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Abstract—Security protocols play more and more important
role with widely use in many applications nowadays. They are
designed to provide security properties for users who wish to
exchange messages over unsecured medium. There are many
tools were designed to specify and verify security protocols
such as Casper/FDR, ProVerif or AVISPA. While most of the
existing tools focus on secrecy and authentication properties.
few supports properties like anonymity and privacy, which are
crucial in many protocols such as in electronic voting systems
or anonymous online transactions. Moreover, to the best of our
knowledge, there is still not have a fully automatic tool using
formal methods to verify these two properties. In this paper,
we introduce a framework for specifying security protocols in
the Labeled Transition System (LTS) semantics model and give
the formal definition for three existing types of anonymity and
privacy properties using this model. We also come up with the
verification algorithms for verification and implement all the
ideas in a module SeVe inside PAT model checker.

I. INTRODUCTION

With the explosion of the Internet, electronic transactions
have become more and more common. The security for these
transactions is very crucial to many applications, e.g. elec-
tronic commerce, digital contract signing, electronic voting,
and so on. These large open networks pose new challenges
to security, as trusted and untrusted parties coexist in the
system and messages transit through potentially dangerous
environment. Properties such as authenticity, confidentiality,
proof of identity, proof of delivery, or privacy are difficult
to assure in this scenario. Security protocols using crypto-
graphic primitives aim at solving this problem [18]. By a
suitable use of shared and public key cryptography, random
numbers, hash functions, encrypted and plain messages, a
security protocol may assure security requirements for the
participants.

Surprisingly, the informal definition of security protocols
are usually simple and easy to understand. A protocol
typically describes only the actions taken in a complete
protocol run between honest principals. Other missing is
what happens during unsuccessful runs, for example, with
possibly untrusted participants. There has been many re-
search on formally specifying and verifying security pro-
tocols such as Casper/FDR [8], ProVerif [4] or AVISPA [1].
Most of them focus on authentication and secrecy properties.
Anonymity and privacy properties which take an important
roles in many protocols get less attention from researchers.

The user may require anonymity and privacy guarantees to
many transactions, such as anonymity of payment, privacy
of shopping preference, of email patterns and associations
between correspondents, or candidate choice in an election.
With all of those requirements, there is a demand on an
effectively automated tools to specify and verify security
protocols related to those properties.

There are three existing types of anonymity and privacy-
type properties in literature: simple privacy (or anonymity),
receipt freeness and coercion resistance.

• Simple privacy: the fact that a particular information is
not revealed to anyone.

• Receipt freeness: the agent does not gain any receipt
which can be used to prove to the intruder that the
agent sent a particular information.

• Coercion resistance: the agent cannot cooperate with
the intruder to prove to him that the agent sent a
particular information.

The agent can tell the intruder the information he sent, but
unless the agent provide convincing evidence, otherwise the
intruder cannot believe him. Receipt freeness and coercion
resistance guarantee that the agent cannot provide such
evidence.

The contribution of our research can be summarized
as: we have defined a framework for modeling security
protocol in the Labeled Transition System (LTS). Within
this framework, we give a formal definition for three types
of anonymity and privacy properties: simple privacy, receipt
freeness and coercion resistance and show how we can
analyze these properties. The verification algorithms for
privacy checking are also introduced. Finally, we implement
all these ideas inside a module SeVe of PAT model checker
to fully automatic specify and verify security protocols.
Three test cases in electronic voting protocols in literature
are given to show how our verifier works.

Outline: The rest of the paper is organized as follows.
Section II discusses related works on others formal models
and verifications of anonymity and privacy. Operational
semantics and model semantics of security protocol are de-
scribed in Section III. Section IV introduces the algorithms
used in verification. The completed tool is introduced in
Section V. The experiment and comparison are given in
Section VI and Section VII finally concludes the paper.



II. RELATED WORKS

The definitions for anonymity and privacy properties in
natural language are insufficiently precise to allow specifi-
cation and verification. Benaloh and Tuinstra [3] are the first
researchers give the notion of receipt freeness. After that,
Benaloh [3] and Okamoto [15] propose some schemes to
meet the condition of receipt-freeness but later shown not
succesfully because they did not give formal definition of
receipt freeness. In [16], Okamoto presents a system resistant
to interactive coercers aiming to satisfy coercion resistance,
but this property is stated only in natural language. Juels et
al. [11] after that proposed a strict definition for coercion
resistance.

