
PRTS: Specification and Model Checking

Jun Sun1, Songzheng Song2, Yang Liu2 and Jin Song Dong2

1 Singapore University of Technology and Design
sunjun@sutd.edu.sg

2 National University of Singapore
{songsongzheng,liuyang.comp,dongjs.comp}@nus.edu.sg

1 Introduction

With the development of computing and sensing technology, information process and
control software are integrated into everyday objects and activities. Design and develop-
ment of control software for safety-critical systems are notoriously difficult problems.
Real-life systems often have complex data components or complicated hierarchical con-
trol flows. Furthermore, control software often interacts with physical environment and
therefore depends on quantitative timing. It is a challenging task to verify hierarchi-
cal complex real-time systems. In addition, probability exhibits itself commonly in the
form of statistical estimates regarding the environment in which control software is em-
bedded. Requiring a system always function perfectly within any environment is often
overwhelming.

In last 3 years, we aim to develop a useful tool for verifying hierarchical complex
probabilistic real-time systems. In the first phase, we proposed a language called CSP#
for system modeling. CSP# is an expressive language, combining Hoare’s CSP [7] and
data structures; after that, we extended this language to support probabilistic choices
and we named it as PCSP#. It extended previous work on combining CSP with prob-
abilistic choice [8] or on combining CSP with data structures [11]. Now we integrate
real-time into this language and get PRTS. PRTS combines low-level programs, e.g.,
sequence programs defined in a simple imperative language or any C# program, with
high-level specifications (with process constructs like parallel, choice, hiding, etc.), as
well as timed transitions and probabilistic choices. It supports shared variables as well
as abstract events, making it both state-based and event-based. Its underlying semantics
is based on Markov Decision Processes (MDP) [3].

In summary, our own model checker PAT now could model and verify complex
systems which include concurrency, real-time and probabilistic choices. These features
guarantee users to analyze complicated real life systems such as Biology system, com-
munication protocol and lift system. In this report, we introduce all the syntax and
semantics used in PRTS and present some basic algorithms applied in PAT to handle
this kind of model.

2 Background

In this section, we give some concepts and definitions that will be used throughout the
rest of the report.

When modeling probabilistic systems (particularly, discrete-time stochastic control
processes), Markov Decision Process (MDP) is one of the most widely used models. An
MDP is a directed graph whose transitions are labeled with events or probability, and
whose states are labeled with atomic propositions. The following notations are used to
denote different transition labels. R+ denotes the set of non-negative real numbers; ε ∈
R+ denotes the event of idling for exactly ε time units; τ denotes an unobservable event;
Act denotes the set of observable events such that τ 6∈ Act ; Actτ denotes Act ∪ {τ}.
Given a set of states S , a distribution is a function µ : S → [0, 1] such that Σ µ(s) = 1.
We say µ is a trivial distribution or is trivial if and only if there exists a state s such that
µ(s) = 1. Let Distr(S) be the set of all distributions over S . Formally, we have the
following definition.

Definition 1. An MDP is a tuple D = (S , init ,Act ,Pr) where S is a set of system
states which are related to variables and process; init ∈ S is the initial state; Pr :
S × (Actτ ∪ R+)×Distr(S) is a transition relation3.

For simplicity, a transition is written as: s x→ µ such that s ∈ S ; x ∈ Actτ ∪ R+

and µ ∈ Distr(S). If µ is trivial, i.e., µ(s ′) = 1, then we write s
x→ s ′. There are three

kinds of transitions. A time-transition is labeled with a real-valued constant ε ∈ R+.
An observable transition is labeled with an event in Act . An un-observable transition is
labeled with τ . We state that D is finite if and only if S is finite. Throughout this report,
we have following assumptions.

– MDPs are assumed to be deadlock-free following the standard practice. A dead-
locking MDP can be made deadlock-free by adding self loops labeled with τ with
probability 1 to the deadlocking states, without affecting the result of probabilistic
verification.

– Without loss of generality, we assume that all variables have finite domains and
every process reachable from the initial configuration is finite as in [9].

A run of D is π = 〈s0, a0, µ0, s1, a1, µ1, · · ·〉 such that s0 = init and (si , ai , µi) ∈
Pr and µi(si+1) > 0 for all i . The sequence of observable events in π, denoted as
trace(π), is a trace of D. Let runs(D) denote the set of runs of D. Let traces(D) de-
note the set of traces of D. The probability of exhibiting π in D, denoted as PD(π),
is µ0(s1) ∗ µ1(s2) ∗ · · ·. Let X be a set of runs, we define PD(X) to be the accumu-
lated probability of exhibiting any run in X , i.e., PD(X) = Σx∈XPD(x). Intuitively
speaking, given a state s , firstly an enabled event and a distribution is selected nonde-
terministically by a scheduler, and then one of the successor states is reached according
to the probability distribution. A scheduler is a function deciding which event and dis-
tribution to choose based on the run history. A Markov Chain [1] can be defined given
an MDP D and a scheduler δ, which is denoted as Dδ . Intuitively, a Markov Chain is
an MDP where only one event and distribution is enabled at every state.

