates shared arrays in such a way that it eliminates at least one process
trying to access the critical section per round in a total of N — 1 rounds until
only one remains, so that it guarantees that no more than one processes are
in the critical section at the same time.

A vprioritized resource allocator [13]. The system consists of N client pro-
cesses and one resource allocator process. It has a star topology and all the
clients only communicate with the resource allocator. Each client has a pri-
ority level and may send requests for accessing the resource to the resource
allocator. When the resource allocator receives multiple requests, it always
grants access to the request from the client with the highest priority. If all
the requesting clients have the same priority level, the allocator chooses one
request in a nondeterministic way. A configuration is written in the form
ag—ay —---—ag—_1, where client processes 0,1, - - - , ap have priority level 0,
ao~+ 1,a9 + 2, -+ , a1 have priority level 1, etc.

Message routing in a hypercube network [13]. A configuration is denoted by
the number of dimensions of the hypercube. Note that the configuration d
is composed of 2% processes.

Server-client system in a three-tiered architecture [13]. As its name implies,
the systems has three layers, one for client processes, one for server processes
and one for the process representing the data storage system. Each process
has two channels, one for receiving incoming requests and the other for
sending queries to other processes in the neighboring layer. A client repeats
the sequence of operations of sending a request message to the server it is
connected to and waiting for receiving a response message from the server;
a server repeats the sequence of operations of receiving a request from a
client it is connected to, sending a query to the database, receiving data and
sending a response message to the client; the database repeats the sequence
of operations of receiving a query from a server and sending back data to
the server. for each experiment of the system is written in the form a; —as —
-+ —ag, which denotes that the system consists of k server processes and a;
clients connected to server 1.

Dining Philosopher Problem [23]. The N philosophers sit at a circular table
with a large bowl of spaghetti in the center. A fork is placed in between each
philosopher, and as such, each philosopher has one fork to his left and one
fork to his right. As spaghetti is difficult to serve and eat with a single fork,



10.
11.
12.

13.

it is assumed that a philosopher must eat with two forks. The philosopher
can only use the fork on his or her immediate left or right and he can only
put down the forks after eating.

Miler’s scheduler [33]. There are N processes, which are activated in a cyclic
manner, .e., process i activates process i + 1 and after process n process 1
is activated again. Moreover, a process may never be re-activated before it
has terminated. The scheduler is built from n cyclers who are positioned in
a ring. The first cycler plays a special role as it starts up the system.
Non-deterministic two-hop coloring protocol in rings [2].

Self-stabilizing leader election protocol in complete graph [18]. Each agent
has one bit of memory, denoting being the leader or not. There is a leader
detector in the network to signal the presence of a leader and to broadcast a
boolean value corresponding to the signal to each agent. The detector is not
guaranteed to give correct answers all the time, but it will eventually give a
correct answer permanently. This protocol guarantees that a unique leader
will eventually be elected.

Self-stabilizing leader election protocol in directed rooted trees [6].
Self-stabilizing leader election protocol in ring [18].

Hanoi puzzle.

The tower of hanoi is a classic mathematical puzzle. It consists of three pegs
and a number of disks of different sizes can be put onto a peg. You may
move the top disk from one peg to the top of another peg at a time. At no
time can a larger disk be put on top of a smaller disk. Initially, all disks are
stacked at one rod(called the initial rod) in order from the largest at the
bottom to the smallest at the top. The other two rods are empty. The goal
is to find the minimum number of moves to move all the disks to another
rod.

Scheduling the social golfer problem [16].

The social golfer problem was first posted on sci.op-research in May 1998.
It is a famous combinational optimization problem. The task is to schedule
N = G x P golfers into G groups of P players in W weeks, such that no
two golfers play in the same group more than once. Here we consider a
heuristic tabu-search scheduling algorithm for this problem proposed in [16].
It consider a special case of the problem where G is a prime, S = G and
W = G + 1. For week 0, the schedule is generated randomly such that
each position has one distinct golfer. For any following week w, any group ¢,
any position j, the algorithm chooses the golfer in week 0 whose position is
(i+ (w—1) % j) mod S in group j. A configuration of the system is written
in the form G-S-W where G is the number of groups, S is the number of
golfers in one group and W is the number of weeks.