The idea of formalizing anonymity as some kinds of
process equivalence in process algebra was first proposed
in the work of Schneider and Sidiropoulos [19]. However,
only simple privacy type, i.e. anonymity, was introduced in
this paper. The work of verifying anonymity property in this
paper is totally hand-proving and hard to apply in practical
systems.

In [7], Fournet and Abadi model the security protocols
using applied pi-calculus and observe the observational
equivalence in process calculus to prove the anonymity.
Similar idea have been used by Mauw et al. [20] as well as
Kremer and Ryan [12]. Again, only simple privacy property
(or anonymity) is investigated. The recent work of Delaune,
Kremer and Ryan [5] give first formal methods definition of
receipt-freeness and coercion-resistance, two other types of
privacy properties, in applied pi calculus. In this approach,
the authors use forward channel to capture the condition for
these two privacy properties, while in our approach, we use
knowledge based reasoning to define the condition for them.
Moreover, reasoning about bisimulation in this approach is
rather informal and mainly by hand.

Halpern [9] and Jonker [10] propose the formalizations
of anonymity are based on epistemic logics. The authors
give a logical characterization of the notion of receipt in
electronic voting processes in epistemic logic. However,
these formalisms maily focus on reasoning about the prop-
erty and less suited for modeling the protocol as well as
attacker abilities. Their logics aim to expressing properties
rather than operational steps of a protocol. Thus, modeling
protocols using epistemic-logic requires a high degree of
expertise and easily get errors.

III. SYSTEM SEMANTICS

Security protocols describe the message terms sent
between trusted participants during a session. A session
is a single run of the protocol. Most protocols allow
multiple concurrent sessions. Participants of the session are
called agents. The environment in which the sender and
receive communication is an unsecured environment. This
unreliable environment is modeled by adding an intruder
into the network, who is given special powers to tamper

with the messages that pass around. Our approach follows
the Dolev-Yao model [6]. The system is the interleaving of
agents and intruder activities:

System = (|||X∈{Agent}∗ AgentX) ||| Intruder, where |||
denotes for interleaving.

We start by explaining the number of basic elements
of terms sent between agents, such as constant, roles and
function. After that we will derive the operation semantics
for the rules we use to model the security protocol.

Basic sets. We start with the following sets: C (denoting
constants, such as nonce, session key), F (denoting function
names, such as hash function, bit scheme schema), A is set
of participants, including AT denotes trusted agents, AU
denotes untrusted agent (intruder).

Term. We introduce constructors for pairing and encryp-
tion, and we assume that pairing is associative.

Term ::= A | C | F(Term) | (Term, Term) | {Term}Term

Terms that have been encrypted with a term, can only
be decrypted by either the same term (for symmetric en-
cryption) or the inverse key (for asymmetric encryption). To
determine which term needs to be known to decrypt a term,
we introduce a function that yields the inverse for any term:
−1 : Term → Term.

We require that −1 is its own inverse, i.e. (t−1)−1 = t.
Terms are reduces according to {{s}t}t−1 = s.

Definition 1 (Message): Message is used in the security
model has the form: Message ::= sender × receiver × term
, where sender ∈ A, receiver ∈ A and term ∈ Term.

At the declaration stage, the knowledge of each participant
is defined. During protocol run, that knowledge is enhanced.
We donote V is the knowledge of participants upon the
running of the syste. V : A → ST , is the function mapped
from set of agents A to set of terms ST . The messages are
sent and received via an unsecured environment. We use
the set B of messages as the buffer representing for this
environment.

Definition 2 (System configuration): A system configura-
tion is a 3-element state s = 〈V, P, B〉, where V is the
knowledge of agents, P is the running process, B is the buffer
of the messages. At the initial state of the system, buffer is
empty and the program starts at the System root, thus the ini-
tial state of the system is given by: initim = 〈V0, System, φ〉
where V0 refers to the initial knowledge.

