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Abstract. In inference of untimed regular languages, given an unknown
language to be inferred, an automaton is constructed to accept the un-
known language from answers to a set of membership queries each of
which asks whether a string is contained in the unknown language. One
of the most well-known regular inference algorithms is the L∗ algorithm,
proposed by Angluin in 1987, which can learn a minimal deterministic
finite automaton (DFA) to accept the unknown language. In this work,
we propose an efficient polynomial time learning algorithm, TL∗, for
timed regular language accepted by event-recording automata. Given an
unknown timed regular language, TL∗ first learns a DFA accepting the
untimed version of the timed language, and then passively refines time
constraints on the transitions of the DFA. We prove the correctness,
termination, and minimality of the proposed TL∗ algorithm.

1 Introduction

In formal verification such as model checking [4, 11], system models and prop-
erties are assumed to be developed a priori during the verification process. In
practice, however, modeling a system appropriately is not an easy task because
if the model is too abstract, then it may not describe the exact behavior of the
system; if the model is too detailed, it suffers from the state space explosion
problem. Thus an automatic inference or construction of abstract model is very
helpful for system development.

In 1987, Angluin [3, 12] proposed a learning algorithm, L∗, for inference of
regular languages. Given an unknown language U to be inferred, the L∗ algorithm
learns a minimal deterministic finite automaton (DFA) to accept U from answers
to a set of membership queries each of which asks whether a string is contained
in the unknown language U .

After the L∗ algorithm was proposed, it is widely used in several research
fields. The most impressive one is that Cobleigh et al. [5] used the L∗ algorithm
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to automatically generate the assumptions needed in assume-guarantee reason-
ing (AGR), which can alleviate the state explosion problem of model checking.
Another interesting work is that Lin and Hsiung proposed an automatic com-
positional synthesis framework, CAGS [9], based on the L∗ algorithm. Given a
system modeled by a set of component models and a user given property, if the
system does not satisfy the property, CAGS uses the L∗ algorithm to synthesize
each component model such that the refined system satisfies the given property.

However, there were at most no extensions of the learning algorithm to
inference timed regular languages until 2004, Grinchtein et al. [7] proposed a
learning algorithm for event-recording automata [2] based on the L∗ algorithm.
Grinchtein’s learning algorithm, TL∗sg, uses region construction to actively guess
all possible time constraints for each untimed word. That is, each original mem-
bership query of an untimed word in L∗ gives rise to several membership queries
of timed words with possible time constraints, which increases the number of
membership queries exponentially to the largest constant appearing in the time
constraints.

In this work, we propose an efficient polynomial time learning algorithm
TL∗ for timed regular languages accepted by event-recording automata. Event-
recording automata (ERA) [2] are a determinizable subclass of timed automata
[1] and are sufficiently expressive to model many interesting timed systems. Be-
cause of its determinizability, a timed language accepted by an ERA can be
classified into finite number of classes (each class can be represented by a lo-
cation of an ERA). Thus we focus on learning timed languages accepted by
ERA. Given a timed regular language UT accepted by ERA, TL∗ first learns
a DFA M accepting U (the untimed version of UT ) and then passively refines
the time constraints on the transitions of M . Thus the number of membership
queries required by TL∗ is much smaller than that of Grinchtein’s algorithm.
We prove that the TL∗ algorithm will correctly learn an ERA accepting the
unknown language UT after a finite number of iterations. Further, we also prove
the minimality of our TL∗ algorithm, i.e., the number of locations of the ERA
learned by TL∗ is minimal.

The rest of this paper is organized as follows: Section 2 gives some prelimi-
nary knowledge and introduces the L∗ algorithm. The proposed efficient learning
algorithm, TL∗, is described in Section 3. The conclusion and future work are
given in Section 4.

2 Preliminaries

We give some background knowledge about timed languages and event-recording
automata in Section 2.1 and introduce the L∗ algorithm in Section 2.2.

2.1 Timed Languages and Event-Recording Automata

Let Σ be a finite alphabet. A timed word over Σ is a finite sequence wt =
(a1, t1)(a2, t2) . . . (an, tn) of symbols ai ∈ Σ for i ∈ {1, 2, . . . , n} that are paired



with nonnegative real numbers ti ∈ R+ such that the sequence t = t1t2 . . . tn of
time-stamps is nondecreasing. Sometimes we denote the timed word wt by the
pair (a, t), where a = a1a2 . . . an ∈ Σ∗ is an untimed word over Σ. For every
symbol a ∈ Σ, we use xa to denote the event-recording clock of a [2]. Intuitively,
xa records the time elapsed since the last occurrence of the symbol a. We use
CΣ to denote the set of event-recording clocks over Σ, i.e., CΣ = {xa | a ∈ Σ}.
A clock valuation γ : CΣ 7→ R+ assigns a nonnegative real number to an event-
recording clock.