3 Syntax

Processes in Probabilistic Timed Stateful CSP# can be defined by the grammar pre-
sented in Figure 1.

3 This definition is slightly different from the standard one [1].

P = Stop – in-action
| Skip – termination
| e → P – event prefixing
| a{program} → P – data operation prefixing
| if (b) {P} else {Q} – conditional choice
| P | Q – general choice
| P \X – hiding
| P ; Q – sequential composition
| P ‖ Q – parallel composition
| Q – process referencing
| Wait [d] – delay
| P timeout [d] Q – timeout
| P interrupt [d] Q – timed interrupt
| P within[d] – timed responsiveness
| P deadline[d] – deadline
| pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk} – probabilistic multi-choices

Fig. 1. Process constructs

Process Stop does nothing but idling. Process Skip terminates, possibly after idling
for some time. Process e → P engages in event e first and then behaves as P . Note
that e may serve as a synchronization barrier, if combined with parallel composition.
In order to seamlessly integrate data operations, we allow sequential programs to be
attached with events. Process a{program} → P performs data operation a (i.e., exe-
cuting the sequential program whilst generating event a) and then behaves as P . The
program may be a simple procedure updating data variables (written in the form of
a{x := 5; y := 3}) or a complicated sequential program. A conditional choice is
written as if (b) {P} else {Q}. If b is true, then it behaves as P , else it behaves as
Q . Process P ‖ Q offers an (unconditional) choice between P and Q4. Process P ; Q
behaves as P until P terminates and then behaves as Q immediately. P \ X hides oc-
currences of events in X . Parallel composition of two processes is written as P ‖ Q ,
where P and Q may communicate via multi-party event synchronization (following
CSP rules [7]) or shared variables. A process may be given a name, written as P =̂ Q ,
and then referenced through its name.

A number of timed process constructs can be used to capture common real-time
system behavior patterns. Let d denote an integer constant. Process Wait [d] idles for
exactly d time units. In process P timeout [d] Q , the first observable event of P shall
occur before d time units elapse (since process P timeout [d] Q is activated). Other-
wise, Q takes over control after exactly d time units. Process P interrupt [d]Q behaves
exactly as P (so that it may engage in multiple observable events) until d time units, and
then Q takes over. Process P within[d] must react within d time units, i.e., an observ-
able event must be engaged by process P within d time units. Note that P within[d]

4 For simplicity, we leave out external and internal choices in the classic CSP [7].

puts a constraint on P . Urgent event prefixing [5], written as e
!→ P , is defined as

(e → P) within[0], i.e., e must occur as soon as it is enabled. Process P deadline[d]
constrains P to terminate (possibly engaging in multiple observable events) before d
time units. In the following, d is referred to as the parameter of the timed process. Given
a model, the maximum parameter of the timed processes is called the clock ceiling.

Lastly, probabilistic choice is written in the form of pcase {pr0 : P0; pr1 : P1; · · · ; prk :
Pk}. where pri is an integer constant to express the probability weight. Intuitively, it
means that with pri

pr0+pr1+···+prk
probability, the system behaves as Pi .

4 Operational Semantics

In this part we introduce operational semantics for PRTS in PAT. According to if we
use state abstraction or not, two kinds of system configurations are used.

4.1 Concrete Configuration

A concrete system configuration is a pair (σ,P) where σ is a variable valuation and
P ∈ P is a process. For simplicity, an empty valuation is written as ∅. A transition of
the system is written in the form (σ,P)

x→ (σ′,P ′) such that x ∈ Στ ∪ R+. There are
two kinds of transitions, i.e., a transition labeled with an event inΣτ or a time transition
labeled with a number in R+. The operational semantics is defined by associating a set
of firing rules with each and every process construct. The firing rules associated with
processes are presented as follows.

[st]
(σ,Stop)

ε→ (σ,Stop)

[sk1]

(σ,Skip)
X→ (σ,Stop)

[sk2]
(σ,Skip)

ε→ (σ,Skip)

– The semantics of Stop is captured by rule st which means Stop can do nothing but
just idle(no event is executed); Rule sk1, sk2 indicate Skip could either execute a
terminating event or just keep idling.

[ev1]
(σ, e → P)

ε→ (σ, e → P)
[ev2]

(σ, e → P)
e→ (σ,P)

– The semantics of e → P is captured by these two rules which means this pro-
cess could keep stable if it just idles ε time units(ev1) or execute e and P takes
control(ev2).