We have 6 main rules in the operational semantic cor-
responding to participant activities: Send, Read, Deflect,
Inject, Eavesdrop and Jam. In addition, we also have other
rules for sequence processes and process interleaves. Their
semantics will be described in next section.



A. Operational semantics

Agent Rules

The send rule states that if a run executes a send event,
the sent message is added to the buffer and the executing run
proceeds to the next event. The read rule requires that the
message pattern specified in the read event should match
any of the messages from the buffer. Upon execution of
the read event, this message is removed from the buffer, the
knowledge of the trusted agents is updated and the executing
run advances to the next event.

p = send(m), Contain(V, m, m.sender)
[ Send ]

(V, p → Q, B)
p→ (V, Q, B

∪
{m′})

p = read(m), Match(B, m),
[ Read ]

(V, p → Q, B, )
p→ (V ′, Q, B \ {m}),

V ′ = AgentUpdate(V, m, m.receiver)

The receiver can compose and decompose pair terms. A
term can be encrypted if the sender knows the encryption
key, and an encrypted term can be decrypted if the receiver
knows the corresponding decryption key. This is expressed
by the knowledge inference operator, which is defined
inductively as follows (M is the set of terms).

t ∈ M ⇒ M ` t
M ` t1

∧
M ` t2 ⇒ M ` (t1, t2)

M ` t
∧

M ` k ⇒ M ` {t}k

M ` {t}k
∧

M ` k−1 ⇒ M ` t
M ` F(t)

∧
M ` F−1 ⇒ M ` t

The function Contain : V × Message × A → Boolean is
defined as:

procedure Contain(V, message, agent)
1. S = V(agent);
2. if (S ` message.term)
3. return True;
4. else
5. return False;

Messages from the buffer are accepted by agents if they
match a certain pattern, specified in the read event. We define
the typed matching predicate Match : Buffer × Message →
Boolean to match an incoming message to a message stored
in buffer.

procedure Match(buf , mes)
1 foreach (b ∈ Buffer)
2 if (b == mes)
3 return True;
4 return False;

Whenever a message is received, the receiver will decrypt
the message (if he can) and get the information. We will

represent this decryption as the function Learn : V × A ×
Message → ST , where ST is set of terms .

procedure Learn(V, receiver, m)
1 if (m ∈ C

∪
A);

2 return {m};
3 if (m is (t1, t2))
4 return Learn(t1)

∪
Learn(t2);

5 if (m is (t1)t2) && V(receiver) ` t2−1

6 return Learn(t1);
7 if (m is F(t1)) && V(receiver) ` F−1

8 return Learn(t1);

Now, we will give the implementation of the
AgentUpdate : V × Message ×A as:

procedure AgentUpdate(V, message, agent){
1 S = V(agent);
2 T = Learn(V, agent, message);
3 foreach (i in T)
4 If (S 6` i)
5 S = S

∪
{i}

Intruder rules

If the intruder has eavesdropping capabilities, as stated
in the eavesdrop rule, he can learn the message during
transmission. The deflect rule states that an intruder with the
action capabilities can delete any message from the output
buffer. The difference of the jam rule is that the intruder can
read the message and add it to its knowledge. The inject
rule describes the injection of any message inferable from
the intruder knowledge into the input buffer.

m ∈ B, p = deflect(m)
[ deflect ]

(V, p → P, B)
p→ (V ′, P, B \ m),

V ′ = AgentUpdate(V, m, intruder).

Contain(V, m, intruder), p = inject(m)
[ inject ]

(V, p → P, B)
p→ (V, P, B

∪
m)

m ∈ B, p = eavesdrop(m)
[ eavesdrop ]

(V, p → P, B)
p→ (V ′, P, B′),

V ′ = AgentUpdate(V, m, intruder)

m ∈ B, p = jam(m)
[ jam ]

(V, p → P, B)
p→ (V, P, B \ m)

We also have the operational semantics for other rules
which we use in SeVe module such as interleaving (de-
noted as |||), external choice (denoted as []) or sequence
processes. The operational semantics for them are described
in Appendix A.



