
Parameter Synthesis for Hierarchical
Concurrent Real-Time Systems
(Report Version)

Étienne André1, Yang Liu2, Jun Sun3 and Jin-Song Dong4

1 LIPN, CNRS UMR 7030, Université Paris 13, France
2 Temasek Laboratories, National University of Singapore
3 Singapore University of Technology and Design
4 School of Computing, National University of Singapore

Abstract

Modeling and verifying complex real-time systems, involving timing delays, are notori-
ously difficult problems. Checking the correctness of a system for one particular value
for each delay does not give any information for other values. It is hence interesting to
reason parametrically, by considering that the delays are parameters (unknown con-
stants) and synthesize a constraint guaranteeing a correct behavior. We present here
Parametric Stateful Timed CSP, viz., a parameterization of Stateful Timed CSP, a
language capable of specifying hierarchical real-time systems with complex data struc-
tures. Although we prove that the synthesis is undecidable in general, we present an
algorithm for efficient parameter synthesis that behaves well in practice.

Keywords: CSP, parametric timed verification, control, robustness, refinement.

1 Introduction

The specification and verification of real-time systems, involving complex data
structures and timing delays, are notoriously difficult problems. The correctness
of such real-time systems usually depends on the values of these timing delays.
One can check the correctness for one particular value for each delay, using
classical techniques of timed model checking, but this does not guarantee the
correctness for other values. Actually, checking the correctness for all possible
delays, even in a bounded interval, would require an infinite number of calls to
the model checker, because those delays can have real (or rational) values. It is
therefore interesting to reason parametrically, by considering that these delays
are unknown constants, or parameters, and try to synthesize a constraint (i.e., a

1

1 Introduction 2

conjunction of linear inequalities) on these parameters guaranteeing a correct
behavior.

Motivation We are interested here in the good parameters problem for real-
time systems: “find a set of parameter valuations for which the system is cor-
rect”. This problem stands between verification and control, in the sense that
we actually change (the timing part of) the system in order to guarantee some
property. Furthermore, we aim at defining a formalism that is intuitive, power-
ful (with use of external variables, structures and user defined functions), and
allowing efficient parameter synthesis and verification.

Parameter Synthesis for Timed Concurrent Systems Timed Automata (TAs)
are finite control automata equipped with clocks, that are compared with timing
delays in guards and invariants [2]. TAs have been efficiently used over the
last decade to verify timed systems, in particular using the Uppaal model
checker [26]. The parametric extension of TAs (viz., parametric timed automata,
or PTAs) allows the use of parameters within guards and invariants [3].

The parameter design problem for PTAs was formulated in [21], where a
straightforward solution is given, based on the generation of the whole state
space – which is unfortunately unrealistic in most cases. The HyTech model
checker, one of the first for parametric timed (actually hybrid) automata, al-
lowed to solve several case studies; Unfortunately, it can hardly verify even
medium sized examples due to exact arithmetics with limited precision and
static composition of automata, quickly leading to memory overflows. The pa-
rameter synthesis problem has then been applied in particular to communication
protocols (e.g., Bounded Retransmission protocol [16] or Root Contention pro-
tocol [15] using TReX [7]) and asynchronous circuits (e.g., [38, 14]). Although
drastic optimizations were developed for Timed Automata, in particular using
DBMs, most of them do not apply to the parametric framework, or to only par-
tially parameterized systems (e.g., [10], where a non-parametric model is verified
against a parameterized formula). In [5], the inverse method synthesizes con-
straints for fully parameterized systems modeled using PTAs. Different from
CEGAR-based methods, this original semi-algorithm is based on a “good” pa-
rameter valuation π, and synthesizes a constraint guaranteeing the same time
abstract behavior as for π, thus providing the system with a criterion of ro-
bustness. As an interesting consequence, the preservation of the time-abstract
behavior guarantees the preservation of linear time properties.

The authors of [24] synthesize a set of parameter valuations under which a
given property specified in the existential part of CTL without the next operator
(viz., the ECTL−X logic) holds in a system modeled by PTAs. This is done by
using bounded model checking techniques applied to PTAs.

In [25], parametric analysis of scheduling problems is performed, based on the
process algebra ACSR-VP. Constraints are synthesized using symbolic bisimu-
lation methods, guaranteeing the feasibility of a scheduling problem. This work
is closer to our approach, in the sense that it synthesizes timing parameters in

1 Introduction 3

a process algebra; however, it is dedicated to scheduling problems only, whereas
our approach is general.

Semi-algorithms (i.e., if the algorithm terminates, then the result is correct)
have been proposed in [36] for synthesizing parameters for Time Petri Nets
with stopwatches. Different from our setting, the constraint satisfies a formula
expressed using a non-recursive subset of parametric TCTL; furthermore, their
implementation does not allow the use of elaborated data structures.

Stateful Timed CSP CSP (Communicating sequential processes) [22] is a pow-
erful event based formalism for describing patterns of interaction in concur-
rent systems. Timed CSP (see, e.g., [32]) extends CSP with timed constructs
for reasoning about real-time systems. Stateful Timed CSP (STCSP) extends
Timed CSP with more timed constructs and shared variables in order to specify
hierarchical complex real-time systems [35]. Through dynamic zone abstraction,
finite-state zone graphs can be generated automatically from STCSP models,
which are subject to model checking. Like TAs, STCSP models suffer from Zeno
runs, i.e., runs which take infinitely many steps within finite time. Unlike TAs,
model checking with non-Zenoness in STCSP can be easily achieved, based on
the zone graph.An advantage of Timed CSP over TAs is the lower number of
clocks necessary to verify the systems. Indeed, unlike TAs, clocks are implicit
in STCSP, and are only activated when necessary.

Contribution We present here Parametric Stateful Timed CSP (PSTCSP).
First, this parameterization of STCSP is a powerful language capable of spec-
ifying hierarchical real-time systems with shared variables and complex, user-
defined data structures, in an intuitive manner.

Second, although we show that the emptiness problem is undecidable for
PSTCSP, we develop and compare two semi-algorithms for parameter synthe-
sis. The first one, computing all reachable states, allows the application of finite
state timed model checking techniques defined in [35], but does not often termi-
nate. We also extend the inverse method [5] to PSTCSP, and give a sufficient
termination condition; this algorithm behaves very well in practice, allowing
efficient parameter synthesis even for fully parameterized systems, i.e., where
all timing delays are parametric.

Third, the implementation of PSTCSP within the PAT model checker of-
fers both an intuitive modeling facility using a graphical interface, and efficient
algorithms for verification and parameter synthesis.

PSTCSP shares similar design principles with integrated specification lan-
guages like TCOZ [27] and CSP-OZ-DC [23]. The main idea is to treat sequen-
tial terminating programs (rather than Z or Object-Z), which may indeed be
C# programs, as internal events. The result is a highly expressive modeling
language that can be automatically analyzed by tools.

Plan of the Paper We recall preliminary notions in Section 2. We introduce
PSTCSP in Section 3 and study its expressiveness and decidability questions in

2 Preliminaries 4

Section 4. We introduce algorithms for parameter synthesis in Section 5, and
apply them to case studies. We conclude in Section 6.

2 Preliminaries

Finite-Domain Variables We assume a finite set Var of finite-domain variables.
Given Var ⊂ Var, a variable valuation is a function assigning to each variable
a value in its domain. We denote by V(Var) the set of all variable valuations.

Constraints on Clocks and Parameters Let R≥0 be the set of non-negative
real numbers. We assume a set X of clocks, disjoint with Var. A clock is a
variable with value in R≥0. All clocks evolve linearly at the same rate. Given a
finite set X = {x1, . . . , xH} ⊂ X , a clock valuation is a function w : X → R≥0
assigning a non-negative real value to each clock. We will often identify a
valuation w with the point (w(x1), . . . , w(xH)). Given d ∈ R≥0, we use X + d
to denote {x1 + d, . . . , xH + d}.

We also assume a fixed set U of parameters, i.e., unknown constants, disjoint
with Var and X . Given a finite set U = {u1, . . . , uM} ⊂ U , a parameter valua-
tion is a function π : U → R≥0 assigning a non-negative real value to each pa-
rameter. There is a one-to-one correspondence between valuations and points in
(R≥0)M . We will often identify a valuation π with the point (π(u1), . . . , π(uM)).

Given X ⊂ X and U ⊂ U , an inequality over X and U is e ≺ e′, where
≺∈ {<,≤}, and e, e′ are two linear terms of the form

∑
1≤i≤N αizi + d with

zi ∈ X ∪ U , αi ∈ R≥0 for 1 ≤ i ≤ N , and d ∈ R≥0. We define similarly
inequalities over X (resp. U). A constraint is a conjunction of inequalities. We
denote by KX∪U the set of all constraints over X and U , and similarly for KX
and KU . In the sequel, we use the following conventions: w (resp. π) denotes
a clock (resp. parameter) valuation; J denotes an inequality over U ; D ∈ KX ;
K ∈ KU ; and C ∈ KX∪U .

We denote by D[w] the expression obtained by replacing in D each clock x
with w(x). If D[w] evaluates to true, we say that w satisfies D (denoted by
w |= D). We denote by C[π] the constraint over X obtained by replacing
in C each u ∈ U with π(u). Likewise, we denote by C[π][w] the expression
obtained by replacing each clock x in C[π] with w(x). If C[π][w] evaluates to
true, we write <w, π> |= C. If the set of clock valuations that satisfy C[π] is
nonempty, i.e., ∃w : <w, π> |= C, then π satisfies C, denoted by π |= C. Given
C1, C2 ∈ KX∪U , we write C1 = C2 if ∀w, π : <w, π> |= C1 ⇔ <w, π> |= C2.

Similarly to the semantics of constraints over X and U , we say that a pa-
rameter valuation π satisfies K, denoted by π |= K, if the expression obtained
by replacing in K each u ∈ U with π(u) evaluates to true.

Given C and a set X ′ ⊆ X of clocks, we denote by ∃X ′ : C the constraint
over X and U obtained from C after elimination1 of the clocks of X ′. Similarly,
we denote by ∃X : C the constraint over U obtained from C after elimination

1 Using variable elimination techniques such as Fourier-Motzkin elimination [33].

3 Syntax and Semantics of PSTCSP 5

of all clocks. We denote by C/X′ the constraint over X and U obtained from C
after projection onto the clocks of X ′, i.e., ∃(X \X ′) : C.