[as1]
(σ, a{pr} → P)

ε→ (σ, a{pr} → P)

[as2]
(σ, a{pr} → P)

a→ (pr(σ),P)

– The semantics of a{pr} → P is defined as above which means this process could
keep unchanged if it just idles ε time units(as1) or execute a and then behaves as
P , meanwhile, σ is updated by program pr (as2).

[co1]
(σ, if b then {P} else {Q}) ε→ (σ, if b then {P} else {Q})

σ � b
[co2]

(σ, if b then {P} else {Q}) τ→ (σ,P)

σ 6� b
[co3]

(σ, if b then {P} else {Q}) τ→ (σ,Q)

– The semantics of if (b) {P} else {Q} is defined by rules co1, co2, co3. co1 is
straightforward; co2 means if σ satisfies b, then through an invisible event, P will
take control; co3 means if σ doesn’t satisfy b, then through τ event, Q will take
control.

(σ,P)
a→ (σ′,P ′)

[ch1]
(σ,P | Q)

a→ (σ′,P ′)

(σ,Q)
a→ (σ′,Q ′)

[ch2]
(σ,P | Q)

a→ (σ′,Q ′)

(σ,P)
ε→ (σ,P ′), (σ,Q)

ε→ (σ,Q ′)
[ch3]

(σ,P | Q)
ε→ (σ,P ′ | Q ′)

– The semantics of P | Q is defined by above rules. co1(co2) indicates if P (Q) could
engage event a and then becomes P ′(Q ′), P | Q could also engage this event and
becomes P ′(Q ′). co3 says if P and Q both could idle for ε time units, so does
P | Q . And choice is still there after idling.

(σ,P)
x→ (σ′,P ′), x 6∈ X

[hi1]
(σ,P \X)

x→ (σ′,P ′ \X)

(σ,P)
e→ (σ′,P ′), e ∈ X

[hi2]
(σ,P \X)

τ→ (σ′,P ′ \X)

– The semantics of P \X is defined by hi1, hi2. The first rule presents that if event x
is not included in X and after executing it (σ,P) becomes (σ′,P ′), then hiding X
has no affect on this event. However, if a visible event which is in X occurs, then
after hiding X , this event becomes invisible.

(σ,P)
x→ (σ′,P ′),X 6∈ init(σ,P)

[se1]
(σ,P ; Q)

x→ (σ′,P ′; Q)

(σ,P)
X→ (σ′,P ′)

[se2]

(σ,P ; Q)
X→ (σ′,Q)

– se1 and se2 define the semantics of P ; Q . se1 says if P could engage event x which
is not terminating event, then P ; Q could also engage this event and sequencial
symbol retains. However, if after terminating event, (σ,P) becomes (σ′,P ′), then
after this event, Q will take control in P ; Q .

(σ,P)
a→ (σ′,P ′), a 6∈ X

[pa1]
(σ,P |[X]|Q)

a→ (σ′,P ′ |[X]|Q)

(σ,Q)
a→ (σ′,Q ′), a 6∈ X

[pa2]
(σ,P |[X]|Q)

a→ (σ′,P |[X]|Q ′)

(σ,P)
x→ (σ′,P ′), (σ,Q)

x→ (σ′,Q ′), x ∈ X ∪ R+
[pa3]

(σ,P |[X]|Q)
x→ (σ′,P ′ |[X]|Q ′)

– The semantics of P |[X]|Q is defined by above rules. X means the set of events
on which P and Q could synchronize. pa1(pa2) says if P (Q) could engage event
a which is not in X , then P |[X]|Q could engage this event and Q(P) keeps
unchanged. If P and Q engage a common event x ∈ X ∪ R+, then P |[X]|Q
could synchronize on x and make one step.

(σ,Q)
x→ (σ′,Q ′),P =̂ Q

[def]
(σ,P)

x→ (σ′,Q ′)

– The semantics of P =̂ Q is defined by rule def which indicates if Q engages event
x and changes to Q ′, so does P , which is a reference of Q .

ε ≤ d
[wait1]

(σ,Wait [d])
ε→ (σ,Wait [d − ε])

[wait2]
(σ,Wait [0])

τ→ (σ,Skip)

– The semantics of Wait [d] is captured by rule wait1 and wait2. Rule wait1 states
that the process may idle for an arbitrary amount of time ε such that ε ≤ d . After-
wards, Wait [d] becomes Wait [d− ε]. The valuation of the variables is unchanged.
Rule wait2 states that the process becomes Skip via a τ -transition whenever d is 0.