A clocked word over Σ is a finite sequence wc = (a1, γ1)(a2, γ2) . . . (an, γn) of
symbols ai ∈ Σ for i ∈ {1, 2, . . . , n} that are paired with clock valuations γi such
that γ1(xa) = γ1(xb) for all a, b ∈ Σ and γi(xa) = γi−1(xa) + γi(xai−1

) when
1 < i ≤ n and a 6= ai−1. Each timed word wt = (a1, t1)(a2, t2) . . . (an, tn) can be
naturally transformed into a clocked word cw(wt) = (a1, γ1)(a2, γ2) . . . (an, γn)
where γi(xa) = ti if aj 6= a for 1 ≤ j < i; γi(xa) = ti − tj if there exists aj such
that aj = a for 1 ≤ j < i and ak 6= a for j < k < i. Sometimes we denote the
clocked word wc by the pair (a, γ), where a = a1a2 . . . an ∈ Σ∗ is an untimed
word over Σ and γ = γ1γ2 . . . γn is the sequence of clock valuations.

A clock constraint ϕ is a conjunction of atomic constraints of the forms xa ∼ n
and xa−xb ∼ n for xa, xb ∈ CΣ , ∼∈ {<,≤,≥, >}, and n ∈ N. A clock constraint
ϕ identifies a |Σ|-dimensional polyhedron JϕK ⊆ (R+)|Σ|.

A clock guard g is a conjunction of atomic constraints of the form xa ∼ n,
for xa ∈ CΣ , ∼∈ {<,≤, >,≥}, and n ∈ N. A clock guard g identifies a |Σ|-
dimensional hypercube JgK ⊆ (R+)|Σ|. We use GΣ to denote the set of clock
guards over CΣ . A guarded word is a sequence wg = (a1, g1)(a2, g2) . . . (an, gn)
where ai ∈ Σ for i ∈ {1, 2, . . . , n} and gi ∈ GΣ is a clock guard. For a clocked
word wc = (a1, γ1)(a2, γ2) . . . (an, γn), we use wc |= wg to denote γi |= gi for all
i ∈ {1, 2, . . . , n}. Sometimes we denote the guarded word wg by the pair (a, g),
where a = a1a2 . . . an ∈ Σ∗ is an untimed word over Σ and g = g1g2 . . . gn is the
sequence of clock guards.

Definition 1. (Event-Recording Automata) [2]. An event-recording automa-
ton (ERA) D = (Σ,L, l0, δ, L

f ) consists of a finite input alphabet Σ, a finite set
L of locations, an initial location l0 ∈ L, a set Lf of accepting locations, and a
transition function δ :⊆ L×Σ×GΣ 7→ 2L. An ERA is deterministic if δ(l, a, g)
is a singleton set when it is defined, and when both δ(l, a, g1) and δ(l, a, g2) are
both defined then Jg1K ∩ Jg2K = ∅, where l ∈ L, a ∈ Σ, and g1, g2 ∈ GΣ.

Note that in ERA each event-recording clock xa ∈ CΣ is implicitly and
automatically reset when a transition with event a is taken, which gives a
good characteristic that each non-deterministic ERA can be determinized by
subset construction [2]. Fig. 1 (a) gives a deterministic ERA A1 accepting
the timed word (a∗, t) = (a, t1)(a, t2)(a, t3)(a, t4) . . . = (a, 1)(a, 4)(a, 5)(a, 8) . . .,
where t2i = t2i−1 + 3 and t2i+1 = t2i + 1 for i ∈ N. We can also use a clocked
word (a∗, γ) = (a, γ1)(a, γ2)(a, γ3)(a, γ4) . . . to represent the timed word (a∗, t)
such that γ2i−1(xa) = 1 and γ2i(xa) = 3 for i ∈ N. Or we can use a guarded
word (a∗, g) = (a, g1)(a, g2)(a, g3)(a, g4) . . . to represent the timed word (a∗, t)
such that g2i−1 = (xa = 1) and g2i = (xa = 3) for i ∈ N.
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l1 l2 τ
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(b) Com(A1)

Fig. 1. Timed Language to be Learned

Definition 2. (Complete Deterministic ERA). A deterministic ERA D =
(Σ,L, l0, δ, L

f ) is said to be complete if for all l ∈ L and for all a ∈ Σ, δ(l, a, gi)
is defined for all i ∈ {1, 2, . . . , n} such that Jg1K ∪ Jg2K ∪ . . . ∪ JgnK = JtrueK.

If a deterministic ERA D is not complete, we can always construct a com-
plete deterministic ERA Com(D) = (Σ,L ∪ {τ}, l0, δ′, Lf ) such that L(D) =
L(Com(D)), where τ is an additional dead state and δ′ is defined as follows:
δ′(l, a, g) = δ(l, a, g) if δ(l, a, g) is defined; otherwise, δ′(l, a, g) = τ . Fig. 1 (b)
shows the complete deterministic ERA Com(A1) of A1.

2.2 The L∗ Algorithm

The L∗ algorithm [3, 12] is a formal method to learn a minimal DFA (with
the minimal number of locations) that accepts an unknown language U over
an alphabet Σ. During the learning process, the L∗ algorithm interacts with a
Minimal Adequate Teacher (Teacher for short) to make two types of queries:
the membership and candidate queries. A membership query for a string σ is
a function Qm such that if σ ∈ U , then Qm(σ) = 1; otherwise, Qm(σ) = 0.
A candidate query for a DFA M is a function Qc such that if L(M) = U ,
then Qc(M) = 1; otherwise, Qc(M) = 0. During the learning process, the L∗

algorithm stores the membership query results in an observation table (S,E, T )
where S ⊆ Σ∗ is a set of prefixes, E ⊆ Σ∗ is a set of suffixes, and T : (S ∪ S ·
Σ) × E 7→ {0, 1} is a mapping function such that if s · e ∈ U , then T (s, e) = 1;
otherwise, i.e., s ·e /∈ U , then T (s, e) = 0, where s ∈ (S∪S ·Σ) and e ∈ E. In the
observation table, the L∗ algorithm categorizes strings based on Myhill-Nerode
Congruence [8], as formulated in Definition 3.