We define the time elapsing of C, denoted by C↑, as the constraint over
X and U obtained from C by delaying an arbitrary amount of time, i.e., by
renaming X ′ with X in the following expression: (∃X, d : C ∧ X ′ = X + d),
where d is a new parameter with values in R≥0, and X ′ is a fresh set of clocks.

Events In the following, τ denotes an unobservable event; X denotes the spe-
cial event of process termination; Σ denotes the set of observable events such
that τ /∈ Σ and X ∈ Σ; Στ = Σ∪{τ}. Furthermore, the following event naming
conversion is adapted: e ∈ Σ denotes an observable event; a ∈ Στ denotes an
observable event or τ ; E ⊆ Σ denotes a set of observable events.

Labeled Transition Systems Labeled transition systems will be used later on
to represent the semantics of PSTCSP.

Definition 2.1: A labeled transition system (LTS) is a tuple L = (S, s0,Στ ,⇒)
where S is a set of states, s0 ∈ S is the initial state, Στ is a set of symbols, and
⇒ : S×Στ×S is a labeled transition relation. We write s

a⇒ s′ for (s, a, s′) ∈ ⇒.
A run of L is an alternating sequence of states si ∈ S and symbols ai ∈ Στ of
the form 〈s0, a0, s1, a1, · · ·〉 such that si

ai⇒ si+1 for all i. A state si is reachable
if it belongs to some run r. We denote by Runs(L) the set of runs of L.

3 Syntax and Semantics of PSTCSP

In this section, we introduce the syntax and the semantics of PSTCSP. Due to
the strong similarity between the syntax of STCSP and PSTCSP, we do not
recall here the syntax of the former (refer to [35] for details).

3.1 Syntax

A process models the control logic of the system using a rich set of process
constructs. A process P is defined by the grammar in Figure 1, where u ∈ U .2

Processes marked with * allow the use of parameters instead of timing constants
in STCSP. P denotes the set of all possible processes.

Definition 3.1: A Parametric Stateful Timed CSP (or PSTCSP) model is a tuple
M = (Var , U, V0, P,K0) where Var ⊂ Var, U ⊂ U , V0 is the initial variable
valuation, P ∈ P is a process, and K0 ∈ KU is an initial constraint.

The initial constraint K0 allows one to define constrained models, where
some parameters are already related. For example, in a timed model with two
parameters min and max , one may want to constrain min to be always smaller
or equal to max , i.e., K0 = {min ≤ max}.

2 Actually, u ∈ (U ∪Q≥0) would be possible too, but having u ∈ U simplifies the reasoning
and proofs.

3 Syntax and Semantics of PSTCSP 6

P
.
= Stop inaction
| Skip termination
| e→ P event prefixing
| a{program} → P data operation
| if (b) {P} else {Q} conditional choice
| P |Q general choice
| P \E hiding
| P ;Q sequential composition
| P ‖ Q parallel composition
| Wait[u] delay*
| P timeout[u] Q timeout*
| P interrupt[u] Q timed interrupt*
| P within[u] timed responsiveness*
| P deadline[u] deadline*
| Q process referencing

Fig. 1: Syntax of PSTCSP processes

Hierarchy comes from the nested definition of processes. Each component
may have internal hierarchies, and allow abstraction and refinement, in the
sense that a subprocess may be replaced by another equivalent one in some
cases. Also, this offers a readable syntax, starting from the top level of the
system, and being more precisely defined when one goes to lower hierarchical
levels.

Instantiation of a Model Given a PSTCSP model M = (Var , U, V0, P,K0)
and a parameter valuation π = (π1, . . . , πM), M[π] denotes the instantiation of

M with π, viz., the model (Var , U, V0, P,K), where K is K0 ∧
∧M
i=1(ui = πi).

This corresponds to the PSTCSP model obtained from M by substituting every
occurrence of a parameter ui by constant πi in the timed constructs. Note that
M[π] is a non-parametric STCSP model.

3.2 Informal Semantics

Untimed constructs We first briefly describe the untimed constructs, which
are identical to the ones in STCSP, and very close to the ones of CSP. Process
Stop does nothing but idling. Process Skip terminates, possibly after idling
for some time. Process e → P engages in event e first and then behaves as P .
Note that e may serve as a synchronization barrier, if combined with parallel
composition. In order to seamlessly integrate data operations, sequential pro-
grams may be attached with events. Process a{program} → P performs data
operation a (i.e., executing the sequential program whilst generating event a)
and then behaves as P . The program may be a simple procedure updating data
variables (e.g., a{v1 := 5; v2 := 3}, where v1, v2 ∈ Var) or a more complicated

3 Syntax and Semantics of PSTCSP 7

sequential program. A conditional choice is written as if (b) {P} else {Q}.
If b is true, then it behaves as P ; otherwise it behaves as Q. Process P |Q offers
an unconditional choice3 between P and Q. Process P ;Q behaves as P until
P terminates and then behaves as Q immediately. P \E hides occurrences of
events in E. Parallel composition of two processes is written as P ‖ Q, where P
and Q may communicate via multi-party event synchronization (following CSP
rules [22]) or shared variables.

Timed Constructs We now explain the parametric timed constructs.

• Given a parameter u, process Wait[u] idles for an unknown (constant)
number of u time units.

• In process P timeout[u] Q, the first observable event of P shall occur
before u time units elapse. Otherwise, Q takes over control after exactly
u time units.

• Process P interrupt[u] Q behaves exactly as P until u time units, and
then Q takes over. In contrast to P timeout[u] Q, P may engage in
multiple observable events before it is interrupted. Also note that Q will
be executed in any case, whereas in P timeout[u] Q, process Q will only
be executed if no observable event occurs before u time units.

• Process P within[u] must react within an unknown number of u time
units, i.e., an observable event must be engaged by process P within u time
units.

• Process P deadline[u] constrains P to terminate, possibly after engaging
in multiple observable events, before u time units.

Discussion on deadline The deadline timed construct intuitively means that
a process must terminate within a certain amount of time. Different definitions
of deadline actually appear in the literature. In [19], a definition of the deadline
command is given, and an instantiation as an extension to the high-integrity
Spark programming language is proposed. In this case, a static analysis is
performed during the compiling process and, in the case where an inability to
meet the timing constraints occurs, then an appropriate error feedback is sent to
the programmer. As a consequence, the deadline construction guarantees that
the constrained process will terminate before the specified deadline.

In [31], the authors use Unifying Theory of Programming in order to for-
malize the semantics of Timed Communicating Object Z (TCOZ). As in [19],
they consider that the deadline imposes a timing constraint on P , which thus
requires the computation of P to be finished within the time mentioned in the
deadline.

3 For simplicity, in the discussion, we leave out external and internal choices from the classic
CSP [22]. Nevertheless, both constructions are defined in PSTCSP, implemented in PAT, and
used in our case studies.

3 Syntax and Semantics of PSTCSP 8

Different from [31, 19], we here choose to stick to the semantics of STCSP [35]
and consider a deadline semantics as an attempt to terminate a process before
a certain time. If the process does not terminate before the deadline, it is just
stopped4.

Syntactic sugar Urgent event prefixing [17], written as e � P , is defined as
(e→ P) within[0], i.e., e must occur as soon as it is enabled. Furthermore, we
sometimes use e for e→ Skip when clear from the context (in particular, in the
proof of Theorem 4.5).

Also note that some timed constructs can be defined using other timed
constructs. For instance, within can be defined using deadline (see proof
of Proposition4.1 p. 13).

3.3 Example: Fischer Mutual Exclusion

We introduce an example5 to show that PSTCSP is expressive enough to capture
hierarchical concurrent real-time systems.

Fischer’s mutual exclusion algorithm is modeled as (Var , U, vi,FME ,True),
where U = {δ, γ}, and Var = {turn, cnt}. The turn variable indicates
which process attempted to access the critical section most recently. The cnt
variable counts the number of processes accessing the critical section. Initial
valuation vi maps turn to −1 (which denotes that no process is attempting
initially) and cnt to 0 (which denotes that no process is in the critical section
initially). Process FME is defined as follows6.

FME
.
= proc(1) ‖ proc(2) ‖ · · · ‖ proc(n)

proc(i)
.
= if (turn = −1) {Active(i)} else {proc(i)}

Active(i)
.
= (update.i{turn := i} → Wait[γ]) within[δ];

if (turn = i)
cs.i{cnt := cnt + 1} →
exit .i{cnt := cnt − 1; turn := −1} → proc(i)

else

proc(i)

where n is a constant representing the number of processes. Process proc(i)
models a process with a unique integer identify i. If turn is −1 (i.e., no other
process is attempting), proc(i) behaves as specified by process Active(i). In
process Active(i), turn is first set to i (i.e., the ith process is now attempt-
ing) by action update.i. Note that update.i must occur within δ time units
(captured by within[δ]). Next, the process idles for γ time units (captured
by Wait[γ]). It then checks if turn is still i. If so, it enters the critical section
and leaves later. Otherwise, it restarts from the beginning.

4 Remark that, in that case, time elapsing may be stopped too.
5 This example is a parametrization of Example 1 from [35].
6 Note that this is not the real ASCII-based PAT syntax.

3 Syntax and Semantics of PSTCSP 9

A classical parameter synthesis problem is to find values of δ and γ for which
mutual exclusion is guaranteed. One way to verify mutual exclusion is to
show that cnt ≤ 1 is always true. A solution to this problem will be given
in Section 5.4.2. �

3.4 Clock Activation

The semantics uses parameters and clocks. Like in STCSP, clocks in PSTCSP
are implicitly associated with timed processes – which is different from PTAs.
For instance, given a process P timeout[u] Q, an implicit clock should start
whenever this process is activated. A clock starts ticking once the process be-
comes activated. Before defining the semantics, we need to associate clocks
with time processes explicitly. In theory, each timed process construct is asso-
ciated with a unique clock. Nonetheless, as in STCSP, multiple timed processes
can be activated at the same time during system execution and, therefore, the
associated clocks always have the same value. Consider the following process:

P
.
= (Wait[u1]; Wait[u2]) interrupt[u3] Q.

There are three implicit clocks, one associated with Wait[u1] (say x1), one with
Wait[u2] (say x2) and one with P (because of interrupt[u3], say x3). Clocks x1
and x3 are starting at the same time because the execution of interrupt is
linked with Wait[u1]. In contrast, clock x2 starts only when Wait[u1] terminates.
It can be shown that x1 and x3 always have the same value and thus one clock
is sufficient. In order to minimize the number of clocks, we introduce clocks at
runtime so that timed processes which are activated at the same time share the
same clock. Intuitively, a clock is introduced if and only if one or more timed
processes have just become activated.