B. Model semantics

In this part, we will investigate on the formalization
of anomymity and privacy-type properties properties. The
semantics of a model are defined with a labeled transition
system (LTS). Let Σ denote the set of all visible events
and τ denote the set of all invisible events. Since invisible
events are indistinguishable, we sometimes also use τ to
represent an arbitrary invisible event. Let Σ∗ be the set of
finite traces. Let Στ be Σ ∪ τ .

Definition 3 (LTS): A LTS is a 3-tuple L = (S, init, T)
where S is a set of states, init ∈ S is the initial state, and
T ⊆ S × Στ × S is a labeled transition relation.

For states s, s′ ∈ S and e ∈ Στ , we write s e→ s′ to denote
(s, e, s′) ∈ T . The set of enabled events at s is enabled(s) =
{e : Στ | ∃ s′ ∈ S, s e→ s′}. We write s

e1,e2,···,en→ s′ iff
there exist s1, · · · , sn+1 ∈ S such that si

ei→ si+1 for all
1 ≤ i ≤ n, s1 = s and sn+1 = s′, and s τ∗→ s′ iff s = s′ or
s

τ,···,τ→ s′. The set of states reachable from s by performing
zero or more τ transitions is τ∗(s) = {s′ : S | s τ∗→ s′}.
Let tr : Σ∗ be a sequence of visible events. s tr⇒ s′ if and
only if there exist e1, e2, · · · , en ∈ Στ such that s

e1,e2,···,en→ s′

and tr = 〈e1, e2, · · · , en〉 ¹τ is the trace with invisible events
removed. The set of traces of L is traces(L) = {tr : Σ∗ |
∃ s′ ∈ S, init tr⇒ s′}.

Given a model composed of a process P and a set of
knowledge V and the buffer B, we may construct a LTS
(S, init, T) where S = {s | (V, P, B) →∗ s}, init = (V, P, B)
and T = {(s1, e, s2) : S × Στ × S | s1

e→ s2} using
the operational semantics. The following defines refinement
relation.

Definition 4 (Refinement and Equivalence): Let Lim =
(Sim, initim, Tim) be a LTS for an implementation. Let Lsp =
(Ssp, initsp, Tsp) be a LTS for a specification. Lim refines Lsp,
written as Lim wT Lsp, iff traces(Lim) ⊆ traces(Lsp). Lim

equals Lsp in the trace semantics, written as Lim ≡ Lsp iff
they refine each other.

Definition 5 (Unknown knowledge): Let Lim =
(Sim, initim, Tim) be a LTS for an implementation.
Given an agent a and term t. t is unknown
knowledge of agent a in the implementation, written
as UnknownKnowledge(Lim, a, t) == true iff ∀ tr =
〈e1, e2, .., en〉 ¹ τ ∈ traces(Lim),∀ i ∈ {1..n} Mtr

ei
(a) 6` t1,

where Mtr
ei
(a) is the knowledge of agent a of system

following trace tr before executing event ei.
Given an event e, process P, term x and x1, we denote

e[x1/x] is a new event which replaces all occurrences of x
in e by x1, and P[x1/x] is the new process which replaces
all occurrences of x in P by x1. The function In(x, e) is
definded as: In(x, e) = true if x occurs in term e, otherwise
In(x, e) = false.

Definition 6 (Event renaming function): Let A be a set of
terms, an event renaming function fA : Σ → Σ is the function

that satisfies:
• fA(e) = e[α/x] if ∃ x ∈ A, In(x, e) == true
• fA(e) = e if ∀ x ∈ A, In(x, e) == false

where α is an anonymous term and α 6∈ A
The process fA(P) performs the event fA(e) whenever P

would perform e. From this definition, we have the notion
of reverse renaming function f−1

A . The process f−1
A (P) can

perform any event from the set f−1
A (e) whenever P can

perform e. One example of event renaming function will
be given in next section.