The experimental cases we choose here cover a variety of computing systems.
From the perspective of execution patterns, they include concurrent systems
and sequential systems. From the perspective of communication strategies, they
include concurrent systems with synchronized communication using shared vari-
ables or shared actions, and distributed systems with asynchronous message



passing mechanism. From the perspective of communication topologies, they in-
clude networks of layers, rings, trees, stars, complete graphs and hypercubes.
From the perspective of symmetry types, there are systems with only process
symmetries, with only data symmetries and with both of them.

In Table 1, Construction Time denotes the time taken to construct the col-
ored graph associated with the corresponding configuration; |generators| denotes
the number of generators of the automorphism group G of the colored graph
computed by Saucy; Saucy Time denotes the time (in seconds) taken by saucy
to compute generators; |Aut(G)| denotes the size of G computed by GAP pro-
vided the generators. As Table 1 shows, the overhead of our approach is quite
low even for the systems with large automorphism groups. We study the same
cases as the static channel diagram approach [14, 15] (i.e., Peterson’s protocol,
resource allocator, three-tiered architecture and message passing in a hypercube
network) and our performance is comparable to its. However, the effectiveness of
our approach is not limited to message passing systems or process symmetries.

Performance Improvement The performance bottleneck of our approach lies in
the size of the colored graph. First, allowed assignments for constraints often
contribute the largest portion of the graph size. For a constraint with n vari-
ables, as discussed in Section 4.3, in order to reduce its time consumption, one
straightforward way is keeping n as small as possible. So we break down a con-
straint into a set of sub-constraints and guarantee that the logical conjunction of
sub-constraints is equivalent to the original constraint. This method has a side
effect: it increases the number of constraints. Fortunately, this effect is negligible
because the time consumption for computing allowed assignments is much more
sensitive to the number of variables in a constraint than to the number of con-
straints, and the performance bottleneck is its time consumption instead of its
memory. Second, we have observed that users may sometimes define larger vari-
able domains than necessary. Our approach does not rely on the exact domain
of variables, but can take advantage of it to construct a smaller colored graph.

6 Symmetry Detection for Parameterized Systems

Concurrent and distributed systems are often parameterized systems, e.g., a
network protocol is designed for a network containing n nodes where n is a
parameter. To the best of our knowledge, all existing symmetry detection ap-
proaches only work on an instance of a parameterized system at a time. For
parameterized systems, the ultimate goal is to provide a once-for-all solution of
obtaining common symmetries for the entire class. This goal is perhaps feasible
because the distinctive features of symmetries in a parameterized system are
often determined by the essence of the system structure rather than valuations
of the parameters. In the following, we propose an inductive symmetry detection
approach for parameterized systems.

A parameterized system model represents a series of initializations of finite
state systems and is defined in terms of a series of parameters. We write M(D)



System|Construction Time[Saucy Time[|Generators||

[Aut(G)|

Reader-writer problem

3 [ 0.127 | 0.004 ] 1 [ 2
Peterson’s mutual exclusion protocol

3 0.183 0.041 2 6

6 0.512 0.011 5 720
9 0.695 0.018 8 362880
12 1.037 0.030 11 479001600
A prioritized resource allocator

4-3 0.589 0.002 5 144
2-2-3 0.553 0.004 4 24
3-3-4 0.902 0.005 7 864
Three-tiered architecture

3-3-2 0.480 0.005 5 144
3-3-3 0.515 0.006 6 1296
4-4-3 0.508 0.006 8 6912
Message passing in a hypercube network

3 0.343 0.007 4 48
4 0.655 0.005 5 384
5 1.447 0.026 4 3840
6 3.317 0.066 5 46080
Dining philosophers