Definition 3. Myhill-Nerode Congruence. For any two strings σ, σ′ ∈ Σ∗,
we say they are equivalent, denoted by σ ≡ σ′, if σ · ρ ∈ U ⇔ σ′ · ρ ∈ U , for all
ρ ∈ Σ∗. Under the equivalence relation, we can say σ and σ′ are the representing
strings of each other, denoted by σ = [σ′]r and σ′ = [σ]r.

The L∗ algorithm will always keep the observation table closed and consistent.
An observation table is closed if for all s ∈ S and α ∈ Σ, there always exists
s′ ∈ S such that s · α ≡ s′. An observation table is consistent if for every two
elements s, s′ ∈ S such that s ≡ s′, then (s · α) ≡ (s′ · α) for all α ∈ Σ. If
the observation table (S,E, T ) is closed and consistent, the L∗ algorithm will

construct a corresponding candidate DFA C = (ΣC , LC , l
0
C , δC , L

f
C) such that



ΣC = Σ, LC = S, l0C = {λ}, δC(s, α) = [s · α]r for s ∈ S and α ∈ Σ, and LfC =
{s ∈ S | T (s, λ) = 1}. Subsequently, the L∗ algorithm will make a candidate
query for C.

If QC(M) = 0, i.e., L(C) 6= U , then Teacher will give a counterexample
σce. The counterexample σce is positive if σce ∈ L(U) \ L(C); negative if σce ∈
L(C) \ L(U). The L∗ algorithm will analyze the counterexample σce to find the
witness suffix. For two strings that are classified by L∗ into an equivalence class, a
witness suffix is a string that when appended to the two strings provides enough
evidence for the two strings to be classified into two different equivalence classes
under the Myhill-Nerode Congruence. Given an observation table (S,E, T ) and
a counterexample σce given by Teacher, we define an i-decomposition query of
σce, denoted by Qim(σce), as follows: Qim(σce) = Qm([ui]r ·vi) where σce = ui ·vi
is a decomposition of σce such that |ui| = i, and [ui]r is the representing string
of ui in S. The witness suffix of σce, denoted by WS(σce), is the suffix vi of
the decomposition of σce such that Qim(σce) 6= Q0

m(σce). Once the witness suffix
WS(σce) is obtained, L∗ uses WS(σce) to refine the candidate DFA C until
L(C) = L(U). The pseudo-code of the L∗ algorithm is given in Algorithm 1.

Algorithm 1: L∗ Algorithm

input : Σ: alphabet
output: a DFA accepting the unknown language U

1 Let S = E = {λ} ;
2 Update T by Qm(λ) and Qm(λ · α), for all α ∈ Σ ;
3 while true do
4 while there exists (s · α) such that (s · α) 6≡ s′ for all s′ ∈ S do
5 S ←− S ∪ {s · α} ;
6 Update T by Qm((s · α) · β), for all β ∈ Σ ;

7 Construct candidate DFA M from (S,E, T ) ;
8 if Qc(M) = 1 then return M ;
9 else

10 σce ←− the counterexample given by Teacher ;
11 v ←− WS(σce) ;
12 E ←− E ∪ {v} ;
13 Update T by Qm(s · v) and Qm(s · α · v), for all s ∈ S and α ∈ Σ ;

We use an example to illustrate how the L∗ algorithm works to learn a
minimal DFA accepting an unknown language. Suppose the unknown language
U = (a|b|c) · a∗ over Σ = {a, b, c} needs to be learned. Initially, S and E are
initialized to {λ} and then the membership queries of λ, a, b, and c are performed.
At this point, the observation table with S = {λ}, E = {λ} is shown in Fig. 2 (a).
The observation table now is not closed because there is not any s ∈ S such that
a ≡ s. So, a is added into S, and then the membership queries of aa, ab, and ac
are performed respectively. At this point, the observation table with S = {λ, a},



E = {λ} is closed as shown in Fig. 2 (b). The corresponding DFA M1 is shown
in Fig. 2 (c). The candidate query of M1 is performed.

However, Teacher gives a negative counterexample abc that is accepted by
M1 but not in U . The L∗ algorithm analyzes the negative counterexample abc
to get the witness suffix as follows: Q0

m(abc) = 0. Q1
m(abc) = Qm([a]r · bc) =

Qm(abc) = 0, Q2
m(abc) = Qm([ab]r · c) = Qm(λ · c) = Qm(c) = 1 6= Q0

m(abc).
After analyzing the counterexample abc, the witness suffix is c. So, c is added into
E, and the membership queries of c, ac, bc, cc, aac, abc, and acc are performed.
The observation table now with S = {λ, a}, E = {λ, c} is shown in Fig. 3 (a).
However, the observation table is not closed because there is no s ∈ S such that
ab ≡ s. So, ab is added into S, and then the membership queries of aba, abb, abc,
abac, abbc, and abcc are performed. At this point, the observation table with
S = {λ, a, ab}, E = {λ, c} is closed as shown in Fig. 3 (b). The corresponding
DFA M2 is shown in Fig. 3 (c) and L(M2) = U .