Simple privacy (anonymity)
For t ∈ Term, we define simple privacy(t) is the goal that

the protocol will ensure the simple secrecy (or anonymity)
on term t. Let t1 and t2 are two terms representing different
values of t. We denote V0 as the initial knowledge of the
protocol. Consider the process: Systemim = System[t1/t]
[] System[t2/t] ([] denotes for choice) and LTS Lim =
(S1, initim, T1) where initim = (V0, Systemim, φ), S1 = {s |
initim →∗ s} and T1 = {(s1, e, s2) : S1×Στ ×S1 | s1

e→ s2}.
Denotes Systemsp = f−1

{t1,t2}(f{t1,t2}(Systemim)) and LTS
Lau = (S2, initau, T2) where initau = (V0, Systemau, φ),
S2 = {s | initau →∗ s} and T2 = {(s1, e, s2) : S2×Στ ×S2 |
s1

e→ s2}
Definition 7 (Simple privacy (Anonymity)): The protocol

assures simple privacy (or anonymity) on term t if and only
if: Lim ≡ Lau.

This definition states that if every occurrence of t1 or
t2 were renamed to new dummy value α which is the
situation in the process f{t1,t2}(Systemim), then whenever
an event containing α is possible in this renamed process,
any possible corresponding event containing t1 or t2 should
have been possible in the original process (this is assured by
using reverse renaming function f−1

{t1,t2}(f{t1,t2}(Systemim))).
The equation means that at anytime t is replaced by t1 or
t2, the intruder cannot observe any difference in traces, so
the intruder cannot infer anything about t.

Illustration of the definition: As an example, consider the
following simple voting protocol: there are two choice of
candidates corresponding two values of a vote v named: v1
and v2. The voter V will send collector C his vote which is
encrypted by public key of collector PkC. If the voter votes
v1, the collector will send the voter receipt r1, otherwise the
collector sends receipt v2. The process represents this vote
will be:

Voteim() = Vote[v1/v] [ ] Vote[v2/v]
= Send(V, C, {v1}PkC) → Read(C, V, r1) → Skip;
[ ] Send(V, C, {v2}PkC) → Read(C, V, r2) → Skip;

To see whether the process provides anonymity, we have
to consider the traces of:

f−1
{v1,v2}(f{v1,v2}(Voteim())) =

Send(V, C, {v1}PkC) → Read(C, V, r1) → Skip;



[ ] Send(V, C, {v1}PkC) → Read(C, V, r2) → Skip;
[ ] Send(V, C, {v2}PkC) → Read(C, V, r1) → Skip;
[ ] Send(V, C, {v2}PkC) → Read(C, V, r2) → Skip;

However, the traces of above process are different
traces to Voteim(). One of the traces it has is
< Send(V, C, {v1}PkC), Read(C, V, r2) > which is not
possible for Voteim(). This indicates that the occurrence of
the event Read(C, V, r2) allows a distinction to be made
between different events contains v1, v2 and so the protocol
does not provide anonymity.

Receipt freeness
Similar to simple privacy, receipt freeness can be formal-

ized using event renaming function. In addition, we need
to model the fact that the agent is willing to share secret
information with the intruder. However, this information
should be reliable. We model it by changing the initial
knowledge of the system: the knowledge of the intruder
will be added the initial knowledge of agents, except some
privilege knowledge (such as private key of agent) or unre-
liable knowledge (such as the key of trap-door commitment
scheme as the user can fake and the intruder cannot have
any way to detect). We call that initial knowledge is V1.

For t ∈ Term, we define Receipt freeness(t) is the goal
that the protocol will ensure the receipt freeness on term t.
Let t1 and t2 are two terms representing different values
of t. Consider the process: Systemim = System[t1/t] [ ]
System[t2/t] and LTS Lim = (S1, initim, T1) where initim =
(V1, Systemim, φ), S1 = {s | initim →∗ s} and T1 =
{(s1, e, s2) : S1 × Στ × S1 | s1

e→ s2}. Denote Systemsp =
f−1
{t1,t2}(f{t1,t2}(Systemim)) and LTS Lau = (S2, initau, T2)

where initau = (V1, Systemau, φ), S2 = {s | initau →∗ s}
and T2 = {(s1, e, s2) : S2 × Στ × S2 | s1

e→ s2}. Denote
Systemt1 = System[t1/t] and LTS Lt1 = (S3, initt1, T3)
where initt1 = (V1, Systemt1, φ), S3 = {s | initt1 →∗ s}
and T3 = {(s1, e, s2) : S3 × Στ × S3 | s1

e→ s2}.
Definition 8 (Receipt freeness): The protocol assures re-

ceipt freeness on term t if and only if two following
conditions are hold:

1) Lim ≡ Lau.
2) UnknownKnowledge(Lt1, intruder, t1) == true.
The first condition is similar to the simple privacy

condition. The second condition gives the situation when
the agent wants to fake the intruder: while the agent says
with the intruder he sent t2, he actually sent t1. Therefore,
the receipt freeness property is hold if the intruder cannot
detect the agent is sending t1 at every state of traces.