(σ,P)
e→ (σ′,P ′)

[to1]
(σ,P timeout [d] Q)

e→ (σ′,P ′)

[to2]
(σ,P timeout [0] Q)

τ→ (σ,Q)

(σ,P)
τ→ (σ′,P ′)

[to3]
(σ,P timeout [d] Q)

τ→ (σ′,P ′ timeout [d] Q)

(σ,P)
ε→ (σ,P ′), ε ≤ d

[to4]
(σ,P timeout [d] Q)

ε→ (σ,P ′ timeout [d − ε] Q)

– The semantics of P timeout [d] Q is captured by rule to1 to to4. Rule to1 states
that if an observable event e can be engaged by P , changing (σ,P) to (σ′,P ′),
then (σ,P timeout [d] Q) becomes (σ′,P ′) so that Q is discharged. That is, P
has performed an observable event before timeout occurs. Rule to2 states that if
P instead performs a τ -transition, then Q and timeout operator remain (since an
observable event is yet to be performed). Rule to3 states that if P may idle for less
than or equal to d time units, so does P timeout [d] Q . Rule to4 states that if d is
0, Q takes over control by a τ -transition.

(σ,P)
a→ (σ′,P ′)

[ti1]
(σ,P interrupt [d] Q)

a→ (σ′,P ′ interrupt [d] Q)

(σ,P)
ε→ (σ,P ′), ε < d

[ti2]
(σ,P interrupt [d] Q)

e→ (σ,P ′ interrupt [d − ε] Q)

[ti3]
(σ,P interrupt [0] Q)

τ→ (σ,Q)

– The semantics of P interrupt [d]Q is defined by rule ti1 to ti3. Rule ti1 states that
if event a (which may be observable or τ) can be engaged by P , changing (σ,P) to
(σ′,P ′), then (σ,P interrupt [d] Q) can perform a as well. In contrast to rule to1,
the interrupt operator remains. Intuitively, it states that before P is interrupted, P
can do whatever it can. Rule ti2 states that if P may idle for less than or equal to
d time units, so does P interrupt [d] Q . Rule ti3 states that if d is 0, Q takes over
control by a τ -transition.

(σ,P)
τ→ (σ′,P ′)

[wi2]
(σ,P within[d])

τ→ (σ′,P within[d])

(σ,P)
e→ (σ′,P ′)

[wi1]
(σ,P within[d])

e→ (σ′,P ′)

(σ,P)
ε→ (σ,P ′), ε < d

[wi3]
(σ,P within[d])

ε→ (σ,P ′ within[d − ε])

– The semantics of P within[d] is defined by rule wi1 to rule wi3. Rule wi1 states
that if an observable event e occurs, then within is discharged, as the requirement
is fulfilled. In contrast, rule wi2 states that if instead event τ occurs, then within
remains. Rule wi3 state if P can idle for ε time units, then so does P within[d] as
long as ε ≤ d .

(σ,P)
a→ (σ′,P ′)

[dl1]
(σ,P deadline[d])

a→ (σ′,P ′ deadline[d])

(σ,P)
X→ (σ′,P ′)

[dl2]

(σ,P deadline[d])
X→ (σ′,P ′)

(σ,P)
ε→ (σ,P ′), ε < d

[dl3]
(σ,P deadline[d])

ε→ (σ,P ′ deadline[d − ε])

– Rule dl1, dl2 and dl3 define the semantics of P deadline[d]. Different from P within[d],
P deadline[d] requires P to terminate (marked by a special eventX) before d time
units. Rule dl1 states that if P behaves as usual before the deadline is expired. Rule
dl2 states that if P terminates, then deadline is discharged. Rule dl3 state if P can
idle for ε time units, so does P deadline[d] as long as ε ≤ d .

After defining all the semantics of non-probabilistic operators, the following firing
rules define the semantics of probabilistic choices.

(σ,P)
x→ (σ′,P ′)

[pb1]
(σ,P)

x→ µ such that µ((σ′,P ′)) = 1

[pb2]
(σ, pcase {pr0 : P0; · · · ; prk : Pk})

τ→ µ
such that µ((σ,Pi)) =

pri
pr0+pr1+···+prk

for all i

– pb1 indicates that if there is P could engage x and changes to P ′, then the proba-
bilistic distribution on this transition is always trivial distribution. pb2 presents that
pcase {pr0 : P0; · · · ; prk : Pk} could take an invisible event immediately and
keep the distribution.

4.2 Abstract Configuration

For many processes, especially real-time processes, having infinite states is a problem.
PAT adopts Zone Abstraction to handle this issue. This technic is proved useful in model
checking [6, 2, 4], and we amend it for more suitable for CSP#.

An abstract system configuration is a triple (σ,PT ,D), where σ is a variable valu-
ation; PT is a process associated with active clocks; and D is a zone. A zone D is the
conjunction of multiple primitive constraints over a set of clocks and in stateful Timed
CSP, amd clocks are implicitly associated with timed process, which means clocks are
only activated when the process faces a timed transition.