λ
λ 0 (s0)
a 1
b 1
c 1

(a)

λ
λ 0 (s0)
a 1 (s1)
b 1
c 1

a · a 1
a · b 0
a · c 0

(b)

0 1
a, b, c

a

b, c

(c)

Fig. 2. L∗ Observation Table and Candidate DFA M1

λ c
λ 0 1 (s0)
a 1 0 (s1)
b 1 0
c 1 0

a · a 1 0
a · b 0 0
a · c 0 0

(a)

λ c
λ 0 1 (s0)
a 1 0 (s1)
b 1 0
c 1 0

a · a 1 0
a · b 0 0 (s2)
a · c 0 0
ab · a 0 0
ab · b 0 0
ab · c 0 0

(b)

01 10 00
a, b, c

a

b, c

a, b, c

(c)

Fig. 3. L∗ Observation Table and Candidate DFA M2

AssumeΣ is the alphabet of the unknown regular language U and the number
of states of the minimal DFA is n. The L∗ algorithm needs n−1 candidate queries
and O(|Σ|n2 + n logm) membership queries to learn the minimal DFA, where
m is the length of the longest counterexample returned by Teacher. Angluin [3]
proved that as long as the unknown language U is regular, the L∗ algorithm
will learn a complete minimal DFA M such that L(M) = U in at most n − 1
iterations.



3 An Efficient Algorithm for Learning Event-Recording
Automata

The intuition behind the L∗ algorithm is to classify untimed words into finite
number of classes by performing membership queries, and each class can be
represented by a location of a DFA. Because event-recording automata (ERA)
are determinizable, therefore a timed language accepted by an ERA can also be
classified into finite number of classes. The proposed TL∗ algorithm also tries
to find the finite number of classes (locations). Section 3.1 introduces the TL∗

algorithm, and its analysis is given in Section 3.2.

3.1 The TL∗ Algorithm

Given a timed language UT , the proposed TL∗ algorithm interacts with a timed
Teacher to make two types of queries: the timed membership and timed candidate
queries. A timed membership query for a guarded word wg is a function QmT

such that QmT (wg) = 1 if wg ∈ UT ; otherwise QmT (wg) = 0. A timed candidate
query for an ERA M is a function QcT such that QcT (M) = 1 if L(M) = UT ;
otherwise, QcT (M) = 0.

The idea behind the TL∗ algorithm is to first learn a DFA M accepting
Untime(UT ), the untimed language with respect to UT , and then to refine the
time constraints on the transitions of M . Therefore, TL∗ consists of two phases,
namely the untimed learning phase and the timed refinement phase. Algorithm 2
gives the pseudo-code of TL∗. The details of TL∗ are described as follows.

Untimed Learning. In this phase, the L∗ algorithm is used to learn a DFA
M accepting the untimed language Untime(UT ) with respect to UT (Line 1). The
observation table (S,E, T ) constructed in the learning process of L∗ is reserved
for the timed refinement phase (Line 2).

Timed Refinement. In this phase, the TL∗ algorithm tries to refine the
time constraints on the transitions of the DFA M learned in the untimed learning
phase. It performs the following steps:

1. Modify the untimed alphabet into timed alphabet, i.e., replace α by (α, true)
for each α ∈ Σ. Modify all untimed prefixes (rows) and suffixes (columns) in
the observation table (S,E, T ) into timed versions, i.e., replace s by (s, true),
s·α by (s, true)(α, true), and e by (e, true) for each s ∈ S, α ∈ Σ, and e ∈ E,
respectively. (Line 3)

2. Perform the candidate query for the ERA M . If the answer is “yes”, then the
ERA M accepts the language UT to be learned, and M is returned. (Line 5)

3. If the answer to the candidate query for M is “no” with a counterexample
(a1, g1)(a2, g2) · · · (an, gn) given by Teacher, TL∗ will split prefixes (rows) and
suffixes (columns) in the observation table as follows. If a prefix p ∈ S∪(S ·Σ)
or a suffix e ∈ E in the observation table has a substring of the form (ai, g)
for some i ∈ {1, 2, . . . , n} and JgiK ⊂ JgK, then JgK is partitioned using gi
such that JgK = JgiK∪G where G = {ĝ1, ĝ2, . . . , ĝm} is obtained by JgK− JgiK
using DBM subtraction [10]. The prefix p is split into {p̂0, p̂1, p̂2, . . . , p̂m}



Algorithm 2: TL∗ Algorithm

input : Σ: alphabet, CΣ : the set of event-recording clocks
output: a deterministic ERA accepting the unknown timed language UT