We recall from [35] how to systematically associate clocks with timed pro-
cesses. To distinguish from ordinary PSTCSP processes, let Pact denote the
set of processes associated with explicit clocks. We write Wait[u]x (and, sim-
ilarly, P timeout[u]x Q, P interrupt[u]x Q, P within[u]x, P deadline[u]x)
to denote that the process is associated with clock x. Given a process P and a
clock x, we use function Act(P, x) to define the corresponding process in Pact .

Figure 2 presents the detailed definition. Rules A1 to A5 state that if a pro-
cess is untimed and none of its subprocesses are activated, then it is unchanged.
Rules A6 to A10 state that if the process is timed, then it is associated with x.
Note that if a timed process has already been associated with a clock x′, then
it will not be associated with the new clock. This is captured by rules A11
to A15, where Wait[u]x′ denotes that Wait[u] is associated with clock x′. If a
subprocess is activated, then function Act is applied recursively, as captured by
rules A7 to A10 and A12 to A19. Rule A20 states that if P is defined as Q,
then Act(P, x) can be obtained by applying Act to Q.

We denote by cl(P) the set of active clocks associated with P or any sub-
process of P . For instance, the set of clocks associated with P timeout[u]x Q
contains x and the clocks associated with P . Notice that there is no clock
associated with Q because it is not activated yet.

3 Syntax and Semantics of PSTCSP 10

Act(Stop, x) = Stop A1
Act(Skip, x) = Skip A2
Act(e→ P, x) = e→ P A3
Act(a{program} → P, x) = a{program} → P A4
Act(if (b) {P} else {Q}, x) = if (b) {P} else {Q} A5
Act(Wait[u], x) = Wait[u]x A6
Act(P timeout[u] Q, x) = Act(P, x) timeout[u]x Q A7
Act(P interrupt[u] Q, x) = Act(P, x) interrupt[u]x Q A8
Act(P within[u], x) = Act(P, x) within[u]x A9
Act(P deadline[u], x) = Act(P, x) deadline[u]x A10
Act(Wait[u]x′ , x) = Wait[u]x′ A11
Act(P timeout[u]x′ Q, x) = Act(P, x) timeout[u]x′ Q A12
Act(P interrupt[u]x′ Q, x) = Act(P, x) interrupt[u]x′ Q A13
Act(P within[u]x′ , x) = Act(P, x) within[u]x′ A14
Act(P deadline[u]x′ , x) = Act(P, x) deadline[u]x′ A15
Act(P |Q, x) = Act(P, x)|Act(Q, x) A16
Act(P \E, x) = Act(P, x) \E A17
Act(P ;Q, x) = Act(P, x);Q A18
Act(P ‖ Q, x) = Act(P, x) ‖ Act(Q, x) A19
Act(P, x) = Act(Q, x) if P

.
= Q A20

Fig. 2: Clock activation function

In the Fischer’s mutual exclusion example, assume there are three processes.
The first and second processes have evaluated the condition if (turn = −1)
and become Active(0) and Active(1), whereas the third process has not made
any move. So the current process is Active(1) ‖ Active(2) ‖ proc(3). Assume
that x is a fresh clock. Then applying function Act with x returns

(update.1{turn := 1} → Wait[γ]) withinx[δ]; · · ·
‖ (update.2{turn := 2} → Wait[γ]) withinx[δ]; · · ·
‖ if (turn = −1) { Active(3) } else { proc(3) }
Clock x is associated with the first process and the second process, but not
the third process. Note that Wait[γ] has not been activated yet. �

3.5 Semantics

In STCSP, a state is a triple (V, P,D), where V is variable valuation, P ∈ P and
D ∈ KX . This abstraction of the timing constants by dynamic zone abstraction
implies a finite number of states. This is implemented in [35] using Difference
Bound Matrices (DBMs), following works for TAs [18, 9, 11].

In the following, we introduce the semantics for PSTCSP in terms of states
containing constraints over X and U . We define below the notion of state.

Definition 3.2: Let M = (Var , U, V0, P,K0) be a PSTCSP model. Then a (sym-
bolic) state s of M is a triple (V, P,C) where V is a variable valuation, P ∈ P

3 Syntax and Semantics of PSTCSP 11

is a process, and C ∈ KX∪U .

The semantics of a PSTCSP model can then be understood intuitively as the
union of the semantics of the instantiated non-parametric STCSP models, for
all possible parameter valuations. For each parameter valuation π, we may view
a state s = (V, P,C) as the set of triples (V, P,w) where w is a clock valuation
such that <w, π> |= C.

3.5.1 Idling Function

We adapt in the following the function idle, defined in [35], which, given a pro-
cess in Pact , calculates a constraint expressing how long the process can idle.
The result is in the form of a constraint over the clocks and the parameters.
Figure 3 shows the detailed definition. Rules idle1 to idle5 state that if the
process is untimed and none of its subprocesses is activated, then the func-
tion returns true. Intuitively, it means that the process may idle for arbitrary
amount of time. Rules idle6 to idle9 state that if subprocesses of the process are
activated, then function idle is applied to the subprocesses. For instance, if the
process is a choice (rule idle6) or a parallel composition (rule idle9) of P and Q,
then the result is idle(P) ∧ idle(Q). Intuitively, this means that process P |Q
(or P ‖ Q) may idle as long as both P and Q can idle. Rules idle10 to idle14
define the cases when the process is timed. For instance, process Wait[u]x may
idle as long as x is less than or equal to u.

idle(Stop) = True idle1
idle(Skip) = True idle2
idle(e→ P) = True idle3
idle(a{program} → P) = True idle4
idle(if (b) {P} else {Q}) = True idle5
idle(P |Q) = idle(P) ∧ idle(Q) idle6
idle(P \E) = idle(P) idle7
idle(P ;Q) = idle(P) idle8
idle(P ‖ Q) = idle(P) ∧ idle(Q) idle9
idle(Wait[u]x) = x ≤ u idle10
idle(P timeout[u]x Q) = x ≤ u ∧ idle(P) idle11
idle(P interrupt[u]x Q) = x ≤ u ∧ idle(P) idle12
idle(P within[u]x) = x ≤ u ∧ idle(P) idle13
idle(P deadline[u]x) = x ≤ u ∧ idle(P) idle14
idle(P) = idle(Q) if P

.
= Q idle15

Fig. 3: Idling calculation

3.5.2 Semantics

We now define the semantics of PSTCSP under the form of an LTS. Let Y =
〈x0, x1, · · ·〉 be a sequence of clocks.

3 Syntax and Semantics of PSTCSP 12

Definition 3.3: Let M = (Var , U, V0, P,K0) be a PSTCSP model. The semantics
of M, denoted by LM, is an LTS (S, s0,⇒,Στ) where

S = {(V, P,C) ∈ V(Var)× P ×KX∪U},
s0 = (V0, P,K0)

and the transition relation ⇒ is the smallest transition relation satisfying the
following. For all (V, P,C) ∈ S, if x is the first clock in the sequence Y which

is not in cl(P), and (V,Act(P, x), C ∧ x = 0)
a
 (V ′, P ′, C ′) then we have:

((V, P,C), a, (V ′, P ′, C ′/cl(P ′))) ∈ ⇒.

The transition relation is specified by a set of rules, given in Appendix A.
We explain below some of the rules defining the transition relation . Other

rules can be explained similarly, following the way of [35].

• Rule await defines the semantics of Wait[u].

(V, Wait[u]x, C)
τ
 (V, Skip, C↑ ∧ x = u)

(await)

It states that a τ -transition occurs exactly when clock x is equal to u.
Intuitively, C↑∧x = u denotes the time when u time units elapsed since x
has started. Afterwards, the process becomes Skip.

• Rules ato1, ato2 and ato3 define the semantics of P timeout[u] Q. Rule
ato1 states that if a τ -transition transforms (V, P,C) to (V ′, P ′, C ′), then
a τ -transition may occur given (V, P timeout[u]x Q,C) if constraint
C ′ ∧ x ≤ u is satisfiable. Intuitively, this means that the τ -transition must
occur before u time units since x has started.

(V, P,C)
τ
 (V ′, P ′, C ′)

(V, P timeout[u]x Q,C)
τ
 (V ′, P ′ timeout[u]x Q,C

′ ∧ x ≤ u)
(ato1)

Similarly, rule ato2 ensures that the occurrence of an observable event e
from process P may occur only if x ≤ u, i.e., before timeout occurs.

(V, P,C)
e
 (V ′, P ′, C ′)

(V, P timeout[u]x Q,C)
e
 (V ′, P ′, C ′ ∧ x ≤ u)

(ato2)

Rule ato3 states that timeout results in a τ -transition when the reading
of x is exactly u. The constraint x = u ∧ idle(P) ensures that process P
may idle all the way until timeout occurs.

(V, P timeout[u]x Q,C)
τ
 (V,Q,C↑ ∧ x = u ∧ idle(P))

(ato3)

Let us explain further Definition 3.3. Given a state (V, P,C), a clock x which
is not currently associated with P is picked. The state (V, P,C) is transformed

4 Expressiveness and Undecidability 13

into (V,Act(P, x), C ∧ x = 0), i.e., timed processes which just become activated
are associated with x and C is conjuncted with x = 0. Then, a firing rule is
applied to get a target state (V ′, P ′, C ′) such that C ′ be satisfiable (otherwise,
the transition is infeasible). Lastly, clocks which are not in cl(P ′) are pruned
from C ′. Observe that one clock may be introduced and zero or more clocks
may be pruned during a transition.

Consider some state s1 = (V, Wait[u1]interrupt[u2]Skip, u2 < u1). Acti-
vation with x1 gives (V, Wait[u1]x1interrupt[u2]x1Skip, u2 < u1 ∧ x1 = 0).
Applying firing rule ait2 gives state (V, Skip, C) with C = {(u2 < u1 ∧x1 =
0)↑∧x1 = u2∧ idle(Wait[u1]x1

)}, viz., u2 < u1∧x1 ≥ 0∧x1 = u2∧x1 ≤ u1.
Then, we remove x1 from C because it does not appear within Skip; this
gives new state s2 = (V, Skip, u2 < u1).

We can also apply firing rule ait1 (and hence await) to s1, which gives
(V, Skip interrupt[u2]x1 , C

′) with C ′ = u2 < u1 ∧ x1 = u1 ∧ x1 ≤ u2. This
constraint is unsatisfiable, hence this state is discarded. �

4 Expressiveness and Undecidability

4.1 Expressiveness

We first state that STCSP is equivalent to Closed Timed ε-Automata [29],
i.e., timed safety automata [20] with ε-transitions [1, 12] and exclusively closed
guards and invariants (i.e., whose inequalities are of the form e ≤ e′, with e, e′

linear terms). It is usually considered that this restriction is benign in practice,
due to the fact that any timed automaton can be infinitesimally approximated
by one with closed constraints [28, 29, 8].