Given a process P and a clock t , we defined functionA to return the corresponding
process in PT . Figure 2 presents the detailed definition. Intuitively speaking, A1 to A5
state that if a process is un-timed and none of its sub-processes are activated, then it
is unchanged. A6 to A10 states that if a process has been associated with clocks (i.e.,
it is in PT), then function A is applied to its activated sub-processes only. Note that
Wait [d]t′ denotes that it has already been associated with clock t ′. A11 to A14 state
that if the process itself is un-timed, then function A is applied to its activated sub-
processes. A16 to A19 state that if the process is timed, then it is associated with t and
functionA is applied to its activated sub-processes. Given a process PT , we can obtain
the set of clocks associated with P or any sub-process of P . The set, written as cl(PT),
is referred to as the active clocks of PT .

A(Stop, t) = Stop – A1
A(Skip, t) = Skip – A2
A(e → P , t) = e → P – A3
A(a{program} → P , t) = a{program} → P – A4
A(if (b) {P} else {Q}, t) = if (b) {P} else {Q} – A5
A(Wait [d]t′ , t) = Wait [d]t′ – A6
A(P timeout [d]t′ Q , t) = A(P , t) timeout [d]t′ Q – A7
A(P interrupt [d]t′ Q , t) = A(P , t) interrupt [d]t′ Q – A8
A(P within[d]t′ , t) = A(P , t) within[d]t′ – A9
A(P deadline[d]t′ , t) = A(P , t) deadline[d]t′ – A10
A(P | Q , t) = A(P , t) | A(Q , t) – A11
A(P \X , t) = A(P , t) \X – A12
A(P ; Q , t) = A(P , t); Q – A13
A(P ‖ Q , t) = A(P , t) ‖ A(Q , t) – A14
A(Wait [d], t) = Wait [d]t – A15
A(P timeout [d] Q , t) = A(P , t) timeout [d]t A(Q , t) – A16
A(P interrupt [d] Q , t) = A(P , t) interrupt [d]t A(Q , t) – A17
A(P within[d] Q , t) = A(P , t) within[d]t A(Q , t) – A18
A(P deadline[d] Q , t) = A(P , t) deadline[d]t A(Q , t) – A19
A(P , t) = A(Q , t) if P =̂ Q – A20

Fig. 2. Clock activation

What is more, we define a function idle which, given a process, calculates how long
this process could idle. The result is in the form of a predicate over the clocks, i.e., a
zone. Figure 3 shows the detailed definition. Rule idle1 to idle5 state that if the process
is un-timed and none of its sub-processes is activated, then the function returns true.
It means that the process may idle for arbitrary amount of time. Rule idle6 to rule9
state that if sub-processes of the process are activated, then function idle is applied
to the sub-processes. In particular, if the process is a choice (rule idle6) or a parallel
composition (rule idle9) of P and Q , then the result is idle(P) ∧ idle(Q). Intuitively,
this means that process P | Q (or P ‖ Q) may idle as long as both P and Q can idle.
Rule idle10 to idle14 define the cases when the process is timed. For instance, process
Wait [d]t may idle as long as t is less or equal to d .

idle(Stop) = true – rule idle1

idle(Skip) = true – rule idle2

idle(e → P) = true – rule idle3

idle(a{program} → P) = true – rule idle4

idle(if (b) {P} else {Q}) = true – rule idle5

idle(P | Q) = idle(P) ∧ idle(Q) – rule idle6

idle(P \X) = idle(P) – rule idle7

idle(P ; Q) = idle(P); Q – rule idle8

idle(P ‖ Q) = idle(P) ∧ idle(Q) – rule idle9

idle(Wait [d]t) = t ≤ d – rule idle10

idle(P timeout [d]t Q) = t ≤ d ∧ idle(P) – rule idle11

idle(P interrupt [d]t Q) = t ≤ d ∧ idle(P) – rule idle12

idle(P within[d]t Q) = t ≤ d ∧ idle(P) – rule idle13

idle(P deadline[d]t Q) = t ≤ d ∧ idle(P) – rule idle14

idle(P) = idle(Q) if P =̂ Q – rule idle15

Fig. 3. Idling calculation

In order to systematically apply zone abstraction, we define a set of abstract fir-
ing rules. The abstract firing rules eliminate concrete ε-transitions all together and use
zones to ensure a process behaves correctly with respect to timing requirements. To
distinguish from concrete firing rules, an abstract firing rule is written in the the form
of (σ,P ,D)

x
 (σ′,P ′,D ′) where x ∈ Στ ∪ R+. Following presents the abstract fir-

ing rules for the timed processes. Note that D↑ denotes the zone obtained by delaying
arbitrary amount of time.