1 Use L∗ to learn a DFA M accepting Untime(UT ) ;
2 Let (S,E, T ) be the observation table during the L∗ learning process ;
3 Replace α by (α, true), s by (s, true), and e by (e, true) for each α ∈ Σ, s ∈ S

and e ∈ E;
4 while true do
5 if QTc (M) = 1 then return M ;
6 else
7 Let (a1, g1)(a2, g2) · · · (an, gn) be the counterexample given by Teacher ;
8 foreach (ai, gi), i ∈ {1, 2, . . . , n} do
9 if (ai, g) is a substring of p or e for some p ∈ S ∪ (S ·Σ) and e ∈ E

such that JgiK ⊂ JgK then
10 Let G = {ĝ1, ĝ2, . . . , ĝm} obtained by JgK− JgiK ;
11 Σ = Σ \ {(ai, g)} ∪ {(ai, gi), (ai, ĝ1), (ai, ĝ2), . . . , (ai, ĝm)} ;
12 Split p into {p̂0, p̂1, p̂2, . . . , p̂m} where (ai, gi) is a substring of p̂0

and (ai, ĝj) is a substring of p̂j for all j ∈ {1, 2, . . . ,m} ;
13 Split e into {ê0, ê1, ê2, . . . , êm} where (ai, gi) is a substring of ê0

and (ai, ĝj) is a substring of êj for all j ∈ {1, 2, . . . ,m} ;
14 Update T by QmT (p̂j · êj) for all j ∈ {0, 1, 2, . . . ,m} ;

15 while there exists (s · α) such that s · α 6≡ s′ for all s′ ∈ S do
16 S ←− S ∪ {s · α} ;
17 Update T by QmT ((s · α) · β) for all β ∈ Σ ;

18 v ←−WS((a1, g1)(a2, g2) · · · (an, gn)) ;
19 if |v| > 0 then
20 E ←− E ∪ {v} ;
21 Update T by QmT (s · v) and QmT (s · α · v) for all s ∈ S and α ∈ Σ ;

22 Construct candidate M from (S,E, T ) ;

where (ai, gi) is a substring of p̂0 and (ai, ĝj) is a substring of p̂j for all
j ∈ {1, 2, . . . ,m}. Similarly, the suffix e is also split into {ê0, ê1, ê2, . . . , êm}
where (ai, gi) is a substring of ê0 and (ai, ĝj) is a substring of êj for all
j ∈ {1, 2, . . . ,m}. Then the observation table is updated by performing the
timed membership queries QmT (p̂j · êj) for all j ∈ {0, 1, 2, . . . ,m}. (Lines
7-14)

4. Check whether the observation table (S,E, T ) is closed. If there is a prefix
s · α with no s′ ∈ Σ such that s · α ≡ s′ for some s ∈ S and α ∈ Σ, the
observation table is not closed, and s · α is added into the set of prefixes S.
Then the observation table is updated by performing the timed membership
queries QmT (s · α · β) for all β ∈ Σ. (Lines 15-17)

5. Analyze the counterexample to find the witness suffix v. For a counterexam-
ple π given by Teacher and the observation table (S,E, T ), we also define
an i-decomposition query of the guarded word π, denoted by QimT (π), as



follows: QimT (π) = QmT ([ui]r · vi) where π = ui · vi is a decomposition of π
such that |ui| = i and [ui]r is the representing string of ui in S. The witness
suffix of π, denoted by WS(π), is the suffix vi of the decomposition of π such
that QimT (π) 6= Q0

mT (π). If there is a witness suffix vi, i.e., |vi| > 0, then vi
is added into the set of suffixes E, and the observation table is updated by
performing the timed membership queries QmT (s · vi) and QmT (s ·α · vi) for
each s ∈ S and α ∈ Σ. (Lines 18-21)

6. Construct the ERA M = (ΣM , LM , l
0
M , δM , L

f
M ) from the observation table

(S,E, T ) such that ΣM = Σ, LM = S, l0M = {λ}, δM (s, a) = [s ·a]r for s ∈ S
and a ∈ Σ, and LfM = {s ∈ S | T (s, λ) = 1}. Goto Step 3. (Line 22)

We use an example to illustrate the TL∗ algorithm. Suppose the timed lan-
guage UT to be learned is accepted by the ERA A1 as shown in Fig. 1 (a). In
the untimed learning phase, the L∗ algorithm is used to learn the DFA M1, as
shown in Fig. 4 (c), accepting the untimed language a∗, and the observation
table (S,E, T ) obtained by L∗ is shown in Fig. 4 (a). At this time, Σ = {a},
S = {λ}, and E = {λ}.

λ
λ 1 (s0)
a 1

(a) T1

λ
λ 1 (s0)

(a, true) 1

(b) T2

1

a

(c) M1

Fig. 4. Untimed Learning Phase

In the timed refinement phase, TL∗ first modifies the alphabet and the ob-
servation table into timed version. At this time,Σ = {(a, true)}, S = {(λ, true)},
and E = {(λ, true)}. The current timed observation table T2 is shown in Fig. 4 (b).
Then, TL∗ performs the timed candidate query for the first candidate ERA M1.
However, the answer to the candidate query is “no”, and Teacher gives a negative
counterexample (a, xa < 1) ∈ L(M1) \ L(UT ). Because there is a prefix (a, true)
in the observation such that Jxa < 1K ⊂ JtrueK, the prefix (a, true) is split into
(a, xa < 1) and (a, xa ≥ 1), and the timed membership queries for (a, xa < 1)
and (a, xa ≥ 1) are performed, respectively. The current observation table T3
is shown in Fig. 5 (a). However, T3 is not closed because there is (a, xa < 1)
with no s ∈ S such that s ≡ (a, xa < 1), so (a, xa < 1) is added into S and the
membership queries for (a, xa < 1)(a, xa < 1) and (a, xa < 1)(a, xa ≥ 1) are per-
formed, respectively. The closed observation table T4 is shown in Fig. 5 (b), and
the corresponding ERA M2 is constructed as shown in Fig. 5 (c). At this time,
Σ = {(a, xa < 1), (a, xa ≥ 1)}, S = {(λ, true), (a, xa < 1)}, and E = {(λ, true)}.