5 0.316 0.004 1 5
10 0.492 0.005 1 10
20 1.033 0.007 1 20
Miler’s scheduler

10 ] 2.665 0.001 0 0

Non-deterministic two-hop coloring protocol in undirected rings

3 0.294 0.007 4 72

6 0.466 0.011 5 144
9 0.788 0.012 5 216
12 1.282 0.013 5 288
Self-stabilizing leader election protocol in complete graphs

3 0.179 0.004 2 6

6 0.874 0.029 5 720
9 1.212 0.034 8 362880
12 2.684 0.394 11 479001600
15 15.783 8.326 14 1307674368000
Self-stabilizing leader election protocol in directed rooted trees
3 0.216 0.004 2 2

7 0.322 0.007 2 8

11 0.959 0.011 4 16
15 3.954 0.275 4 16
19 7.404 0.005 6 128
Self-stabilizing leader election protocol in rings

3 0.385 0.003 1 3

6 1.223 0.007 1 6

9 4.781 0.093 1 9
12 51.265 1.266 1 12
Hanoi puzzle

3 0.523 0.003 1 2

6 1.636 0.023 1 2
Scheduling the social golfer problem

3-3-4 ] 1.374 | 0009 ] 9 | 725760

Table 1: Experiment results




to denote a parameterized system M with the parameters D. Its instance is
obtained by instantiating the system parameters. We write M(d) to denote a
particular instance of M where d € D. o[D] is a parameterized permutation
of M(D) iff Vd € D , o[d] is a permutation of M(d). o[D] is a parameterized
symmetry of M(D) iff Vd € D, o[d] is an automorphism of M(d). Our detec-
tion approach is described as performing the following three steps: (1) detect
symmetries on a set of small instances of the parameterized system model; (2)
generalize the detected symmetries to parameterized permutations; (3) check
whether each parameterized permutation obtained in Step 2 is a parameterized
symmetry.

6.1 Step One: Detecting Symmetries on a Set of Instances

We use the technique presented in Section 4 to detect instance symmetries. For
a parameterized system model M(D), the parameters D are assumed to be a
tuple of integers, (v, va, - ,v,). We generate the instances by increasing the
value of a parameter at one time, starting from the smallest one. For the running
example, it only has one parameter N to control the number of processes. We
can start from 3 and then increment N to 4, 5 and 6 and get four instances

M(3), M(4), M(5) and M(6).

Step Two: Generalizing Instance symmetries to Parameterized Permutations A
system always has a group of permutations which generally contains a large
number of elements, so calculating a parameterized permutation in isolation is
not efficient. In the following we consider parameterized permutations in groups.

Each finite permutation group has a compositional nature. The Krull-Schmidt
theorem states that a finite group satisfying certain conditions can be uniquely
written as a direct product of a set of indecomposable subgroups. One of its
variation states that It is a direct product decomposition of indecomposable dis-
joint subgroups and the decomposition is unique if its generating set satisfies
certain conditions [29]. This decomposition is called geometric decomposition,
formally defined as follows. Suppose two permutations o and ¢’ act on a finite
set S. They are called disjoint if and only if for all s € S, o(s) # s implies that
o'(s) = s and o’(s) # s implies that o(s) = s. Likewise, two permutation groups
G and G’ acting on S are called disjoint iff every pair of permutations ¢ € G
and ¢’ € G’ are disjoint. Intuitively, G and G’ act on disjoint parts of S. So
disjoint permutations and disjoint permutation groups are commutative.

Let A be a generating set of an arbitrary permutation group G. Suppose A
can be decomposed into disjoint subsets, A = A; U A U---U A, such that each
subset A; cannot be further decomposed into multiple disjoint subsets. G; is the
subgroup generated by A;. Then G = G; X Gg X -+ X G,,.