[aki]

(σ,Skip,D)
X
 (σ,Stop,D↑)

[aev]
(σ, e → P ,D)

e
 (σ,P ,D↑)

[aac]
(σ, a{pr} → P ,D)

a
 (pr(σ),P ,D↑)

σ � b
[co2]

(σ, if b then {P} else {Q},D)
τ
 (σ,P ,D↑)

σ 6� b
[co3]

(σ, if b then {P} else {Q},D)
τ
 (σ,Q ,D↑)

(σ,P ,D)
a
 (σ′,P ′,D ′)

[aex1]
(σ,P | Q ,D)

a
 (σ′,P ′,D ′ ∧ idle(Q))

(σ,Q ,D)
a
 (σ′,Q ′,D ′)

[aex2]
(σ,P | Q ,D)

a
 (σ′,Q ′,D ′ ∧ idle(P))

(σ,P ,D)
a
 (σ′,Q ′,D ′), init(σ,P ,D) ∩X = ∅

[ahi1]
(σ,P \X ,D)

a
 (σ′,Q ′,D ′)

(σ,P ,D)
a
 (σ′,Q ′,D ′), init(σ,P ,D) ∩X 6= ∅, a 6∈ X

[ahi2]
(σ,P \X ,D)

a
 (σ′,Q ′,D ′ ∧ D)

(σ,P ,D)
a
 (σ′,Q ′,D ′), init(σ,P ,D) ∩X 6= ∅, a ∈ X

[ahi3]
(σ,P \X ,D)

τ
 (σ′,Q ′,D ′ ∧ D)

(σ,P ,D)
a
 (σ′,P ′,D ′),X 6∈ init(σ,P ,D)

[ase1]
(σ,P ; Q ,D)

a
 (σ′,P ′; Q ,D ′)

(σ,P ,D)
X
 (σ′,P ′,D ′)

[ase2]
(σ,P ; Q ,D)

τ
 (σ,Q ,D ∧ D ′)

(σ,P ,D)
a
 (σ′,P ′,D ′), a 6∈ X

[apa1]
(σ,P |[X]|Q ,D)

a
 (σ′,P ′ |[X]|Q ,D ′ ∧ idle(Q))

(σ,Q ,D)
a
 (σ′,Q ′,D ′), a 6∈ X

[apa2]
(σ,P |[X]|Q ,D)

a
 (σ′,P |[X]|Q ′,D ′ ∧ idle(P))

(σ,P ,D)
e
 (σ,P ′,D ′), (σ,Q ,D)

e
 (σ,Q ′,D ′′), e ∈ X

[apa3]
(σ,P |[X]|Q ,D)

e
 (σ,P ′ |[X]|Q ′,D ′ ∧ D ′′)

(σ,Q ,D)
a
 (σ′,Q ′,D ′),P =̂ Q

[ade]
(σ,P ,D)

a
 (σ′,Q ′,D ′)

– Rules above are almost the same as the relative concrete firing rules and zone trans-
formations are quite straightforward since no timed process construct is included.
We just take some rules for example. aki indicates Skip could engage the termi-
nating event after delaying arbitrary time units and then changes to Stop. aex1
defines the abstract semantics of P | Q . If P could execute a and (σ,P ,D) be-
comes (σ′,P ′,D ′), so does P | Q . Of course this execution should be constrained
by the maximum idle time that Q could wait. ahi3 defines the abstract semantics of
P \X . It means if a ∈ X is enabled, this transition should happen immediately(D
keeps unchanged) and meanwhile, clocks should be under the constraint of D ′.

[await]
(σ,Wait [d]c ,D)

τ
 (σ,Skip,D↑ ∧ t = d)

– Rule await defines the abstract semantics of Wait [d]. In contrast to the concrete
firing rules, there is only one abstract rule. It states that a τ -transition occurs exactly
when clock c reads d . Intuitively, D↑ ∧ c = d denotes the exact moment of d time
units elapsed since c starts. Afterwards, the process becomes Skip.

(σ,P ,D)
τ
 (σ′,P ′,D ′)

[ato1]
(σ,P timeout [d]c Q ,D)

τ
 (σ′,P ′ timeout [d]c Q ,D ′ ∧ c ≤ d)

(σ,P ,D)
e
 (σ′,P ′,D ′)

[ato2]
(σ,P timeout [d]c Q ,D)

e
 (σ′,P ′,D ′ ∧ c ≤ d)

[ato3]
(σ,P timeout [d]c Q ,D)

τ
 (σ,Q , c = d ∧ idle(P))

– Rule ato1, ato2 and ato3 define the abstract semantics of P timeout [d] Q . Rule
ato1 states that if a τ -transition transforms (σ,P ,D) to (σ′,P ′,D ′), then a τ -
transition may occur given (σ,P timeout [d]c Q ,D) if zone D ′ ∧ c ≤ d is not
empty. Intuitively, this means that the τ -transition must occur before d time units
since c starts. Similarly, rule ato2 ensures that the occurrence of an observable
event e from process P may occur only if c ≤ d , i.e., before timeout occurs. Rule
ato3 states that timeout results in a τ -transition when the reading of c is exactly d .
The constraint c = d ∧ idle(P) ensures that process P may idle all the way until
timeout occurs.