Coercion resistance
Coercion resistance is a strongest property as we give the

intruder the ability to communicate interactively with the
agent and not only receive information. In this model,the
intruder can prepare the message he wants the agent to send.

For t ∈ Term, we define Coercion resistance(t) is the
goal that the protocol will ensure the coercion resistance on
term t. Let t1 and t2 are two terms representing different
values of t. We model the initial knowledge of agent and
intruder in this case as: the initial knowledge of intruder
is all the information need to generate the message in the
session, while the initial knowledge of agent now is only the
messages corresponding to the session which t is replaced by
t1 and t2, but without knowing how the intruder constructs
them. We call the initial knowledge of this system is V2.
Consider another case: the intruder knows and wants to
send t2, so he supplies all the necessary messages for agent
to send in this way; however, he does not know about t1.
On the contrary, the agent knows t1 but he may not know
how to construct the protocol messages to vote t1 based
on information the intruder supplied. We call the initial
knowledge of system in this case is V3

Consider the process: Systemim = System[t1/t] [ ]
System[t2/t] and LTS Lim = (S1, initim, T1) where initim =
(V2, Systemim, φ), S1 = {s | initim →∗ s} and T1 =
{(s1, e, s2) : S1 × Στ × S1 | s1

e→ s2}. Denote Systemsp =
f−1
{t1,t2}(f{t1,t2} (Systemim)) and LTS Lau = (S2, initau, T2)

where initau = (V2, Systemau, φ), S2 = {s | initau →∗ s}
and T2 = {(s1, e, s2) : S2 × Στ × S2 | s1

e→ s2}. Denote
Systemt1 = System[t1/t] and LTS Lt1 = (S3, initt1, T3)
where initt1 = (V3, Systemt1, φ), S3 = {s | initt1 →∗ s}
and T3 = {(s1, e, s2) : S3 × Στ × S3 | s1

e→ s2}.
Definition 9 (Coercion resistance): The protocol assures

coercion resistance on term t if and only if two following
conditions are hold:

1) Lim ≡ Lau.
2) UnknownKnowledge(Lt1, intruder, t1) == true.
These two conditions are the same conditions of receipt

freeness property. The only difference is the knowledge
of the participants in the protocols: in case of coercion
resistance, the knowledge of the agent comes from the whole
messages supplied by the intruder and only intruder but not
agent knows how to generate them, while in receipt freeness,
the agent knows how to generate those messages and the
intruder knowledge is supplied some reliable information
carried out by agents.

IV. VERIFICATION ALGORITHMS

In privacy checking, we need to come up an algorithm for
checking the trace equivalence. Let Spec = (Ssp, initsp, Tsp)
be a specification and Impl = (Sim, initim, Tim) be an imple-
mentation, the checking of trace equivalence is defined as
in Fig 1, where refine is denoted for refinement checking
function.

In this paper, we follow the on-the-fly refinement checking
algorithm in [14], which based on the refinement checking
algorithms in FDR [17] but applies partial order reduction.

To check the Unknown Knowledge relation, we apply
the Depth First Search (DFS) algorithm. The algorithm for



procedure Equivalence(Impl, Spec)
1. if (refine(Impl, Spec) == true
2. && refine(Spec, Impl) == true)
3. return true;
4. else
5. return false;

Figure 1. Algorithm: Equivalence(Impl, Spec)

procedure Unknown Knowledge(Impl, agent, term)
1. visited.push(initim);
2. while visited 6= ∅ do
3. s1 := visited.pop();
4. foreach (s2 ∈ enabled(s1))
5. if (s2 6∈ visited)
6. if (s2.V(agent) ` term)
7. return false;
8. else
9. visited.push(s2);
10. endif
11. endfor
12. endwhile
13. return true;

Figure 2. Algorithm: unknown knowledge(Impl, term, agent)

Unknown Knowledge checking is presented as in Fig. 2.
In line 6, s2.V(agent) is the knowledge of agent at state
s2. Note that the operator ` is recursively calculated as in
Section III-A. In this algorithm, we recorded all the visited
states to detect the loop in traces (line 5).