G=G1 xGg x - xGp. (1)

Since the choice of generators affect the generating set which may induce dif-
ferent decompositions. To make sure the uniqueness of the decomposition , the



generating set A has to satisfy two conditions: (i) A does not contain elements
in the form o = gh such that g and h are not identity elements and they are
not disjoint; (ii) if a subset A; C A generates the subgroup G; < G such that
G; = Hy x Hy and H, and H, are disjoint groups, then there exists a partition
A; = 51 x S; such that S; generates H;. The geometric decomposition of a per-
mutation group can be obtained using GAP [29]. Without loss of generality, we
assume that any detected automorphism group is in its geometric decomposition
form. For each disjoint subgroup, we investigate how to generalize it to a param-
eterized subgroup. The whole parameterized group will be the direct product of
all parameterized subgroups. In this way, the generalization process of each sub-
group is independent. If some subgroup fails to be generalized, the parameterized
group will be the direct product of the successful ones. The automorphism group
of M(3) is divided into three indecomposable disjoint subgroups as represented
by their generating sets®.

G1 =((u1 := 0,u1 := 1)(v1 := 0,01 := 1)(ug := 0, uz := 1)(va := 0,v2 := 1)(V,,,. := 0,V , —:=1)
(Virtory =0, Vi 1= 1)(V2 1= 0,V 1= 1)(Vp, 1= 0,Vp, = 1)(Vp, :=0,V3, :=1),
(w1 :=0,u1 :=2)(vy :=0,v1 := 2)(u2 := 0, uz := 2)(ve := 0,02 := 2)(VCODLOT =0, Vcoolor = 2)
(Vebtory = 0, Viiory = 2)(Vp := 0,V := 2)(Vip, =0, Vp, :=2)(Vpp, := 0, Vp, :=2))

G2 =((c :=0,c:= 1)(color := 0, color := 1)(VI.£ =0, V; = 1)(V1‘£1 =0, V;I = 1)(\/;2 =0, Vl}'z =
(¢ :=0,c:= 2)(color := 0, color := 2)(V1~1 =0, V; = 2)(VI,{1 =0, VI‘£1 = 2)(V1.4£2 =0, V;Q =
Gs =((F:=0,F := 1)(Fy := 0, Fy := 1)(Fy' := 0, F,' :=1))

The generalization problem is nontrivial as a generator is often rather too full
of explicit permutation detail of a number of variables and values, which makes
it hard to discover the regular patterns of subgroups. In order to simplify the
generalization problem, we reduce each generator of multiple variables to an
equivalent generator of a single variable. The basis of this idea is our common
observation in practice that for most generators, all the variables involved in
one generator have the same value symmetries, i.e., for any variables z and
y in one generator o, o(z := a) = (z := b) implies o(y := a) = (y := b).
There are two possible reasons behind this observation: the value of a variable
reference is often used to assign another variable; a variable in a concurrent model
may become multiple local variables after the transformation to its sequential
counterpart. Thus based on this observation, our generalization requires that

8 A permutation can be defined over variables and values. A permutation of variables
can be represented by permutations on their values. (For example, a permutation o
swaps two variables x and y where the domain of x and y is Dom. o can be rewritten
to (x = a,y = b),(x = b,y = a) for any pair of values (a,b) € Dom x Dom.) We
normalize the form of a permutation via defined over only values, i.e., o(v1 =
ai, -+ ,Vn = an) = (v1 := o(a1), -+ ,vn := o(an)) for ease of presentation, where
v; can be a local, function, global variable, or represent a dimension of an array
variable. Vi denotes dimension 4 of array A and is used for permutations between
array elements only different in dimension . If v; is an array variable, o acts on the
values of all its elements.

2))



all the variables of a generator always have the same value symmetries. If this
condition is not satisfied, the subgroup is ruled out from generalization. After
the simplification, for M(3) we get G1 = ((u1 :=0,uy := 1), (uq := 0,uy := 2)),
Gz = {(c:=0,c:=1),(c:=0,c:=2)) and G3 = ((F := 0, F := 1)); similarly,
in M(4) G1 = {((u1 = 0,u1 = Lug = 2), (ug := 0,uy := 2,u; := 1)),
Gs = ((c .= 0,¢ :=1),(c := 0,c := 2)) and G3 = ((F := 0,F := 1)). After
the simplification, the generating set of G; has a single generator (0,1), the
generating set of Gy includes two generators (0,1) and (0,2) The quality of the
representation of a parameterized generator is vital to the effectiveness of our
approach. A good representation should satisfy the following conditions in order
to make parameterized permutations easy to prove and apply:

— It should be universal. It should be decided by the information in M(D)
rather than the information only available in a particular instance M(d).