(σ,P ,D)
a
 (σ′,P ′,D ′)

[ait1]
(σ,P interrupt [d]c Q ,D)

a
 (σ′,P ′ interrupt [d]c Q ,D ′ ∧ c ≤ d)

[ait2]
(σ,P interrupt [d]c Q ,D)

τ
 (σ,Q , c = d ∧ idle(P))

– Rule ait1 and ait2 define the abstract semantics of P interrupt [d] Q . Rule ait1
states that a transition originated from P may occur only if c ≤ d , i.e., before
interrupt occurs. Rule ait2 states that interrupt results in a τ -transition when the
reading of c is exactly d . The constraint c = d ∧ idle(P) ensures that process P
may idle until interrupt occurs.

(σ,P ,D)
τ
 (σ′,P ′,D ′)

[awi1]
(σ,P within[d]c ,D)

τ
 (σ′,P ′ within[d]c ,D

′ ∧ c ≤ d)

(σ,P ,D)
e
 (σ′,P ′,D ′)

[awi2]
(σ,P within[d]c ,D)

e
 (σ′,P ′,D ′ ∧ c ≤ d)

– Rule awi1 and awi2 define the abstract semantics of P within[d]. Rule awi1 states
that if a τ -transition occurs within d time units, then the resultant process is of the
form P ′ within[d], which means that it remains to perform some observable event
before d time units. Rule awi2 states that once an observable event occurs, the
within construct is removed.

(σ,P ,D)
a
 (σ′,P ′,D ′), a 6= X

[adl1]
(σ,P deadline[d]c ,D)

e
 (σ′,P ′ deadline[d]c ,D

′ ∧ c ≤ d)

(σ,P ,D)
X
 (σ′,P ′,D ′)

[adl2]

(σ,P deadline[d]c ,D)
X
 (σ′,P ′,D ′ ∧ c ≤ d)

– Rule adl1 and adl2 define the abstract semantics of P deadline[d]. Rule adl1
constraints that all transitions of P must occur within d time units. Rule adl2 states
that if P terminates (by engaging inX), then dealine is removed.

(σ,P ,D)
x
 (σ′,P ′,D ′)

[apb1]
(σ,P ,D)

x
 µ such that µ((σ′,P ′,D ′)) = 1

[apb2]
(σ, pcase {pr0 : P0; · · · ; prk : Pk},D)

τ
 µ

such that µ(σ,Pi ,D) = pri
pr0+pr1+···+prk

for all i

– apb1 indicates that if there is P could engage x and changes to P ′, then the prob-
abilistic distribution on this transition is always trivial distribution. apb2 presents
that pcase {pr0 : P0; · · · ; prk : Pk} should take an invisible event immedi-
ately(since D keeps unchanged) and keep the distribution.

5 Model Checking PRTS

In this part, we give the specific algorithms we use in PRTS system. If M = (Var , σi ,P)
be a model, then DM is defined as the concrete MDP transferred from M and Da

M

is defined as the abstract MDP transferred from M . In the following we will show
that after abstraction, Da

M has finite states so that it is suitable for model checking
method; what is more, Da

M is shown to be equivalent to the concrete semantics DM so
the verification results based on Da

M , no matter LTL checking or refinement checking,
apply to DM .

Theorem 1. Da
M is finite for any PRTS model M . 2

Proof By definition, the size of Da
M is bounded by #σ × #P × #D where #σ de-

notes the number of variable valuations; #P denotes the number of processes; and #D
denotes the number of zones. By assumption in section 2, all variables have finite do-
mains and therefore #σ is finite. Similarly, all reachable processes are finite. Thus, #P
is finite if and only if values for parameters of the timed processes are finite and the
number of clocks in cl(PT) is finite. It can be shown that all abstract firing rules pre-
serve the parameters and therefore values for parameters is finite. By assumption, there
can be only finitely many process constructs in any reachable process. Thus, cl(PT) is
always finite. Therefore, #P is finite. Lastly, it is known that with zone normalization,
the number of zones is finite given finitely many clocks and only integer constants [6].
As a result, we conclude that #D is finite and then Da

M is obviously finite. 2

5.1 Probability Preserving

Different from zone abstraction used in Probabilistic Timed Automata (PTA), we prove
that our automatic zone abstraction approach is probability preserving for several prop-
erties such as reachability checking and LTL-X checking.

First of all, we define probabilistic time-abstract bi-simulation of DTMC as follows.

Definition 2. A probabilistic time-abstract bi-simulation relation between a DTMC C =
(Sc , initc ,Act ,Prc) and an abstract DTMC Ca = (Sa , inita ,Act ,Pra) is a relation
R ⊆ Sc × Sa satisfying the following condition.