In the second iteration of the timed refinement phase, TL∗ performs the
timed candidate query for M2. However, the answer is still “no” with a positive
counterexample (a, xa = 1) ∈ L(UT ) \ L(M2). Because there are two prefixes
(a, xa ≥ 1) and (a, xa < 1)(xa ≥ 1) in the observation table (S,E, T ) such



λ
λ 1 (s0)

(a, xa < 1) 0
(a, xa ≥ 1) 0

(a) T3

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa ≥ 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa ≥ 1) 0

(b) T4

1 0
a

a

(c) M2

Fig. 5. Timed Refinement 1

that Jxa = 1K ⊂ Jxa ≥ 1K, the prefix (a, xa ≥ 1) is split into (a, xa = 1) and
(a, xa > 1), and the prefix (a, xa < 1)(xa ≥ 1) is split into (a, xa < 1)(xa = 1)
and (a, xa < 1)(xa > 1), respectively. The timed membership queries for the
new prefixes are performed. The current closed observation table T5 is shown in
Fig. 6 (a), and the corresponding ERA M3 is shown in Fig. 6 (b). At this time,
Σ = {(a, xa < 1), (a, xa = 1), (a, xa > 1)}, S = {(λ, true), (a, xa < 1)}, and
E = {(λ, true)}.

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa = 1) 1
(a, xa > 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa = 1) 0
(a, xa < 1)(a, xa > 1) 0

(a) T5

1 0

a[xa = 1]

a[xa 6= 1]

a

(b) M3

Fig. 6. Timed Refinement 2

In the third iteration of the timed refinement phase, TL∗ performs the timed
candidate query for the ERA M3. However, the answers is still “no” with a
negative counterexample π = (a, xa = 1)(a, xa = 1) ∈ L(M3) \ L(UT ). This
time, no prefix or suffix in the observation table has to be split. TL∗ analyzes
the counterexample as follows. Q0

mT (π) = QmT ((a, xa = 1)(a, xa = 1)) = 0.
Q1
mT (π) = Q1

mT ([(a, xa = 1)]r(a, xa = 1)) = QmT ((a, xa = 1)) = 1 6= Q0
mT (π).

Thus, we have a witness suffix v = (a, xa = 1), and v is added into the set of
suffixes E. Then the timed membership queries for s ·(a, xa = 1) for all s ∈ S are
performed, and the current observation table T6 is shown in Fig. 7 (a). However,
the observation table T6 is not closed because there is a prefix (a, xa = 1)
with no s ∈ S such that s ≡ (a, xa = 1), so (a, xa = 1) is added into the
set of prefixes S and the timed membership queries for (a, xa = 1) · α for all
α ∈ Σ are performed. The closed observation table T7 is shown in Fig. 7 (b),
and the corresponding ERA M4 is shown in Fig. 7 (c). At this time, Σ =
{(a, xa < 1), (a, xa = 1), (a, xa > 1)}, S = {(λ, true), (a, xa < 1), (a, xa = 1)},
and E = {(λ, true), (a, xa = 1)}.

In the fourth iteration of the timed refinement phase, TL∗ performs the
timed candidate query for the ERA M4 again. However, the answer is still “no”
with a positive counterexample π = (a, xa = 1)(a, xa = 3) ∈ L(UT ) \ L(M4).



λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0

(a) T6

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0
(a, xa = 1)(a, xa > 1) 0 0

(b) T7

11 10 00
a[xa = 1] a

a[xa 6= 1] a

(c) M4

Fig. 7. Timed Refinement 3

Because there are three prefixes (a, xa > 1), (a, xa < 1)(a, xa > 1), and (a, xa =
1)(a, xa > 1) in the observation table such that Jxa = 3K ⊂ Jxa > 1K, the
prefix (a, xa > 1) is split into three prefixes (a, 1 < xa < 3), (a, xa = 3),
and (a, xa > 3); the prefix (a, xa < 1)(a, xa > 1) is split into three prefixes
(a, xa < 1)(a, 1 < xa < 3), (a, xa < 1)(a, xa = 3), and (a, xa < 1)(a, xa >
3); the prefix (a, xa = 1)(a, xa > 1) is also split into three prefixes (a, xa =
1)(a, 1 < xa < 3), (a, xa = 1)(a, xa = 3), and (a, xa = 1)(a, xa > 3). The
timed membership queries for the new split prefixes concatenated with e for all
e ∈ E are performed. Then the TL∗ algorithm analyzes the counterexample.
Since Q0

mT (π) = Q1
mT (π) = Q2

mT (π), therefore there is no witness suffix for π.
The closed observation table T8 is shown in Fig. 8 (a), and it corresponding ERA
M5 is constructed as shown in Fig. 8 (b). At this time, Σ = {(a, xa < 1), (a, xa =
1), (a, 1 < xa < 3), (a, xa = 3), (a, xa > 3)}, E = {(λ, true), (a, xa < 1), (a, xa =
1)}, and E = {(λ, true), (a, xa = 1)}.

In the fifth iteration of the timed refinement, TL∗ performs the timed candi-
date query for M5. This time, Teacher says that L(M5) = UT , and the learning
process of TL∗ is finished.