— It should be compact. An explicit representation of all permutations may be
used. But such a representation may not be feasible all the time, since the
number of permutations tends to increase exponentially with the values of
parameters, fully symmetric systems for example.

— It should be general. It should be able to identify a large (or even complete)
list of permutations.

— It should be efficiently computable. The construction of permutations from
this representation should have low overhead in order to be practical.

A permutation group of a single variable var is generalized in two cases.
First, if a subgroup is a fully symmetric group of M(d) and the domain of var
is consecutive integers [z, y], then the corresponding parameterized subgroup is
also a fully symmetric group of [gen(z), gen(y)] where

exp(p1,- -+ ,pn) in CSP with parameters p1,- - ,ppin D

exp(p1,- -+ ,pn) if v is equal to the value of an arithmetic expression
gen(v) =
v otherwise

Since Gz in both M (3) and in M(4) is fully symmetric subgroups of [0, 2], we get
two candidate parameterized subgroups [0, N-1] and [0, 2] respectively. Second,
if a subgroup is not a fully symmetric group of M(d) (like G; in M(4)). Each
parameterized generator o is represented as a single function, i.e., o(var) =
f(var, V) where V is a tuple of parameters from D. f(var, V) is discovered from
the CSP: for any pair of variables (v, v’) in the subgroup (before simplification),
if v represents a dimension ¢ of an array A, the expression f(v’,val(V)) is used
to assign the dimension i of A in the CSP; or there exists an atomic constraint®
in the form v = f(v’,val(V)). The generating set of the parameterized subgroup
is composed of parameterized generators. Therefore, for G; in M(4), we found
two parameterized generators for it, o(u1) = (u1 — 1)mod N and o(u1) = (ug +
1)mod N.

9 An atomic constraint is a constraint of the form z b« y in which there exists no
relational operators from < in x or y, where 1 denotes an arithmetic operator.



Step Three: Checking the Validity of a Parameterized Permutation It is pos-
sible that a parameterized generator is only a symmetry for a restricted set
of instances. Thus it is necessary to check the validity of each parameterized
generator. For each subgroup, each parameterized generator o is applied to the
corresponding CSP of the model M (D). For a fully symmetric subgroup, o de-
notes an arbitrary permutation in it. If ¢ and o(c) are semantically equivalent for
each constraint ¢, then o is a parameterized symmetry. The equivalence checking
can be implemented with the help of a theorem prover.

The parameterized automorphism groups of the running example are direct
product of three subgroups: the generating set of G is ((o(z) = (z — 1)mod N,
o(z) = (x+1)mod N) where z is the value of variables uy, v1, ug, v2, V.2, VC%ZOTI,
VIQ,VJE1 and VFOQ; G4 is a fully symmetric group of domain [0,2] of variables
¢, color, Vi, Vl}l and V1~129 G3 is also a fully symmetric group of domain [0, 1] of
variables F, F; and F5.

7 Related Work and Conclusion

The importance of detecting symmetries in model checking area has garnered
much interest in recent years and several methods have emerged.

Scalarset Method One of the oldest and most widespread symmetry detection
approaches is using scalarset. It is first introduced by Ip and Dill in the explicit
model checker Mury [24]. Scalarset is a data type which determines an unordered
finite set of consecutive integer values. It is a fully symmetric type, i.e., permut-
ing any values of a scalarset type throughout the state space must result in an
automorphism. So this method is only capable of handling fully symmetric com-
ponents. For usage, a user may define a new scalarset type for a class of fully
symmetric components and assign each component’s identifier to a unique value
of this type. Then the verifier automatically extracts the automorphisms from
scalarset types. In this way, scalarsets provide a convenient and efficient way for
users to define symmetries, considering the number of automorphisms generated
by a scalarset is the factorial of its size. This method is applied to several other
model checkers like Spin [4, 5], Uppaal [22].