Lemma 4.1: Stateful Timed CSP is as expressive as Closed Timed ε-Automata.

Proof We first show that STCSP without the deadline and the within con-
structs is equivalent to Timed CSP. It is known that all Timed CSP constructs,
including timeout and interrupt can be derived from Wait[d] and CSP con-
structs [17]. It has been shown that the expressive power of Timed CSP is
equal to Closed Timed ε-Automata [29]. As a consequence, STCSP without the
deadline and the within constructs is equivalent to Timed CSP.

Furthermore, the within construct can be defined using the deadline con-
struct: considering P within[d], this can be achieved by executing P in parallel
with Q deadline[d];R, with Q a process synchronizing on any observable event
with P , and R a process synchronizing, possibly several times, on any observ-
able event with P . Finally, the deadline[d] construct can be easily translated
into a Closed Timed ε-Automata by adding a location with an invariant x ≤ d,
for some additional clock x set to 0 when the process deadline[d] is activated.
Which gives the result. �

We define Parametric Closed Timed ε-Automata as a parametric extension of
Closed Timed ε-Automata, following the parameterization of TAs into PTAs [3],

4 Expressiveness and Undecidability 14

i.e., by using within guards and invariants parameters (unknown constants). It
follows from Lemma 4.1 that PSTCSP is equivalent to Parametric Closed Timed
ε-Automata.

Proposition 4.2: Parametric Stateful Timed CSP is as expressive as Parametric
Closed Timed ε-Automata.

Since Closed Timed ε-Automata are a subclass of ε-TAs [4], then Parametric
Closed Timed ε-Automata are a subclass of ε-PTAs. By corollary of Proposi-
tion 4.2, PSTCSP is less expressive than ε-PTAs, but incomparable with stan-
dard PTAs.

We believe that PSTCSP is an interesting formalism because one can make
use of complex data structures and the τ -transitions are used in PSTCSP for
compositionality of the sub-component, which is missing in PTAs. Further-
more, high level real-time system requirements often state the system timing
constraints in terms of deadline, timeout or wait, which can be regarded as
common timing patterns. For example, “task P must complete within u units
of time” is a typical one (deadline[u]). PSTCSP is better suited for specifying
the requirements of complex real-time systems because it has the exact lan-
guage constructs that can directly capture those common timing patterns. On
the other hand, if PTAs are considered to be used to capture high level real-time
requirements, then one often needs to manually cast those timing patterns into
a set of clock variables explicitly and carefully design the constraints. Also,
although tools exist for specifying hierarchy or some data structures for (non-
parametric) TAs, such as Uppaal, PSTCSP is, as far as we know, the first fully
parametric formalism allowing to combine hierarchical aspects, shared variables
and complex data structures in a single and readable formalism.

4.2 Membership and Emptiness

We consider here the questions of membership (“is a parameter valuation con-
sistent with a model?”) and emptiness (“given a model M, does there exist a
parameter valuation consistent with M?”). Both questions refer to the notion
of consistency. For PTAs, consistency is defined as the acceptance of at least
one timed word. This notion of acceptance of words relies on the existence of
accepting locations: a timed word is accepted by a PTA A if A ends up in an
accepting location after reading it. However, CSP (and its timed, parametric
extensions) does not feature the notion of “accepting” processes. We consider
instead the reachability problem: can the initial state of the model reach an-
other state through some run? Or, equivalently, does an execution starting from
a process P0 lead to a given process P?

Definition 4.3 (Consistency): Given a PSTCSP model M, given a process P , a
parameter valuation π is consistent with π if there exists a run such that the
initial state (V0, P0, C0) of M derives to a state (V, P,C), for some V and C.

4 Expressiveness and Undecidability 15

Formally, given a PSTCSP model M of initial state (V0, P0, C0), given P ∈ P,
we denote by Π(M) the set of parameter valuations consistent with M, i.e.,
{π ∈ U | ∃V,C : (V0, P0, C0) (V, P,C) ∈ Runs(M[π])}.

Membership The membership question consists of deciding whether a given
parameter valuation π is consistent with a PSTCSP model M. The membership
problem is decidable for PSTCSP: it suffices to consider the non-parametric
STCSP model M[π] and solve this problem using techniques developed in [35],
e.g., by building the set of all reachable states.

Proposition 4.4 (Decidability of membership): Let M a PSTCSP model, and π a
parameter valuation. The problem of deciding if π is consistent with Π(M) is
decidable.

Emptiness We now show that the emptiness problem for PSTCSP is undecid-
able.

Theorem 4.5 (Undecidability of emptiness): Let M be a PSTCSP model, and P
a process. The problem of deciding if Π(M) is empty is undecidable.

Proof We reduce the halting problem for 2-counter machines to the problem of
testing if there exists a parameter valuation consistent with a PSTCSP model.
We follow the reduction used in [3], and adapt it to PSTCSP.

As in [3], we consider a 2-counter machine CM with two counters C1 and C2.
The control variable l of CM ranges over the set {l1, . . . , ln}. Each instruction
of CM can either increment or decrement one of the counters, or test if one of
the counters is equal to 0, and change the location of control. A configuration
of CM is a triple (li, C1, C2), specifying the values of l, C1 and C2, respectively.
The initial configuration of CM is (l0, 0, 0). The halting problem consists of
deciding if CM can reach a given configuration (li, C1, C2). We construct in the
following a PSTCSP model MCM such that Π(MCM) is nonempty iff MCM halts.
In order to simplify the proof, we consider that no instruction corresponds to
control variable ln (i.e., if the machine reaches ln, it will halt).

We set MCM = (Var , U, V0, PCM ,K0), with

• Var = ∅;

• U = {a, a−1, a+1, b, b−1, b+1};

• V0 = ∅;

• K0 = True; and

• PCM is explained in the following.

Recall that in [3], a configuration is encoded using the triple (li, b−y, b−a−z),
where y and z are two of the three clocks used in the construction. Our encoding
will be relatively similar, with the exception that clocks are implicit.

4 Expressiveness and Undecidability 16

Also recall that an instruction of the form “if l = li then C1 := C1 + 1 and
l := li′” is modeled in [3] by adding a path between some appropriate states of
the PTA modeling CM , using the scheme recalled in Figure 4.

li li′

y = b+1

y := 0 x = a
z = b
z := 0

x = b
x := 0

Fig. 4: Undecidability proof of [3]

The main difficulty when adapting the proof of [3] to PSTCSP is the fact
that clocks are now implicit. As a consequence, it is more difficult to constrain
the parameters than in a PTA. We will use 3 processes X, Y and Z running in
parallel in order to model the 3 clocks used in [3], plus an additional process W
in order to synchronize on events.

For each control variable li of CM , consider the set of instructions starting
in this control variable (i.e., of the form “if l = li then . . . ”). For each instruc-
tion Iij , i.e., the jth instruction starting in the control variable i, we will define
4 processes.

Consider an instruction of the form “if l = li then C1 := C1 +1 and l := li′”.
The 4 processes defined for this instruction are as follows:

Xij
.
= Wait[b− a]; e4ij � (e1ijwithin[a]); e2ij � Xi′

Yij
.
= Wait[b+1]; e1ij � Yi′

Zij
.
= Wait[b]; e3ij � Zi′

Wij
.
= e4ij ; e

1
ij ; e

2
ij ; e

3
ij ;Wi′

The three processes X, Y , Z correspond to the three clocks x, y, z, respec-
tively, of Figure 4. They synchronize on a set of events, and the order between
the events, which is crucial in order to constrain the parameters, is achieved by
process W . We name those events e1ij to e4ij , where ekij corresponds to the kth
transition of the construction recalled in Figure 4. Figure 5 gives the idea of
the construction, mentioning in particular the duration between any two events.
The within construct in process X is used in order to let event e1ij occur any-

time between e4ij and e2ij . However, for an instruction of the form “if l = li and
C1 = 0 then l := li′” (see below), it will be constrained to happen immediately
after e4ij .

For an instruction of the form “if l = li then C1 := C1 − 1 and l := li′”, we
define the four processes in the same way, except Yij where Wait[b+1] should be
replaced with Wait[b−1].

For an instruction of the form “if l = li and C1 = 0 then l := li′”, we
define the four processes in the same way, except Yij where Wait[b+1] should be
replaced with Wait[b], and Xij is defined as follows:

Xij
.
= Wait[b− a]; e4ij � e1ij � Wait[a];Xi′

We also define four sets of processes, for i = 1, . . . , n− 1, as follows:

Xi
.
=

⋃
Xij , Yi

.
=

⋃
Yij , Zi

.
=

⋃
Zij , Wi

.
=

⋃
Wij

4 Expressiveness and Undecidability 17

Xij

Yij

Zij

Wij

e4ij e1ij e2ij e3ij

b− a− C2

C1 + 1

a− C1 − 1

C2

b− a a

Fig. 5: Proof of undecidability: synchronization between processes

where
⋃
Xij denotes a general choice between the m processes starting in control

variable i, i.e., Xi1 | · · · | Xim.
The final processes Yn, Zn and Wn are all equal to each other and defined

as Yn
.
= en → Skip (and similarly for Zn and Wn). As for Xn, we define it as

Xn
.
= en → P . This gives the final synchronization allowing the global process

to derive to P .
As in [3], we must also ensure that we initially have the following relationship

between the parameters:

a = a+1 − 1 = a−1 + 1 ∧ b = b+1 − 1 = b−1 + 1

This can be easily ensured by the following initialization process:

P0
.
= Wait[a]; e0 � Wait[b]; e0 � Skip

‖ Wait[a−1 + 1]; e0 � Wait[b−1 + 1]; e0 � Skip

‖ Wait[a+1 − 1]; e0 � Wait[b+1 − 1]; e0 � Skip

Or, alternatively, we can simply set the constraint K0 to the desired con-
straint, instead of True.

The global process encoding our construction scheme is given by:

PCM
.
= P0; ((Skip;X1) ‖ Y1 ‖ (Skip;Z1) ‖ (Skip;W1))

The Skip construction prefixing each process but Y1 allows these processes to
idle for some time before starting, as the four processes are dephased (see Fig-
ure 5).