3.2 Analysis of the TL∗ Algorithm

The time complexity of TL∗ is analyzed as follows. Given a timed language
UT accepted by a deterministic ERA A = (Σ,L, l0, δ, L

f ), the TL∗ algorithm
learns Com(A) to accept UT . In the learning process of TL∗, each untimed
word (α, true) for α ∈ Σ might be split into |GA| timed words, where GA
is the set of clock zones partitioned by the clock guards appearing in A. For
example, the clock guards appearing in A1, as shown in Fig. 1 (a), are xa = 1
and xa = 3, so GA = {xa < 1, xa = 1, 1 < xa < 3, xa = 3, xa > 3}. Thus, each
membership query of untimd word (a, true) gives rise to |GA| timed membership
queries. Totally, TL∗ needs to perform O(|Σ|·|GA|·|L|2+|L| log |π|) membership



λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)

(a, 1 < xa < 3) 0 0
(a, xa = 3) 0 0
(a, xa > 3) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0

(a, xa < 1)(a, 1 < xa < 3) 0 0
(a, xa < 1)(a, xa = 3) 0 0
(a, xa < 1)(a, xa > 3) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0

(a, xa = 1)(a, 1 < xa < 3) 0 0
(a, xa = 1)(a, xa = 3) 1 1
(a, xa = 1)(a, xa > 3) 0 0

(a) T8

11 10 00
a[xa = 1] a[xa 6= 3]

a[xa = 3]

a[xa 6= 1]

a

(b) M5

Fig. 8. Timed Refinement 4

queries to learn Com(A), where π is the counterexamples given by Teacher. After
a candidate query of a candidate ERA M , TL∗ either adds a location into M or
splits a clock guard on a transition of M into at least two clock guards. Thus,
TL∗ needs to perform O(|L|+ |Σ| · |GA|) to learn Com(A) accepting UT .

Theorem 1 proves the correctness of the TL∗ algorithm, and the termination
of the TL∗ algorithm is proved in Theorem 2.

Theorem 1. The TL∗ algorithm is correct.

Proof. Let UT be the timed language and M be the ERA learned by TL∗. We
want to prove that L(M) = UT holds, i.e., L(M) ⊆ UT and UT ⊆ L(M). Let’s
prove L(M) ⊆ UT by contradiction. Assume L(M) \ UT 6= ∅, which implies
QcT (M) = 0. However, this contradicts to the fact that M is returned by TL∗

because QcT (M) = 1. Let’s prove UT ⊆ L(M) also by contradiction. Assume
UT \ L(M) 6= ∅, which implies QcT (M) = 0. However, this also contradicts to
the fact that M is returned by TL∗ because QcT (M) = 1. ut

Theorem 2. The TL∗ algorithm terminates.

Proof. Let UT be the unknown timed language. Assume that UT is accepted by a
hypothetic deterministic ERA A = (Σ,L, l0, δ, L

f ). In the learning process, TL∗

will constructively modify the observation table such that the final observation
table is consistent with Com(A). After each timed candidate query of a candidate
ERA M , TL∗ either adds a location into M or splits a guarded word (a, g) on
a transition of M into several guarded words (a, g1), (a, g2), . . . (a, gn) such that
JgK = Jg1K∪ Jg2K∪ . . .∪ JgnK. Let GA be the set of clock zones partitioned by the
clock guards appearing in A. At last, each split clock guard gi will belongs to
GA for all i ∈ {1, 2, . . . , n}. Since both |L| and |GA| are finite, the TL∗ algorithm
will terminate after O(|L|+ |Σ| · |GA|) iterations. ut

Theorem 3 proves the minimality of the TL∗ algorithm, i.e., given an un-
known timed language UT , the number of locations of the ERA M learned by
the TL∗ algorithm is minimum among all ERAs M ′ such that L(M ′) = UT .



Theorem 3. Assume the observation table (S,E, T ) is closed and consistent
and M = (Σ,L, l0, δ, Lf ) is the ERA constructed from the observation table
(S,E, T ). If M ′ = (Σ,L′, l0

′
, δ′, Lf

′
) is any other ERA consistent with T , then

M ′ has at least |L| locations.

Proof. Before we prove this theorem, let us first formally define the membership
query results of a row in the observation table. If p ∈ S∪(S ·Σ) is a prefix (row) of
the observation table, we use row(p) to denote the finite function f : E 7→ {0, 1}
defined by f(e) = T (p · e) for e ∈ E. Because M ′ is consistent with T , therefore
for each p ∈ S ∪ (S · Σ) and for each e ∈ E, δ′(l0

′
, p · e) ∈ Lf ′ iff T (p · e) = 1,

which means that δ′(δ′(l0
′
, p), e) ∈ Lf ′ iff T (p, e) = 1, so row(δ′(l0

′
, p)) is equal

to row(p). Since p ranges over L and row(δ′(l0
′
, p)) ranges over L′, so |L′| ≥ |L|,

i.e., M ′ must have at least |L| locations. ut

λ (a, xa = 3)
λ 1 0 (s0)

(a, xa = 0) 0 0 (s1)
(a, xa = 1) 1 1 (s2)
(a, xa = 2) 0 0
(a, xa = 3) 0 0
(a, xa ≥ 3) 0 0