However, it has two disadvantages that impose a heightened burden on de-
signers. First, the applicability of this method relies on designers to have expert
insights to precisely identify identical components in a system. Second, in order
to make sure the symmetry extraction method is sound, a much rigorous syn-
tactic requirement is placed on operations of scalarsets to rule out all possible
symmetry breaking constructs. Loosely speaking, a variable of some scalarset
type can only be referred to as the index of an array with the same scalarset
index type and assigned to, compared for (in)equality with another variable of
exactly the same type. Last but not least, it is applicable only for fully symmetric
systems.
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Static Channel Diagrams Donaldson and Miler design a fully automatic ap-
proach to detecting process symmetries for channel-based communication sys-
tems [14, 15]. Their approach also involves constructing a colored graph called
static channel diagram from a Promela model, whose automorphisms possibly
correspond to the automorphism of the Kripke structure along with the model.
Each node is created for each process or channel. If a process possibly sends a
message to a channel, then a directional edge is created from the process node to
the channel node. Similarly, if a process possibly receives a message from a chan-
nel, then a directional edge is created from the channel node to the process node.
All process (resp. channel) nodes representing the same type of processes (resp.
channel) have the same unique color. Figure 6 shows the static channel diagram
of the message routing algorithm in a three dimensional hypercube network [13].
The generators for the automorphism group in the static channel diagram are
computed using a graph automorphism algorithm. But a computed generator
may not be a real automorphism in the state space. In order to preserve the
soundness of the detection approach, each generator obtained from the diagram
has to be validated that it transforms the original program P into an equivalent
program with the complexity O(|P| log |P]).



Similar to scalarset approaches, there is a series of limitations on input
Promela programs to rule out symmetry breaking constructs. One of them is
disallowing the use of process identifiers in relational and arithmetic operations,
which is commonly thought to be the source of breaking symmetries. However,
it is not necessary the case in many systems such as the motivating example.
They propose a straightforward strategy to relax this restriction, i.e., rewriting a
relational or arithmetic operation into a disjunction of all possible combinations
of variable valuations. But the validity checking for each generator would suffer a
significant loss in performance because the size of the program becomes at most
O(n*) of the original one, where n is the largest size of domains of variables
representing process identifiers and k is the highest arity of any relational or
arithmetic operations involving these variables.

Lastly, our method is remotely related to an on-the-fly symmetry detection
and reduction approach proposed by Wahl and D’Silva [41]. It starts a reachabil-
ity checking with the assumption that all processes are fully symmetric. As each
transition is analyzed, the asymmetries it induces are used to partition the pro-
cesses. Our approach can deduce how an arbitrary transition breaks symmetries
not limited to process symmetries prior to model checking. So combining two
approaches can potentially improve the performance of symmetry reduction.

The main contribution of our work is a new automatic symmetry detection
approach. To the best of our knowledge, our study is the first work to relax all
the syntactic restrictions on the model form, and also the first work to consider
various process symmetries, data symmetries and their combinations. A variety
of case studies showed that the overhead of symmetry detection is negligible.
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APPENDIX

A Transformation of Concurrent Programs

In this subsection, we show a straightforward principle of modeling parallel
programs by means of nondeterministic sequential programs. Here we consider a
simple concurrent specification model, which is however general enough to three
different types of systems with respect to execution patterns, i.e., sequential, par-
allel and distributed systems. Sequential systems execute one action at a time,
possibly nondeterministically; parallel systems may execute multiple actions in
parallel and achieve communication between different processes by shared vari-
ables; distributed systems also may execute actions in parallel but employ a
handshaking mechanisms (like shared actions) for interprocess communication.