Then, as in [3], if CM does not halt, then there is no way to reduce PCM

to P , and Π(M) = ∅. If CM does halt, and suppose the value of C1 (resp. C2)
never exceeds c1 (resp. c2), then for a parameter valuation π, π ∈ Π(M) iff
a = a+1 − 1 = a−1 + 1, and b = b+1 − 1 = b−1 + 1, and a ≥ c1 and b− a ≥ c2.
�

5 Parameter Synthesis 18

Alternative Proof of Undecidability Actually, the results of expressiveness
given in Section 4.1 gives another way to prove undecidability. Indeed, the proof
of undecidability of the emptiness problems for PTAs relies on the reduction of
the halting problem for 2-counter machines to the problem of testing if there
exists a consistent parameter valuation [3]. The construction uses a translation
from 2-counter machines to a PTA using 3 clocks. This PTA actually belongs
to the class of parametric closed timed automata, itself a subclass of parametric
closed timed ε-automata, which has been shown in Section 4.1 to be equivalent
to PSTCSP.

An immediate corollary of Theorem 4.5 is that parameter synthesis is unde-
cidable in general.

5 Parameter Synthesis

5.1 An Example of PSTCSP Model

We present here an example of PSTCSP model7 that will be used to show the
application of our algorithms introduced in this section.

Mnp
ex = {∅, ∅, Pnp ,True}

This model is actually non-parametric (np stands for non-parametric), has no
variables, and process Pnp is defined as follows.

Pnp .
= (a→ Wait[2]; b→ Stop) interrupt[1] c→ Pnp

Intuitively, event b never occurs because interrupt occurs before Wait[2] can
be achieved. We give in Figure 6 the set of reachable states given under the
form of an LTS.

s0 s1 s2
a

τ

τ

c

Fig. 6: Reachable states of process Pnp

Now consider the following parametrized version of Mnp
ex .

Mex = {∅, {u1, u2}, P,True}

Process P , still containing no variable, is defined as follows.

P
.
= (a→ Wait[u2]; b→ Stop) interrupt[u1] c→ P

7 This example is inspired by Example 2 from [35]

5 Parameter Synthesis 19

5.2 State Space Exploration

We first define a semi-algorithm to explore the state space until a fixpoint
reached, i.e., until no new state can be computed, or all new states have been
encountered before. Recall from Definition 2.1 that a state s is reachable in one
step from another state s′ if s is the successor of s′ in a run. This definition
extends to sets of states: Given a PSTCSP model M, one defines PostM(S)
(resp. Post iM(S)) as the set of states reachable from a set S of states in one

step (resp. i steps). Formally, PostM(S) = {s′|∃s ∈ S, ∃a ∈ Στ : s
a⇒ s′}.

And Post∗M(S) is defined as the set of all states reachable from S in M (i.e.,
Post∗M(S) =

⋃
i≥0 Post iM(S)). We give in Algorithm 1 a semi-algorithm for com-

puting the set of all reachable states. The inclusion test (used in PostM(S) ⊆ S)
denotes the classical set inclusion, i.e.: S ⊆ S′ iff ∀s ∈ S, ∃s′ ∈ S′ : s′ = s. Note
that this algorithm does not strictly speaking return the LTS, because transi-
tions are not stored. It would be straightforward to modify this algorithm so
that it outputs the whole LTS, including transitions.

Algorithm 1: Algorithm reachAll(M)

input : A PSTCSP model M of initial state s0
output: Set of reachable states

S ← {s0}1

while True do2

if PostM(S) ⊆ S then return S3

S ← S ∪ PostM(S)4

Application to the Example Let us apply reachAll to Mex . Since we have no
variable, we denote for the sake of conciseness the states by the pair (P,C),
where P is the current process, and C the current constraint over X and U .
The initial state is s0 = (P,True). Let 〈x1, x2, · · ·〉 be a sequence of clocks.

Starting with s0, we pick the first unused clock (x1) and apply Act to P
with x1 to get:

s′0 = (a→ Wait[u2]; b→ Stop) interrupt[u1]x1 c→ P , x1 = 0

Next, we can apply either rule ait1 or ait2. Apply rule ait1 (with ase1, aev),
we get:

s1 = (Wait[u2]; b→ Stop) interrupt[u1]x1
c→ P , 0 ≤ x1 ≤ u1

Apply rule ait2 to s0, we get s2 = (c→ P, x1 ≥ 0∧x1 = u1). Note that clock x1
becomes irrelevant after the transition. After pruning x1, we get s′2 = (c →
P,True).

Now consider state s1. We pick the first unused clock (x2) and apply Act
with x2 to get:

s′1 = (Wait[u2]x2
; b→ Stop) interrupt[u1]x1

c→ P , 0 ≤ x1 ≤ u1 ∧ x2 = 0

5 Parameter Synthesis 20

One can first apply rule ait1 (with ase1, await) to s′1, and get (after pruning
of x2):

s3 = (Skip; b→ Stop) interrupt[u1]x1
c→ P , u2 ≤ x1 ≤ u1

One can also apply rule ait2 (and idle8, idle10) to s′1, and get:

c→ P , 0 ≤ x1 − x2 ≤ u1 ∧ x1 = u1 ∧ x2 ≤ u2
After pruning of both x1 and x2, we get (c→ P,True), which is equal to s′2.

One can apply rule aev to s′2 to get (P,True), which is equal to s0.
Now consider state s3. One can first apply rule ait1 (with ase2, aki) to get:

s4 = (b→ Stop) interrupt[u1]x1
c→ P , u2 ≤ x1 ≤ u1

One can also apply rule ait2 (with idle8, idle2) to s3 to get:

s5 = c→ P , u2 ≤ x1 ∧ x1 = u1

Which gives after pruning of x1:

s′5 = c→ P , u2 ≤ u1
Note that s′5 is not equal to s2, because the associated constraint is different.

Now consider state s4. One can first apply rule ait1 (with aev) to get:

s6 = Stop interrupt[u1]x1 c→ P , u2 ≤ x1 ≤ u1
One can also apply rule ait2 (with idle8, idle2) to s4, which gives s5.

From s6, one can only apply rule ait2 (with idle1), which also gives s5.
From state s′5, one can apply rule aev and get:

s7 = P , u2 ≤ u1
which is almost equivalent to s′0 after application of Act with x1, but with the
addition of the constraint u2 ≤ u1.

From s7, one can apply rule ait1 (with ase1, aev) and get, after application
of Act with x2:

s8 = (Wait[u2]x2 ; b→ Stop) interrupt[u1]x1 c→ P , 0 ≤ x1 ≤ u1∧x2 = 0∧u2 ≤ u1
From s7, one can also apply rule ait2 (with idle8, idle3), which gives s5.

Then, from s8, one can either apply ait1 (with ase1, await), which gives s4,
or apply ait2 (with idle8, idle10), which gives s5.

We finally reach the fixpoint, and reachAll terminates. The set of reachable
states is now stable, and is depicted in Figure 7 under the form of an LTS, viz.,
a directed graph whose edges are labeled with actions.

The interpretation of the graph is as follows: the projection onto U of the
constraint associated with states s′0, s′1 and s′2 is True. Hence, these states can
be reached for any valuation of u1 and u2. However, the projection onto U of
the constraint associated with the other states is u2 ≤ u1. Hence, these states
can only be reached for parameter valuations satisfying this inequality. Observe
that the non-parametric model Pnp can only reach states (equivalent to) s′0, s′1
and s′2. Indeed, we have that Mnp

ex = Mex [π], with π is such that u1 = 3 and
u2 = 5, hence u1 < u2. �

5 Parameter Synthesis 21

s′0

s′1

s′2

s3

s4

s′5

s6 s8

s7

a

τ

τ

τ

c

τ

τ

b
τ

c

τ
a

τ

τ

τ

Fig. 7: States reachable in model Mex

Non-termination We show below that reachAll does not terminate in the gen-
eral case.

Proposition 5.1 (Non-termination): Let M be a PSTCSP model. Then Algo-
rithm reachAll(M) does not terminate in the general case.

Proof See counterexample in Example 5.2. �

We introduce here an example of PSTCSP model for which Algorithm reachAll
does not terminate. Recall that e stands for e→ Skip.

Consider the PSTCSP model M = (∅, {u1, u2}, ∅, P,True) where P is defined
as follows:

P
.
= Q interrupt[u1] b

Q
.
= a→ Wait[u2];Q

In the following, for the sake of readability, we present states (V, P,C) under
the form (P,C), considering the set of variables is empty. The initial state
is the following:

Q interrupt[u1] b , True

Instead of applying the whole Post operation, which would be time consum-
ing, we only compute a single state successor at a time, and show that we
can find an infinite (non-converging) run.

Let us first apply Act with fresh clock x1 (rules A8, A18, A3):

Q interrupt[u1]x1
b , x1 = 0

By expanding Q, we get:

(a→ Wait[u2];Q) interrupt[u1]x1 b , x1 = 0

Let us then apply rules ait1, ase1, aev:

(Wait[u2];Q) interrupt[u1]x1 b , x1 ≤ u1

5 Parameter Synthesis 22

Let us then apply Act with fresh clock x2 (rules A13, A18, A6):

(Wait[u2]x2
;Q) interrupt[u1]x1

b , x1 ≤ u1 ∧ x2 = 0

Let us then apply rules ait1, ase1, await:

(Skip;Q) interrupt[u1]x1
b , 0 ≤ x1 − x2 ≤ u1 ∧ x2 = u2 ∧ x1 ≤ u1

Let us now remove clock x2:

(Skip;Q) interrupt[u1]x1 b , u2 ≤ x1 ≤ u1

Let us then apply rules ait1, ase2, aki:

Q interrupt[u1]x1 b , u2 ≤ x1 ≤ u1

By expanding Q, we get:

(a→ Wait[u2];Q) interrupt[u1]x1
b , u2 ≤ x1 ≤ u1

Let us then apply rules ait1, ase1, aev:

(Wait[u2];Q) interrupt[u1]x1
b , u2 ≤ x1 ≤ u1

Let us then apply Act with fresh clock x2 (rules A13, A18, A6):

(Wait[u2]x2 ;Q) interrupt[u1]x1 b , u2 ≤ x1 ≤ u1 ∧ x2 = 0

Let us then apply rules ait1, ase1, await:

(Skip;Q) interrupt[u1]x1
b , u2 ≤ x1 − x2 ≤ u1 ∧ x2 = u2 ∧ x1 ≤ u1

Let us now remove clock x2:

(Skip;Q) interrupt[u1]x1
b , 2u2 ≤ x1 ≤ u1

So it is now easy to see that the algorithm will go into an infinite loop with
constraints of the form i ∗ u2 ≤ x1 ≤ u1, with i infinitely growing. �

Model checking When the set of reachable states is finite, i.e., when reachAll
terminates, one can apply to the reachability graph finite-state model check-
ing techniques, such as most techniques defined in [35] for STCSP, e.g., model
checking with and without non-Zenoness assumption, and refinement checking.