V. IMPLEMENTATION: SEVE MODULE

Model checker PAT1 (Process Analysis Toolkit) is de-
signed to apply state-of-the-art model checking techniques
for system analysis. PAT [22][21] supports a wide range
of modeling languages. The verification features of PAT
are abundant in that on-the-fly refinement checking algo-
rithm is used to implement Linear Temporal Logic (LTL)
based verification, partial order reduction is used to improve
verification efficiency, and LTL based verification supports
both event and state checking. Furthermore, PAT has been
enhanced for verifying properties such as deadlock freeness,
divergence freeness, timed refinement, temporal behaviors,
etc [23].

With all of these advantages, we have implemented the
ideas of the above sections into a SeVe module of PAT model
checker. Fig.3 shows the architecture design of SeVe module
with five components. The security protocols are specified
using SeVe language [24] , which is an extension of Casper
language with some amelioration in property checking and

1http://www.patroot.com

SeVe compiler

LTS generator Model checker

Simulator

Intruder behavior 
generator

Black box to the userUser specification 
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LTS model

Counter exampleLTS model

Verification output to user

Figure 3. SeVe architecture

intruder abilities. The Intruder behavior generator will au-
tomatically generate all the possible attacks of the intruder
using Dolev-Yao model. The SeVe compiler will compile all
those behaviors of protocols into SeVe processes, of which
operational semantics are defined in [24]. These processes
are then transmitted to LTS Generator, which generates
the Labeled Transition System (LTS) semantic model. This
model can be passed to the Simulator or Model checker
for simulating behaviors or verifying security properties,
respectively. The counter example, if have, can be showed
visually by Simulator for easily checking.

The SeVe language can be considered as the extension of
Casper languages [8]; however, we have some amelioration.
Firstly, we support many kinds of property checking (in-
tegrity, fairness, anonymity, non-repudiation, etc.) for differ-
ent security purposes. The user also does not need to specify
the behavior of the intruder, which is very complicated. By
observing the general intruder behavior as in Dolev-Yao
model, the generator will automatically generate all possible
attacks of the intruder. The intruder ability is also parame-
terized, so the user can describe the capability of intruder
corresponding to different situation. The full grammar of
SeVe language is in [24]. In the following, we illustrate an
example of SeVe input by considering the a small example
of voting protocol involving three agents: voter, admin and
counter. The voter and the counter initially share a random
number r. The informal description of protocol is:

• voter encryptes the vote vt by r, signs on it and sends
to admin.

• admin checks the signature of voter. If the signature is
correct and the voter is legal to vote, the admin signs
on the encrypted message and sends back to voter.

• voter sends the encrypted message with the sign of
admin to counter. The counter checks the correctness
of admin’s signature, decryptes the message to get the
vote.

For example, we will examine the receipt freeness prop-
erty of this protocol. The declaration part and initial knowl-
edge of the protocol in SeVe language are self-explained:



Protocol Property #States #Transitions Time(s) #Result

Fujioka et al. Simple privacy 356 360 0.117s true
Receipt freeness 138 141 0.053s false

Coercion resistance 97 104 0.040s false

Okamoto et al. Simple privacy 484 492 0.133s true
Receipt freeness 606 611 0.158s true

Coercion resistance 131 136 0.068s false

Lee et al. Simple privacy 1744 1810 0.715s true
Receipt freeness 2107 2265 0.849s true

Coercion resistance 2594 2673 0.930s true

Figure 4. Experiment results on three electronic voting protocols

#Variables
Agents: voter, admin, counter;
Signature keys: sv, sa;
Constants: vt, r;

