
Technical report:
SeVe implementation

Luu Anh Tuan1, Jun Sun2, Yang Liu1, and Jin Song Dong1

1 School of Computing, National University of Singapore
{tuanluu,liuyang,dongjs}@comp.nus.edu.sg

2 Singapore University of Technology and Design
sunjun@sutd.edu.sg

1 Secerity language comparasion

There are many languages to describe the security protocols so far; however, most of
them are complicated to use or only suitable for one specific studies but not for all
cases. In this section, we will investigate three well-known security languages which
are commonly used : Casper, ProVerif and HLPSL. For easy comparison, I give an
example description of Needham Schroeder public key protocol in three languages as
well as our security language SeVe.

Casper: Casper was proposed by Gavin Lowe [3] and aim to specify the security
protocols in an easy way. This Casper description is then transformed into CSP speci-
fication and transfered to FDR for verifying security goals. There are some advantages
of this language:

– The language is simple and easy to use.
– The protocol declaration is as close as informal description.
– The user does not need to describe the intruder behavior except some initial knowl-

edge.

However, there are still some short-coming of Casper:

– The ability of intruder is set by default (they are inject and deflect ability as in
our definition) and can not be changed. In many cases, the intruder ability can be
restricted or extended based on evironment but cannot specify in Casper.

– The property descriptions only focus on secrecy and authentication properties. If
the user want to verify other properties, he cannot specify it in Casper.

– The time specification is restricted to session level, but not in message level. For
example, the user cannot specify the time used to transfer a message from A to B.
He can only specify something like: the session between A and B will take 1 time
unit (this time specification is used to specify time protocols which has timestamp
inside).

HLPSL: HLPSL is the security language which is proposed in AVISPA project
[1]. The user can specify the security protocol in HLPSL language and the translator
HLPSL2IF (was developed in this project) will translate it into IF language. However,
as the aim is translation to IF language, the HLPSL description is proposed toward it:

the protocol is specified in transition states, each state with some conditions will trigger
another state. However, from the view of user, it is difficult to described correctly those
transition from the informal specification of security protocols. Moreover, only secrecy
and authentication properties checking are provided. The intruder ability can not also
changed. In the authentication checking, the user need to manually add some signals at
the start and end position ofrole runs.

ProVerif: ProVerif [2] is a security protocol language proposed by Bruno Blanchet
and used in ProVerif tool. This language is based on pi calculus. The ProVerif descrip-
tion is then translated into an abstract representation by Horn clauses and then using
Horn logic technique to verify. However, the protocol’s description in ProVerif lan-
guage is far away from informal specification with many rules and reduction that the
users need to define by themselves. Moreover, the user also needs to define the rules for
attacker. The timestamp is defined using constant term which is not correct in semantic.

SeVe language From the advantage and disadvantages of other security protocol
languages, we define SeVe language which can be considered as the extension of Casper
language with some improvements. First of all, we support many kinds of security prop-
erties. Secondly, SeVe allow the flexibility in intruder ability. Thirdly, the user are free
from specifying intruder rules and behaviors. In addition, SeVe support time specifica-
tion in message level and in verification.

The next section will show the structure of a SeVe language and the meaning of
each keyword. The last section introduces the grammar of SeVe language.

2 SeVe structure

In this section, we demonstrate the structure of a SeVe specification. However, a typical
protocol may not need all of these elements. The keyword with obvious name will have
the self-explanation meaning.

#Variables —— declare the terms used in protocol
Timestamps —— the name of timestamps used in protocol
Time allow —— the time tolerance in timestamp checking
Agents —— declare the trusted agents
Server —— declare the server
Nonces —— declare the nonces
Server keys —— declare the server keys
Session keys
Signature keys
Constants ——declare the constant value used in protocol
Functions ——declare the name of function used in protocol

#Initial —— declare the initial knowledge of participants
Agent knows {knowledge}—— at initial, each agent have some knowledge

#Protocol description —— main part declare the messages tranfer in protocol
AgentA→ AgentB : term (within[number])? —— agentA sends agentB a term

which takes number time unit to come

#System —— declare the actual name and number of initiators, and responders
Initiator —— declare the real name and number of initiators in protocols.
Responder —— declare the real name and number of responders in protocols.
Server —— declare the server name.
Repeat —— declare the number of repeated time for each transaction.