5 Parameter Synthesis 23

Parametric model-checking One can also extend the techniques defined in [35]
to perform parameter synthesis using parametric model checking. Instead of
replying “yes” or “no” to a request (reachability analysis, refinement checking,
etc.), one can output a constraint such that the request is valid or violated.

Unfortunately, in most cases, the set of reachable states in PSTCSP (as in
other parametric timed formalisms) is infinite8. Hence the techniques (even
on-the-fly) defined in the non-parametric framework do not apply anymore.

5.3 Parameter Synthesis Using the Inverse Method

The state space is often infinite, and classical techniques (even using on-the-fly
algorithms) may not terminate. We show here how to adapt to PSTCSP the
inverse method IM initially proposed in [5] for PTAs. Given a PTA A and a ref-
erence parameter valuation π, IM synthesizes a constraint K on the parameters
such that, for all π′ |= K, the time abstract behavior, i.e., the sequences of lo-
cations and actions, of A instantiated with π and A instantiated with π′ are the
same. This algorithm consists in generating runs starting from the initial state,
and removing states incompatible with the reference valuation by appropriately
refining K. The generation procedure is then restarted until no incompatible
state is generated. This method guarantees the time-abstract equivalence of the
behaviors. Hence, all linear time properties valid in A instantiated with π are
also valid in A instantiated with π′, and vice versa.

In order to adapt IM to the framework of PSTCSP, we need to check whether
the constraint associated with a state is satisfied by a given parameter valuation.
This refers to the following notion of π-compatibility.

Definition 5.2 (π-compatibility): Let M be a PSTCSP model, and s = (P, V,C)
be a state of M. The state s is said to be π-compatible if π |= C, and π-
incompatible otherwise.

In order to characterize the properties of IM , we define the notion of trace
as an alternating sequence of processes and actions.

Definition 5.3 (Trace): Given a PSTCSP model M and a run r of M of the form

(P0, V0, C0)
a0⇒ · · · am−1⇒ (Pm, Vm, Cm), the trace associated with r is the alter-

nating sequence of processes and actions P0
a0⇒ · · · am−1⇒ Pm. The trace set of M

is the set of all traces associated with the runs of M.

We give in Algorithm 2 the adaptation of IM (M, π) to PSTCSP. We consider
in the following the model M = (Var , U, V0, P,K0). Starting with a constraint
over the parameters K = K0, we iteratively compute a growing set of reachable
states. When a π-incompatible state (V, P,C) is encountered (i.e., when π 6|= C),
K is refined as follows: a π-incompatible inequality J (i.e., such that π 6|= J) is
selected within the projection of C onto the parameters U and the negation ¬J

8 For timed systems, the state space is always infinite because of dense time. Here, we mean
that the number of (symbolic) states (V, P,C) is infinite too.

5 Parameter Synthesis 24

of J is added to K. The procedure is then started again with this new K, and
so on, until fixpoint is reached (i.e., all new states have been met before, or no
new state is reachable). We finally return the intersection of the projection onto
the parameters U of the constraints associated with all reachable states.

Algorithm 2: Algorithm IM (M, π)

input : PSTCSP model M = (Var , U, V0, P,K0)
input : Parameter valuation π
output: Constraint K over the parameters

i← 0 ; K ← K0 ; S ← {(V0, P,K)}1

while True do2

while there are π-incompatible states in S do3

Select a π-incompatible state (V, P,C) of S (i.e., s.t. π 6|= C) ;4

Select a π-incompatible J in C/U (i.e., s.t. π 6|= J) ;5

K ← K ∧ ¬J ;6

S ←
⋃i
j=0 PostjM({(V0, P,K)}) ;7

if PostM(S) ⊆ S then8

return
⋂

(V,P,C)∈S C/U ;9

i← i+ 1 ;10

S ← S ∪ PostM(S) ; /* S =
⋃i
j=0 PostjM({(V0, P,K)}) */11

Actually, the two major steps of the algorithm are the following ones:

1. the iterative negation of the π-incompatible states (by negating a π-
incompatible inequality J) prevents for any π′ |= K the behavior different
from π;

2. the intersection of the constraints associated with all the reachable states
guarantees that all the behaviors under π are allowed for all π′ |= K.

Properties Most properties of IM for PTAs and its variants (see [5, 6]) also
apply to our framework. In particular, IM preserves the equality of trace sets,
as defined below.

Proposition 5.4: Let M be a PSTCSP model, and π a parameter valuation. Let
K = IM (M, π). Then: (1) π |= K, and (2) for all π′ ∈ K, the trace sets of M[π]
and M[π′] are the same.

Proof Using a reasoning similar to [5]. �

As a consequence, all linear-time properties valid for M[π] are preserved in
M[π′], for all π′ ∈ K. This is the case of properties expressed using the Linear
Time Logics (LTL) [30], but also using the SE-LTL logics [13], which is a linear
temporal logic constituted by both atomic state propositions and events.

5 Parameter Synthesis 25

Advantages The efficiency of IM in practice comes from the fact that the
exploration of the state space is very partial; branches are cut as soon as they
differ from π. Furthermore, in contrast to classical model checking techniques,
transitions are not stored in memory; only states are needed (see Algorithm 2).
Although IM is not guaranteed to output the weakest constraint (i.e., the largest
set of parameters), it often does (see Section 5.4.2); and it is always guaranteed
to output a dense set of parameter valuations in |U | dimensions, both non-null
and non-reduced to a point.

Termination of IM is not guaranteed in the general case; however, it termi-
nates for all our case studies. For instance, the application of IM to Example 5.2
terminates for any non-null parameter valuation, although Algorithm reachAll
does not terminate. It has been shown that termination is guaranteed for PTAs
whose associated graph is acyclic. This can be extended to PSTCSP, if a process
has no recursion (i.e., no cyclic dependencies between subprocesses).

Proposition 5.5: IM (M, π) terminates if M has no recursion.

Actually, whereas it is possible to find counterexamples for IM in the setting
of PTAs, we were not able to exhibit any example in PSTCSP (with non-null
parameter valuations) such that IM does not terminate. For instance, IM
terminates for Example 5.2, although it contains a recursive definition (because
process P is defined using Q, and Q itself defined using Q). This is not trivial,
since a standard reachability analysis would go into an infinite loop, precisely
because the recursion is under the parameterized interrupt construct, where u1
can be arbitrarily big when compared to u2. This result is of particular interest
since parameter synthesis is undecidable for PSTCSP.

Furthermore, IM gives a criterion of robustness: it guarantees that, if the
system is correct for π, it will also be correct for valuations around π (viz., for
all valuations satisfying IM (M, π)). This gives a quantitative measure of the
implementability of a timed system.

Application to the Example Let us apply IM to Mex and the following ref-
erence parameter valuation π: u1 = 1 ∧ u2 = 2. Again, since Var = ∅, we
denote the states by (P,C), where P is the current process, and C the current
constraint on X and U . Recall that K0 = True.

We start with i = 0, K = True and S = {s′0}, with

s′0 = ((a→ Wait[u2]; b→ Stop) interrupt[u1]x1 c→ P, x1 = 0).

The projection of x1 = 0 onto the parameters gives True; hence, s′0 is π-
compatible and we perform i← i+ 1 and S ← S ∪ PostM(S).

Now, we have i = 1 and S = {s′0, s′1, s′2}, with

s′1 = ((Wait[u2]x2
; b→ Stop) interrupt[u1]x1

c→ P, 0 ≤ x1 ≤ u1 ∧ x2 = 0)

and
s′2 = (c→ P,True).

5 Parameter Synthesis 26

The projection onto the parameters of the constraint associated with both s′1
and s′2 gives True; hence, S is π-compatible and we perform again i ← i + 1
and S ← S ∪ PostM(S).

Now, we have i = 2 and S = {s′0, s′1, s′2, s3}, with

s3 = ((Skip; b→ Stop) interrupt[u1]x1
c→ P, u2 ≤ x1 ≤ u1).

The projection onto the parameters of the constraint associated with s3 gives
u2 ≤ u1, which is obviously π-incompatible. As a consequence, we negate
this inequality, and add it to K, which gives K = u2 > u1. Afterwards, we
perform

⋃i
j=0 PostjM({(V0, P,K)}); this gives a set of states similar to the last S

computed above, except that s3 is now absent from S, and all three states
s′0, s′1, s′2 contain the inequality u2 > u1 in their constraint. The fixpoint is
reached, and the intersection of the constraints on the parameters is returned
(viz., u2 > u1). �

By Proposition 5.4, for all π′ |= u2 > u1, the trace set of Mex [π′] is the same
as for Mex [π]. Note that this trace set is actually the one depicted in Figure 6
page 18.

It can also be shown that the application of IM to Mex and a reference
parameter valuation such that u2 ≤ u1 (e.g., u1 = 2 and u2 = 1) leads to the
result u2 ≤ u1.

5.4 Implementation and Experiments

This work has been implemented within PAT [34, 37], a self-contained frame-
work implemented in C# and able to support composing, simulating and au-
tomatic verification of concurrent, real-time systems and other domains. It
comes with user friendly interfaces, featured model editor and animated sim-
ulator. Most importantly, PAT implements various model checking techniques
catering for different properties such as deadlock-freeness, divergence-freeness,
reachability, LTL properties with fairness assumptions, refinement checking and
probabilistic model checking. To achieve good performance, advanced optimiza-
tion techniques are implemented in PAT, e.g. partial order reduction, symmetry
reduction, process counter abstraction, parallel model checking.

The implementation of PSTCSP within PAT allows in particular the use
(within the process definitions) of complex data structures, such as counters,
lists, sets, and more generally any structure and function defined by the user
in C#.

One of the major issues in the synthesis of timing parameters is the handling
of constraints on both clocks and parameters. Operations on such constraints
(intersection, variable elimination, satisfiability, etc.) are by far more complex
than equivalent operations on constraints on clocks, because the latter benefit
from the efficient representation using DBMs. Unfortunately, most optimiza-
tions defined for DBMs do not apply to parametric timed constraints. In our
setting, each state is implemented under the form of a pair (process id, constraint
id), both under the form of a string. Although some processing is needed each

5 Parameter Synthesis 27

time a new state is computed, an advantage is that the constraint equality test
(when checking whether this new state has been met before) reduces to (trivial)
string equality.