#Initial
voter knows {sv, vt, r};
admin knows {sa};
counter knows {r};

The protocol part and intruder declaration are declared as:
#Protocol description
voter → admin : {{vt}r}sv;
admin → voter : {{vt}r}sa;
voter → counter : {{vt}r}sa;

#Intruder
Intruder name: Jeeves;
Intruder knowledge: r;

The intruder knowledge is the value supplied by the
agent in case of receipt freeness. The verification part is
simply declared as:

#Verification
Receipt freeness: vt;

In the above part, we want the SeVe tool to check the
receipt freeness property on vote vt. The user only needs to
declare the protocols using SeVe language like above and the
tool will automatically generate the LTS model for system,
do all verification jobs as well as show the visual result
which the user can trace easily. In case of this protocol,
the verification result returns false. By looking at counter
example, we can find that the second condition of receipt
freeness is not satisfied: if the voter tells the intruder he is
voting v2, but actually he votes v1, the intruder can decrypt
the first message using value of r supplied by voter to detect
v1.

VI. EXPERIMENTS AND COMPARISON

In this part, we demonstrate our tools with 3 test cases
of electronic voting protocols from literature: protocol of
Fujioka et al. [2], protocol due to Okamoto et al. [15] and
protocol based on the Lee et al. [13]. These protocols were
demonstrated in [5]. However, in that paper, the reasoning
task is mainly carried out by hand. We prove that we can
verify these protocols in a fully automatic way. The user
can easily specify these protocols using SeVe language and
verify privacy types properties by just one click, without
any hand-proving step. For briefly, the SeVe specification of
the protocols are not introduced here. These specifications
of the protocols and the SeVe tool can be downloaded in

[24]. The experiments were running in Computer with Core
2 Duo CPU E6550 2.33Ghz and 4Gb RAM.

VII. CONCLUSION

In this paper, we have introduced a framework for mod-
eling security protocols using LTS semantics model. Within
this framework, we have formally defined three kind of
privacy-types properties and apply an some verification
algorithms to verify these properties. We create a SeVe
module in PAT model checker to implement all these ideas
and do some experiments of voting security protocols in
literature to show how effectively of our approach.

Different from other previous studies based mainly on
hand-proving, our approach is fully automatic: the user only
need to specify the protocol in SeVe language, the reasoning
will automatically run and return the counter example for the
user if exist. This make the proving process is more reliable
and avoiding errors. Moreover, by using automatic ways, we
can verify larger system, which is crucial in practical use.

In the future work, we will extend the SeVe language
and verifier to be able to verify some other cryptography
terms and algebra properties such as Deffie-Hellman and
Exclusive-or operators. We also try to apply other optimiza-
tion techniques to enhance the ability of our tool in verifying
large system. Another challenger is to adapt the tool to verify
not only for security protocols but also for other security
systems such as network layers.
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APPENDIX

A. Other operational semantics

[ Skip ]

(V, Skip, B, T)
X→ (V, Stop, B, T)

(V, P, B, T)
p→ (V ′, P′, B′, T)

[ choice1 ]

(V, P [] Q, B, T)
p→ (V ′, P′ [] Q, B′, T)

(V, Q, B, T)
p→ (V ′, Q′, B′, T)

[ choice2 ]

(V, P [] Q, B, T)
p→ (V ′, P [] Q′, B′, T)

(V, P, B, T)
p→ (V ′, P′, B′, T)

[ interleave1 ]

(V, P ||| Q, B, T)
p→ (V ′, P′ ||| Q, B′, T)

(V, Q, B, T)
p→ (V ′, Q′, B′, T)

[ interleave2 ]

(V, P ||| Q, B, T)
p→ (V ′, P ||| Q′, B′, T)

[ interleave3 ]

(V, Skip ||| Skip, B, T)
p→ (V, Stop, B, T)

(V, P, B, T)
p→ (V ′, P′, B′, T)

[ sequence1 ]

(V, P; Q, B, T)
p→ (V ′, P′; Q, B′, T)

(V, P, B, T)
X→ (V ′, P′, B′, T)

[ sequence2 ]
(V, P; Q, B, T)

τ→ (V ′, P′; Q, B′, T)