(a, 0 ≤ xa ≤ 1) 0 0
(a, 1 ≤ xa ≤ 2) 0 0
(a, 2 ≤ xa ≤ 3) 0 0
(a, 0 ≤ xa ≤ 2) 0 0
(a, 1 ≤ xa ≤ 3) 0 0
(a, 0 ≤ xa ≤ 3) 0 0

(a, xa = 0)(a, xa = 0) 0 0
(a, xa = 0)(a, xa = 1) 0 0
(a, xa = 0)(a, xa = 2) 0 0
(a, xa = 0)(a, xa = 3) 0 0
(a, xa = 0)(a, xa ≥ 3) 0 0

(a, xa = 0)(a, 0 ≤ xa ≤ 1) 0 0
(a, xa = 0)(a, 1 ≤ xa ≤ 2) 0 0
(a, xa = 0)(a, 2 ≤ xa ≤ 3) 0 0
(a, xa = 0)(a, 0 ≤ xa ≤ 2) 0 0
(a, xa = 0)(a, 1 ≤ xa ≤ 3) 0 0
(a, xa = 0)(a, 0 ≤ xa ≤ 3) 0 0

(a, xa = 1)(a, xa = 0) 0 0
(a, xa = 1)(a, xa = 1) 0 0
(a, xa = 1)(a, xa = 2) 0 0
(a, xa = 1)(a, xa = 3) 1 0
(a, xa = 1)(a, xa ≥ 3) 0 0

(a, xa = 1)(a, 0 ≤ xa ≤ 1) 0 0
(a, xa = 1)(a, 1 ≤ xa ≤ 2) 0 0
(a, xa = 1)(a, 2 ≤ xa ≤ 3) 0 0
(a, xa = 1)(a, 0 ≤ xa ≤ 2) 0 0
(a, xa = 1)(a, 1 ≤ xa ≤ 3) 0 0
(a, xa = 1)(a, 0 ≤ xa ≤ 3) 0 0

(a)

10 11 00
a[xa = 1] a[xa 6= 3]

a[xa = 3]

a[xa 6= 1]

a

(b)

Fig. 9. Grinchtein’s TL∗sg Algorithm

Comparison. Since Grinchtein et al. [6, 7] did not implement the TL∗sg algo-
rithm, to be fair, let us compare our TL∗ algorithm with TL∗sg from a theoretical
point of view. TL∗sg uses region construction to actively guess all possible time



constraints for an untimed word, so an original untimed membership query in
L∗ gives rise to several membership queries of time words. The number of timed
membership queries required by the TL∗sg algorithm is O(|Σ × GΣ | · n2|π| ·
|w|

(|Σ|+K
|Σ|

)
) where n is the number of locations of the learned ERA, π is the

counterexample given by Teacher, w is the longest guarded word queried, and K
is the largest constant appearing in the clock guards. We can observe that the
number of timed membership queries required by Grinchtein’s TL∗sg algorithm
increases exponentially to the largest constant K and the number of alpha-
bet |Σ|. To learn the timed language accepted by A1, as shown in Fig. 1 (a),
Grinchtein’s TL∗sg algorithm needs 34 timed membership queries, while our TL∗

only needs 16 timed membership queries. Fig. 9 (a) shows the observation table
obtained by Grinchtein’s TL∗sg algorithm, and the final learned ERA is shown in
Fig. 9 (b). Note that our TL∗ algorithm is not affected by the largest constant
K appearing in the clock guards. If we change the guarded word a[xa = 3] in
A1, as shown in Fig. 1 (a), into a[xa = 100], the number of membership queries
required by our TL∗ algorithm is still 16, while that required by Grinchtein’s
TL∗sg algorithm increases exponentially. Further, Grinchtein’s TL∗sg algorithm
cannot guarantee the number of locations of the learned ERA is minimal, while
our TL∗ algorithm can. Fig. 10 (a) gives another unknown timed language U ′T
accepted by A2. Our TL∗ algorithm learns Com(A2) to accept U ′T , whose num-
ber of locations is minimal as shown in Fig. 10 (b), while the ERA M ′ learned by
Grinchtein’s TL∗sg algorithm is shown in Fig. 10 (c), whose number of locations
is not minimal.

s0

a[xa ≤ 1]

b[xa = 0 ∧ xb = 0]

(a) A2

10 00

a[xa ≤ 1]

b[xa = 0 ∧ xb = 0]

a[xa > 1]

b[xa 6= 0 ∨ xb 6= 0]

a, b

(b) Com(A2) learned by TL∗

10 1100

b[xa = 0 ∧ xb = 0]

a[xa ≤ 1 ∧ xb ≤ 1]

b[xa = 0 ∧ xb = 0]

a[xa ≤ 1]

b[xa 6= 0 ∨ xb 6= 0], a[xa ≥ 1]

a[xa ≥ 1 ∨ xb ≥ 1]

b[xa 6= 0 ∨ xb 6= 0]

a, b

(C) M ′

Fig. 10. Difference between TL∗ and TL∗sg



4 Conclusion and Future Work

We proposed an efficient polynomial time algorithm, TL∗, for learning event-
recording automata. The TL∗ algorithm can also be applied to learn other de-
terminizable subclasses of timed automata, such as event-predicting automata
(EPA) [2], as long as the timed Teacher answers the timed membership and timed
candidate queries correctly. Our future work will implement the TL∗ algorithm
into the PAT model checker [13] such that PAT can automalically generate the
assumptions for assume-guarantee reasoning for timed systems.
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