We present in the remainder of this section an optimization for state space
reduction, as well as a set of case studies.

5.4.1 State Space Reduction

In PSTCSP, some states considered as different are actually equivalent. Con-
sider the following two states:

s1 = (∅, Wait[u1]x1deadline[u2]x2 , x1 ≤ x2 ≤ u2)

s2 = (∅, Wait[u1]x2
deadline[u2]x1

, x2 ≤ x1 ≤ u2)

It is obvious that s1 = s2, except the names of the clocks. Merging these states
may lead to an exponential diminution of the number of states. Hence, we
implemented a technique of state normalization: First, the clocks in the process
are renamed so that the first one (from left to right) is named x1, the second
x2, and so on. Second, the variables in the constraint are swapped accordingly.
This technique solves this problem at the cost of several nontrivial operations
(lists and strings sorting). We denote by reachAll+ (resp. IM +) the version of
reachAll (resp. IM) using this technique.

5.4.2 Experiments

We give in Table 1 the example name, the number |U | of parameters and, for
each algorithm, the number |S| (resp. |T |) of states (resp. transitions)9, the
maximum number |X| of clocks, and the computation time t on a Windows XP
desktop computer with an Intel Quad Core 2.4 GHz processor with 4 GiB mem-
ory.10

Bridge is a bridge crossing problem for 4 persons within 17 min. Fischeri
is the mutual exclusion protocol for i protocols. Jobshop is a scheduling prob-
lem. TrAHV is the train example from [3]. RCSi is a railway control system
with i trains. When reachAll (resp. reachAll+) terminates, one can apply clas-
sical model checking techniques: for instance, we checked that all models are
deadlock-free (except Jobshop which is precisely finite-state). When reachAll
does not terminate (Bridge, Fischer), IM is interesting because it synthesizes
constraints even for infinite symbolic state space case studies; and when reachAll
terminates slowly (TrAHV), IM may synthesize constraints quickly. The refer-
ence valuation used for IM either is the standard valuation for the considered
problem (Bridge, Jobshop, RCSi, TrAHV) or has been computed in order to
satisfy a well-known constraint of good behavior (Fischeri).

9 Recall that IM does not maintain transitions. Hence, the transition number for IM and
IM+ is only an integer maintained within the program for statistics purpose.
10 Binaries, models and results are available on www.comp.nus.edu.sg/~pat/par/.

www.comp.nus.edu.sg/~pat/par/

5 Parameter Synthesis 28

Case reachAll reachAll+ IM IM+
study |U | |S| |T | |X| t |S| |T | |X| t |S| |T | |X| t |S| |T | |X| t

Mex 2 8 14 2 0.008 8 14 2 0.006 3 5 2 0.004 3 5 2 0.005

M′ex 2 8 14 2 0.008 8 14 2 0.006 8 14 2 0.016 8 14 2 0.008

Bridge 4 - - - M.O. - - - M.O. 2.8k 5.5k 2 253 2.8k 5.5k 2 455

Fischer2 2 - - - M.O. - - - M.O. 44 75 2 0.086 45 77 2 0.103

Fischer3 2 - - - M.O. - - - M.O. 870 2004 3 3.38 313 730 3 0.723

Fischer4 2 - - - M.O. - - - M.O. 11k 31k 4 41.9 2k 5.8k 4 8.65

Fischer5 2 - - - M.O. - - - M.O. 133k 447k 5 1176 13k 44k 5 84.5

Fischer6 2 - - - M.O. - - - M.O. - - - M.O. 86k 342k 6 1144

Jobshop 8 14k 20k 2 21.0 12k 17k 2 18.1 1112 1902 2 17.1 877 1497 2 22.8

RCS2 4 52 64 4 0.038 52 64 4 0.059 52 64 4 0.091 52 64 4 0.147

RCS3 4 233 296 4 0.186 233 296 4 0.300 233 296 4 0.310 233 296 4 0.513

RCS4 4 1070 1374 4 1.74 1070 1374 4 1.58 1070 1374 4 1.40 1070 1374 4 2.38

RCS5 4 5.6k 7.2k 4 10.5 5.6k 7.2k 4 9.54 5.6k 7.2k 4 7.83 5.6k 7.2k 4 16.7

RCS6 4 34k 43k 4 91.7 34k 43k 4 54.5 34k 43k 4 60.4 34k 43k 4 91.3

TrAHV 6 7.2k 13k 6 14.2 7.2k 13k 6 15.8 227 321 6 0.555 227 321 6 0.655

Tab. 1: Application of algorithms for parameter synthesis using PAT

Furthermore, the constraint output has several advantages. First, it solves
the good parameter problem, and may even output all correct parameter val-
uations. For instance, the constraint synthesized for Fischer (δ < γ) is known
to be the weakest constraint guaranteeing mutual exclusion. Second, it always
gives a criterion of robustness to the system, by defining a safety domain around
each parameter, guaranteeing that the system will keep the same (time-abstract)
behavior, as long as all parameters remain within K. Different from a simple
“ball” output by robust timed automata techniques, this domain is a convex
constraint in |U | dimensions. Third, it happens that the constraint is True
(e.g., RCSi for all i). In this case, one can safely refine the model by removing
all timing constructs (Wait, deadline, etc.). Although this might be checked
using refinement techniques in STCSP for one particular parameter valuation,
we prove it here for any parameter valuation – and the designers of the RCS
example were actually not even aware of this possible refinement.

As for the number of clocks, it is significantly smaller than equivalent models
for PTAs for some case studies: for instance, the Bridge case study would
obviously require 4 clocks because there are 4 independent processes in parallel.
Similarly, the RCSi case study would require at least i clocks, one by train (plus
some other clocks for the environment); however, in our setting, the maximum
number of clocks is constant, and equal to 4, for all i. Beyond the fact that it has
been shown that the fewer clocks, the more efficient real-time model checking
is [11], a smaller number of clocks implies a more compact state space in our
setting: constraints are represented using arrays and matrices; the fewer clocks,
the smaller the constraints are, the more compact the state space is.

Also observe that, when IM + indeed reduces the number of states, it is
much more efficient than IM , not only w.r.t. memory, but also w.r.t. time (e.g.,

6 Conclusion and Future Work 29

Fischeri for all i). However, with no surprise, when no state duplication is
met (e.g., Bridge), viz., when the state space is not reduced using this tech-
nique, the computation time is bigger. Although reducing this computation is
a subject of ongoing work, we do not consider it as a significant drawback: pa-
rameter synthesis’ largest limitations are usually non-termination and memory
saturation. Slower analyses for some case studies (up to +80% for Bridge) are
acceptable when others benefit from a dramatic memory (and time) reduction
(-90% for Fischer5), allowing parameter synthesis even when IM goes out of
memory (Fischer6).

Most importantly, our framework is efficient: some case studies handle more
than 100,000 reachable symbolic states in a very reasonable time, which, as far
as we know, is unseen for parametric timed frameworks. As far as we know,
no other tool performs parameter synthesis for timed extensions of CSP; as for
other formalisms, fair comparisons would be difficult due to model translations:
whereas translations between PTAs and Petri Nets are rather straightforward,
their translation into process algebra is much trickier.

6 Conclusion and Future Work

We introduced Parametric Stateful Timed CSP, an intuitive formalism for rea-
soning parametrically in hierarchical real-time concurrent systems with shared
variables and complex data structures. A simple semi-algorithm reachAll com-
puting the set of reachable states is not guaranteed to terminate, as we showed
that parameter synthesis is undecidable. We then adapted the inverse method IM ,
which synthesizes a set of parameters around a reference parameter valuation,
guaranteeing the same time abstract behavior (in term of traces), and providing
the system with a measure of robustness. IM behaves well in practice, and is
given a sufficient termination condition. Our implementation within PAT leads
to efficient parameter synthesis, handling more than 100,000 reachable symbolic
states.

As future work, we wish to improve the state space representation, following
the lines of the optimization of Section 5.4.1, and develop further state space
reduction techniques. Other synthesis algorithms should also be developed or
adapted, for instance following the lines of algorithms for PTAs [6]. In particu-
lar, parametric refinement checking is the subject of ongoing work.

Acknowledgment

Yang Liu is supported by research grant “Research and Development in the For-
mal Verification of System Design and Implementation”. Jun Sun is supported
by research grant “IDD11100102 / IDG31100105” from Singapore University
of Technology and Design. Jin-Song Dong is supported by MOE T2 Project
“Advanced Model Checking Systems”.

We are grateful to Zhu Huiquan for solving several implementation issues.

6 Conclusion and Future Work 30

References

[1] R. Alur and D.L. Dill. Automata for modeling real-time systems. In
ICALP’90, ICALP’90, pages 322–335. Springer-Verlag, 1990. 13

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994. 2

[3] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning.
In STOC’93, pages 592–601. ACM, 1993. 2, 13, 15, 16, 17, 18, 27

[4] Rajeev Alur and Parthasarathy Madhusudan. Decision problems for timed
automata: A survey. In SFM-RT’04, volume 3185 of LNCS, pages 1–24.
Springer-Verlag, 2004. 14

[5] É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for
parametric timed automata. Int. J. of Found. of Comput. Sci., 20(5):819–
836, 2009. 2, 3, 23, 24

[6] Étienne André and Romain Soulat. Synthesis of timing parameters sat-
isfying safety properties. In RP’11, volume 6945 of LNCS, pages 31–44.
Springer, 2011. 24, 29

[7] A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reach-
ability analysis of complex systems. In CAV’01, pages 368–372. Springer-
Verlag, 2001. 2

[8] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed
automata and digital circuits. In CONCUR ’98, CONCUR ’98, pages 470–
484. Springer-Verlag, 1998. 13

[9] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and Wang Yi. Efficient
Timed Reachability Analysis Using Clock Difference Diagrams. In CAV’99,
volume 1633 of LNCS, pages 341–353. Springer, 1999. 10

[10] Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Rasmussen.
Beyond liveness: Efficient parameter synthesis for time bounded liveness.
In FORMATS’05, pages 81–94, 2005. 2

[11] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In LCPN’03, volume 3098 of LNCS, pages 87–124. Springer, 2003.
10, 28

[12] Batrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Charac-
terization of the expressive power of silent transitions in timed automata.
Fundamenta Informaticae, 36:145–182, 1998. 13