We consider a simple but general concurrent specification model in the style
of event-driven processes. Figure 7 lists the syntax of our language. Omitted
rules are identical to those in Figure 2. The language includes two familiar ele-
mentary data types, integer and boolean.!?A system description consists of a set
of global variable declarations, a set of process definitions and one initialization
rule. Component processes of a parallel system are composed by ||| symbol which
denotes that processes run concurrently without barrier synchronization; those
of a distributed system are composed by || symbol which denotes that processes
run concurrently with synchronization on common events. A component process
is defined to be a sequential program with an option list of parameters. It is
composed of a sequence of statements. Each statement may be an event-labeled
statement composed of sub-statements which are atomically executed, an signal
of process termination, if-else conditional choice, while-loop, or nondeterminis-
tically executed statements separated by [J symbol.

The translation function 7 is defined for translating each statement into one
or more sequential programs recursively, separated by [ symbol. The prepara-
tory step of the transformation is to introduce a new integer variable state for
each component process to model its control points. Each atomic statement is
labeled with a distinguished value of state of the form “k :”. For a list of state-
ments, say S, let first(S) be the value of state of its first statement in S and
last(S) be the value of its last statement, and 7(S)(c) denote the transformation
of S and c is the value of state of the successor statement of the last statement
in §. A component process can then be transformed by induction as follows:

— T(k: Skip)(c) := [state = k] — {state := c}
— T(k: {eid){S})(c) := [state = k]{eid) — {S; state :=¢; }
— T({estmty, estmity, - ,estmt,))(c) := T ({estmty))(first({estmia,- - ,estmty,)))
OT ({estmtq))(first({estmts, - - ,estmty,)))
a---
OT ({estmty,))(c)

10 Composite data types, like arrays are excluded for ease of presentation.



(program) ::= (vardecl)™ (prodecl)* (init)
(vardecl) ::= var g
(prodecl) ::= proc(pid)({param-list, | )){({vardecl)* (estmts)}
(estmts) ::= {(estmt-list,” ;' )}
(estmt) ::= (eid){(stmt-list, ;' )}

|Skip
lif((guard)){(estmts)} else{(estmits)}
|while({guard)){({estmts)}
|{estmt)(estmt)

(provef) = (pid) (({args)))
((prore )l {prore )

[(proref)ll[(proref)
(init) ::= init (proref)

Fig. 7: Syntax of Concurrent Language

— T (k : if({guard)){{estmts;)} else{{estmtsa)})(c) :=
[state = k A guard = T| — {state := first({estmtsy))}
O[state = k A guard = F| — {state := first({estmtss))}
O7 ({estmtsy))(c)

OT7 ({estmtsa))(c)

— T (k : while({guard)){{estmts)})(c) :=
[state = k A guard = T| — {state := first({estmts))}
O[state = k A guard = F| — {state := ¢}

OT ((estmts))(k)

Now we can transform a component process P that contains a sequence of state-
ments S1,S2, -, Sy, as follows:

T(P):=T(S1)(c1) OT(S2)(c2) O---OT(Spn)(cn)

Let us now consider the transformation of concurrent composition of two pro-
cesses Py ||| Ps.

T(P[|Pz) =T (Pr) O T(P)

The transforation of the other concurrent composition of processes, P || P,
is slightly complicated, because P; and P; perform lock-step synchronization on
common events. Then for any pair of common-event-labeled statements in P; and
Py, written in (ky : e{S1})(c1) and (k2 : e{S2})(cz), their transformation will
result in one statement, i.e., [state; = ky A states = kale — {S1; Sa; state; :=
c1; states := co}. Other statements are transformed in the same way as P ||| Pe.



It is straightforward to write the sequential program in the format of linear
process specification.

Complexity Analysis For a component process, the transformation takes one
atomic statement at a time and translates it to one statement in the sequen-
tial program. For the interleving/parallel composition of processes, the resulting
program at most has the total number of atomic statements of all processes in
the worst case, the number of parameters are linear to the number of processes.
Thus, the size of the analysis is linear to the number of processes instead of as
exponentially large as the size of generating the state space.