#Intruder —— declare the information of intruder here
Intruder —— declare the intruder name
Intruder knowledge —— declare the initial knowledge of intruder.
Intruder prepare —— declare the message intruder prepares for agent to send

(used in coercion resistence privacy type)
Intruder ability —— specify the ability of intruder

(inject, deflect, eavesdrop or jam)

#Verification —— declare the verification properties
Data secrecy —— secrecy properties
Authentication —— authentication properties
Non repudiation —— non repudiation properties
Integrity —— Integrity properties
Fairness —— Fairness properties
Privacy —— simple privacy properties
Receipt freeness —— receiptfreeness privacy properties
Coercionresistance||coercionresistanceprivacyproperties

We also have specification for time checking, such as ”if agentA sends message then
agentB evetually/always receives message within n time units” (for future verification).

3 SeVe Grammar

Program section

Program ::= #Variables
V ariables declare
#Initial
Initial declare
#Protocol
Protocol declare
#System
System declare
[#Intruder
Intruder declare]
[#Verification
V erification declare]

Declaration section

V ariables declare ::= [Timestamps: List Id]
[Time allow: Number]
Agents: List Id
[Server: List Id]
[Nonces: List Id]
[Public keys: List Id]
[Server keys: List Id]
[Signature keys: List Id]
[Session keys: List Id]
[Constants: List Id]
[Functions: List Id]

List Id ::= Id
| Id, List Id

Initial knowledge section

Initial declare ::= Id knows {msg}
| Id knows {msg}, Initial declare

Protocol description section

Protocol declare ::= Id→ Id : message
| Id→ Id : message,

Protocol declare

message ::= msg within[number]
| msg

msg ::= msg1
| msg1,msg
| {msg}Id
| msg + msg
| Id(msg) %function declare

msg1 ::= Id
| Id,msg1

Actual system section

System declare ::= [Initiator: List Id]
[Responder: List Id]
[Server: List Id]

Intruder section

Intruder declare ::= Intruder: Id
[Intruder knowledge: msg1]
[Intruder ability: List ability]
[Intruder prepare: List prepare]

List ability ::= [Inject],
[Deflect]
[Transmit]
[Eavesdrop]
[Jam]

List prepare ::= {msg} for Id;

Verification section

V erification declare ::= spec|temporal spec
| spec, V erification declare
| temporal spec, V erification declare

spec ::= [Data secrecy: list secrecy]
[Authentication: list auth]
[Non repudiation: list condition1]
[Fairness: list condition2]
[Privacy: Id]
[Receipt freeness: Id]
[Coercion resistance: Id]

list secrecy ::= msg1 of Id
| msg1 of Id, list secrecy

list auth ::= Id is authenticated with Id [using{Id}]
| Id is authenticated with Id [using{msg}], list auth

list condition1 ::= {Id, Id,msg}
| {Id, Id,msg}, list condition1

list condition2 ::= {Id, if msg then msg}
| {Id, if msg then msg}, list condition2

temporal spec ::= if temp formula then temp formula
[within[number]]

temp formula ::= Id send msg
| Id receive msg

Basic definition

Identifier ::= letter{letter|digit}∗
Number ::= ′1′..′9′ digit∗

letter ::= ′a′..′z′|′A′..′Z ′|′ ′
digit ::= ′0′..′9′

References

1. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma,
P. Heam, O. Kouchnarenko, J. Mantovani, S. Modersheim, D. von Oheimb, M. R., J. Santiago,
M. Turuani, L. Vigano, and L. Vigneron. The AVISPA Tool for the Automated Validation of
Internet Security Protocols and Applications. In Proceedings of CAV’2005, 2005.

2. B. Blanchet. Automatic Verification of Correspondences for Security Protocols. volume 19,
pages 363–434. Journal of Computer Security, 2009.

3. L. Gavin. Casper : A Compiler for the Analysis of Security Protocols. In Journal of Computer
Security, volume 6, pages 53–84, 1998.