[13] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha.
State/event-based software model checking. In IFM’04, volume 2999 of
LNCS, pages 128–147, 2004. 24

6 Conclusion and Future Work 31

[14] R. Clarisó and J. Cortadella. The octahedron abstract domain. Science of
Computer Programming, 64(1):115–139, 2007. 2

[15] A. Collomb–Annichini and M. Sighireanu. Parameterized reachability anal-
ysis of the IEEE 1394 Root Contention Protocol using TReX. In RT-
TOOLS’01, 2001. 2

[16] P.R. D’Argenio, J.P. Katoen, T.C. Ruys, and G.J. Tretmans. The bounded
retransmission protocol must be on time! In TACAS’97. Springer, 1997. 2

[17] J. Davies. Specification and Proof in Real-Time CSP. Cambridge University
Press, 1993. 8, 13

[18] David L. Dill. Timing assumptions and verification of finite-state con-
current systems. In Proceedings of the international workshop on Auto-
matic verification methods for finite state systems, pages 197–212. Springer-
Verlag, 1990. 10

[19] C.J. Fidge, I.J. Hayes, and G. Watson. The deadline command. IEE
Proceedings—Software, 146(2):104–111, 1999. 7, 8

[20] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Inf. Comput., 111(2):193–244, 1994. 13

[21] Thomas A. Henzinger and Howard Wong-Toi. Using HyTech to synthesize
control parameters for a steam boiler. In FMIA’95, pages 265–282, 1995.
2

[22] C.A.R. Hoare. Communicating Sequential Processes. International Series
in Computer Science. Prentice-Hall, 1985. 3, 7

[23] Jochen Hoenicke and Ernst-Rüdiger Olderog. Combining specification tech-
niques for processes, data and time. In IFM’02, pages 245–266, 2002. 3

[24] M. Knapik and W. Penczek. Bounded model checking for parametric time
automata. In SUMo’10, 2010. 2

[25] Hee-Hwan Kwak, Insup Lee, Anna Philippou, Jin-Young Choi, and Oleg
Sokolsky. Symbolic schedulability analysis of real-time systems. In IEEE
RTSS’98, pages 409–418, 1998. 2

[26] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.
2

[27] Brendan P. Mahony and Jin Song Dong. Overview of the semantics of
TCOZ. In IFM’99, pages 66–85, 1999. 3

[28] J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and de-
cidability for timed automata. In LICS’03, pages 198–. IEEE Computer
Society, 2003. 13

6 Conclusion and Future Work 32

[29] J. Ouaknine and J. Worrell. Timed CSP = closed timed ε-automata. Nordic
Journal of Computing, 10:99–133, 2003. 13

[30] Amir Pnueli. The temporal logic of programs. In SFCS’77, pages 46–57.
IEEE Computer Society, 1977. 24

[31] S. Qin, J.S. Dong, and W.-N. Chin. A semantic foundation for TCOZ in
unifying theories of programming. In FME’03, pages 321–340, 2003. 7, 8

[32] S. Schneider. Concurrent and Real-time Systems. John Wiley and Sons,
2000. 3

[33] Alexander Schrijver. Theory of linear and integer programming. John Wiley
and Sons, 1986. 4

[34] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards flexible verification
under fairness. In CAV’09, volume 5643 of LNCS. Springer, 2009. 26

[35] J. Sun, Y. Liu, J.S. Dong, and X. Zhang. Verifying Stateful Timed CSP
Using Implicit Clocks and Zone Abstraction. In ICFEM’09, volume 5885
of LNCS, pages 581–600, 2009. 3, 5, 8, 9, 10, 11, 12, 15, 18, 22, 23

[36] L.-M. Traonouez, D. Lime, and O. H. Roux. Parametric model-checking
of time petri nets with stopwatches using the state-class graph. In FOR-
MATS’08, pages 280–294. Springer-Verlag, 2008. 3

[37] Jun Sun Yang Liu and Jin Song Dong. PAT 3: An extensible architecture
for building multi-domain model checkers. In ISSRE 2011, 2011. Accepted.
26

[38] T. Yoneda, T. Kitai, and C. J. Myers. Automatic derivation of timing
constraints by failure analysis. In CAV’02, pages 195–208. Springer-Verlag,
2002. 2

A Firing Rules for PSTCSP 33

A Firing Rules for PSTCSP

Given a program pr and a valuation V , the valuation obtained by executing
pr with V is denoted as pr(V). Let active(V, P) be the set of enabled events
given P and V , i.e., the set of events that can be fired at the current state (and
which lead to states with satisfiable constraints). Let αP denote the alphabet
of process P . Process of the form P ‖ Q is transformed to P ‖ [αP ∩ αQ]Q.

We give below all firing rules for PSTCSP.

(V, Skip, C)
X
 (V, Stop, C↑)

(aki)

(V, e→ P,C)
e
 (V, P,C↑)

(aev)

(V, a{pr} → P,C)
a
 (pr(V), P, C↑)

(aac)

V � b

(V, if b then {P} else {Q}, C)
τ
 (V, P,C↑)

(co2)

V 6� b
(V, if b then {P} else {Q}, C)

τ
 (V,Q,C↑)

(co3)

(V, P,C)
a
 (V ′, P ′, C ′)

(V, P |Q,C)
a
 (V ′, P ′, C ′ ∧ idle(Q))

(aex1)

(V,Q,C)
a
 (V ′, Q′, C)

(V, P |Q,C)
a
 (V ′, Q′, C ′ ∧ idle(P))

(aex2)

(V, P,C)
a
 (V ′, Q′, C ′)

(V, P \E,C)
a
 (V ′, Q′, C ′)

(ahi1)

(V, P,C)
a
 (V ′, Q′, C ′) , active(V, P,C) ∩ E 6= ∅ , a /∈ E

(V, P \E,C)
a
 (V ′, Q′, C ′ ∧ C)

(ahi2)

(V, P,C)
a
 (V ′, Q′, C ′), active(V, P,C) ∩ E 6= ∅ , a ∈ E

(V, P \E,C)
τ
 (V ′, Q′, C ′ ∧ C)

(ahi3)

(V, P,C)
a
 (V ′, P ′, C ′) , X /∈ active(P, V,C)

(V, P ;Q,C)
a
 (V ′, P ′;Q,C ′)

(ase1)

(V, P,C)
X
 (V ′, P ′, C ′)

(V, P ;Q,C)
τ
 (V,Q,C ∧ C ′)

(ase2)

A Firing Rules for PSTCSP 34

(V, P,C)
a
 (V ′, P ′, C ′) , a /∈ E

(V, P ‖ [E]Q,C)
a
 (V ′, P ′ ‖ [E]Q,C ′ ∧ idle(Q))

(apa1)

(V,Q,C)
a
 (V ′, Q′, C ′) , a /∈ E

(V, P ‖ [E]Q,C)
a
 (V ′, P ‖ [E]Q′, C ′ ∧ idle(P))

(apa2)

(V, P,C)
e
 (V, P ′, C ′) , (V,Q,C)

e
 (V,Q′, C ′′) , e ∈ E

(V, P ‖ [E]Q,C)
e
 (V, P ′ ‖ [E]Q′, C ′ ∧ C ′′)

(apa3)

(V,Q,C)
a
 (V ′, Q′, C ′) , P

.
= Q

(V, P,C)
a
 (V ′, Q′, C ′)

(ade)

(V, Wait[u]x, C)
τ
 (V, Skip, C↑ ∧ x = u)

(await)

(V, P,C)
τ
 (V ′, P ′, C ′)

(V, P timeout[u]x Q,C)
τ
 (V ′, P ′ timeout[u]x Q,C

′ ∧ x ≤ u)
(ato1)

(V, P,C)
e
 (V ′, P ′, C ′)

(V, P timeout[u]x Q,C)
e
 (V ′, P ′, C ′ ∧ x ≤ u)

(ato2)

(V, P timeout[u]x Q,C)
τ
 (V,Q,C↑ ∧ x = u ∧ idle(P))

(ato3)

(V, P,C)
a
 (V ′, P ′, C ′)

(V, P interrupt[u]x Q,C)
a
 (V ′, P ′ interrupt[u]x Q,C

′ ∧ x ≤ u)
(ait1)

(V, P interrupt[u]x Q,C)
τ
 (V,Q,C↑ ∧ x = u ∧ idle(P))

(ait2)

(V, P,C)
τ
 (V ′, P ′, C ′)

(V, P within[u]x, C)
τ
 (V ′, P ′ within[u]x, C

′ ∧ x ≤ u)
(awi1)

(V, P,C)
e
 (V ′, P ′, C ′)

(V, P within[u]x, C)
e
 (V ′, P ′, C ′ ∧ x ≤ u)

(awi2)

(V, P,C)
a
 (V ′, P ′, C ′) , a 6= X

(V, P deadline[u]x, C)
a
 (V ′, P ′ deadline[u]x, C

′ ∧ x ≤ u)
(adl1)

(V, P,C)
X
 (V ′, P ′, C ′)

(V, P deadline[u]x, C)
X
 (V ′, P ′, C ′ ∧ x ≤ u)

(adl2)

Index

π-compatibility, 23

Activation function, 10

Clock, 4
Clock activation, 9
Consistency, 14
Constraint, 4
Correctness of IM , 24

Deadline, 7

Emptiness problem, 15
Event, 5
Expressiveness of PSTCSP, 14
Expressiveness of STCSP, 13

Idling calculation, 11
Inequality, 4
Instantiation of a PSTCSP model,

6
Inverse method, 24

Labeled Transition System, 5
Linear term, 4

Membership problem, 15
Model checking PSTCSP, 22

Non-termination of reachAll , 21

Parameter, 4
Parametric model checking of

PSTCSP, 23
Parametric Stateful Timed CSP, 5
PAT, 26

Robustness, 25

Semantics of PSTCSP, 12
State, 10
Syntax of PSTCSP processes, 6

Termination condition for IM , 25
Time Elapsing, 5

Trace, 23

Urgent prefixing, 8

Variable, 4

	Introduction
	Preliminaries
	Syntax and Semantics of PSTCSP
	Syntax
	Informal Semantics
	Example: Fischer Mutual Exclusion
	Clock Activation
	Semantics
	Idling Function
	Semantics

	Expressiveness and Undecidability
	Expressiveness
	Membership and Emptiness

	Parameter Synthesis
	An Example of PSTCSP Model
	State Space Exploration
	Parameter Synthesis Using the Inverse Method
	Implementation and Experiments
	State Space Reduction
	Experiments

	Conclusion and Future Work
	Firing Rules for PSTCSP