B Proof of Theorem 3

Proof By definition, we must show that (i) if s; — so, then o(s;) o) o(s2),
and (i1) o(init) = init.

Suppose ;1 — so corresponds to the execution of the summand sum of P.
Without loss of generality, we assume there is only one global variable v, in
P and one local variable v; in sum. s; — sy is assumed to denote executing
sum when vy := value; and v; := valuey. That is, when v, := value; and
vy = values, its enabling condition f, is true, event e is executed parameterized
with the return value by its action function f,, and global variables are updated
in its next-state function f, which leads to state so.

Suppose C is the CSP converted from P in Algorithm 3. By Proposition 1,
all the constraints converted from f., fo and f, are satisfied when v, = value;
and v; = valuey. By Theorem 3, o is a constraint symmetry of C. So all of the
constraints from f., f, and f,, are also satisfied when when (v, = value;) and

o(v; = values). Again by Proposition 1, we get o(s1) UL&Q o(s2). Similarly, we
can prove o (init) = init. O

C Proof of Theorem 4

Theorem 4. Let C be a CSP. and C' its corresponding CSP of C after trans-
forming all array writing constraints. Then any constraint symmetry of C' is
also a constraint symmetry of C. a

Proof Assume o is a constraint symmetry of C’. The constraints in C are
separated into two sets: one containing all the array writing constraints S; and
the other containing all the rest constraints Ss; similarly, the constraints in C’
are separated into two sets: one containing all the constraints transformed from
an array writing constraints S7 and the other containing all the rest constraints
S%. Since So and S} are identical, o is also a constraint symmetry for So.

We define a function evals which takes an assignment s and a constraint c,
and returns the satisfaction of ¢ when evaluated as s. Without loss of generality,
we assume there are no multi-dimensional arrays in C. Suppose an array writing
constraint ¢ in Sy is array; [index] = value A (V5 € {0,--- , N —1}.j # index —



array;[j] = arrayolj]). It is transformed into the list L containing N + 1 con-
straints {array;[index] = value,array[0] = arrayol0],--- ,array; [N — 1] =
arrayo[N — 1]} in S]. Let s be an assignment of C. Because all elements of an
array have the same color which is different from that of any other variable.
For any element arrayg[k] where k € {0,--- , N — 1}, o(arrayo[k]) = arrayo[k’]
where k' € {0,--- ,N — 1}. This also applies to elements of array;. There are
three conditions to be considered:

— If the first constraint in L is evaluated to false at s, i.e. evals(array; [index] =
value) = false, then evals(c) = false. Because o is a constraint sym-
metry, eval,(s)(o(arrayi[index] = value)) = eval, (s (array,[o(index)] =
value) = false. So evaly(s)(o(c)) = false.

— Otherwise if there exists ¢ € {0,--- , N — 1} such that evals(array:[i] =
arrayoli]) = false where i # evalg(index), then evals(c) = false. Since
evals(array [i] = arrayo[i]) = false, evals(c) = false and eval,(s) (o (array:[i] =
arrayoli])) = eval, (s (array[o(i)] = arrayolo(i)]) = false. Because i #
evals(index), eval,(s)(0(i)) # evaly(s) (o (index)). Therefore, eval, (4 (o(c)) =
false.

— Otherwise, evals(c) = true. That is, evals(array;[index] = value) = true
and Vj € {0,--- ;N — 1} and j # evals(index) such that evals(array:[j] =
arrayo[j]) = true. Considering o is a constraint symmetry, eval, (s)(o(array; [index] =
value)) = evaly(s)(array[o(index)] = o(value)) = true and Vj € {0,--- , N—

1} and j # evals(index) such that eval,(s)(o(array:[j] = arrayolj])) =
evaly(s)(array[o(j)] = arrayolo(j)]) = true. Because j # eval,(index),
evaly(s)(0(f)) # evaly(s)(o(inder)). So eval,(s) (o (c)) = true.

Therefore, o is also a constraint symmetry of C. ad