C1: If (sc , sa) ∈ R, then sc and sa have the same variable valuation.
C2: If (sc , sa) ∈ R and (sc , (ε, e, p), s

′
c) ∈ Prc for some ε ≥ 0, e ∈ Actτ and p ∈

[0, 1], then there exists s ′a such that (sa , (e, p), s ′a) ∈ Pra and (s ′c , s
′
a) ∈ R;

C3: If (sc , sa) ∈ R and (sa , (e, p), s
′
a) ∈ Pra for some e ∈ Actτ and p ∈ [0, 1], then

there exists some ε ≥ 0 and s ′c such that (sc , (ε, e, p), s ′c) ∈ Prc and (s ′c , s
′
a) ∈ R;

C and Ca are called bisimilar, or C ≈ Ca , if they have the bi-simulation relation R.
Obviously a specified LTL-X formula has the same probability in two DTMCs which
are bisimilar.

Now, given an MDP D and an LTL-X formula φ, let Pmax
D (φ) be the maximum

probability of D satisfying φ. Similarly, let Pmin
D (φ) be the minimum probability of D

satisfying φ. The following theorem states that it is sound and complete to model-check
LTL-X properties against Da

M .

Theorem 2. Let M be a PRTS model.Pmax
Da

M
(φ) = Pmax

DM
(φ) andPmin

Da
M
(φ) = Pmin

DM
(φ).

2

Proof Obviously, this theorem can be proven if 1) for each scheduler σ in DM , we
could find a scheduler η in Da

M such that Dσ
M ≈ (Da

M)η; 2) vice versa.
1) GivenDσ

M , we first prove that a sequential timed transitions can be treated as one
timed transition in verifying LTL-X. In other words, if we have s1

ε1→ s2
ε2→ s3 as a part

of a path in Dσ
M , one transition s1

ε1+ε2→ s3 is equivalent to the previous sequence. This
is trivial since timed transitions always have probability 1 and do not affect the variable
valuation in our setting. So that the probability of the LTL-X property on this path keeps
the same. Therefore, here we just considerDσ

M in which no successive timed transitions
exist.

we can build η in Da
M as follows. Obviously, the initial states in DM and Da

M

satisfy C1. From initc , there is one distribution chosen from the following three kinds
of distributions:

A: timed transition ε with probability 1 to sc ; that is initc
ε→ sc .

B: e ∈ Actτ with probability 1 to s ′c ; that is initc
e→ s ′c .

C: pcase specifying a real probability distribution to a set of states.

If case A is chosen, since no successive timed transitions allowed, there must exist
sc

e→ s ′c in Dσ
M , where e could be real action in the model, or τ indicating some timed

constructors’ expiration. pcase is also not allowed from sc because in our setting pcase
must happen immediately when it is enabled. Since timed transition is allowed at initc ,
pcase is not allowed in the following unless some timed constructors expire, which
means a τ transition must happen before pcase. Therefore, we have initc

ε→ sc
e→ s ′c

inDσ
M . In this case, it is trivial to show e is enabled at inita , otherwise e cannot happen

after a timed transition inDσ
M without some timed constructors expiration. So η chooses

e at inita and we assume the successive state is s ′a . Then we have (initc , (ε, e, 1), s ′c) ∈
Prc in Dσ

M and (inita , (e, 1), s
′
a) ∈ Pra in (Da

M)η . Therefore initc and inita satisfy
C2 and C3 and as a conclusion (initc , inita) ∈ R. Since timed transition does not
change the value of variables and e affects the variable equally in both models, we have
s ′c and s ′a satisfy C1.

If case B is chosen, it is obvious that e is enabled at both initc and inita . Let η
choose e in inita , so that in Dσ

M we have (initc , (0, e, 1), s
′
c) and in (Da

M)η we have
(inita , (e, 1), s

′
a). Thus initc and inita satisfy C2 and C3, which indicates (initc , inita) ∈

R. Since e affects the variable equally in both models, we have s ′c and s ′a satisfy C1.
If case C is chosen, then this pcase is also enabled at inita . Let η choose this pcase.

Assume in Dσ
M we have (initc , (0, τ, p), s ′c), then obviously we have (inita , (τ, p), s ′a)

in (Da
M)η . Thus initc and inita satisfy C2 and C3, which indicates (initc , inita) ∈ R.

Since probabilistic choice does not affect the value of variables, we have s ′c and s ′a
satisfy C1.

In summary, no matter which case is chosen in initc , scheduler η inDa
M can choose

a corresponding distribution from inita , such that (initc , inita) ∈ R and their suc-
cessive states s ′c and s ′a satisfy C1. Step by step, we could build η which guarantees
Dσ

M ≈ (Da
M)η for arbitrary Dσ

M . Therefore 1) is true.
2) Given (Da

M)η , we can build σ in DM as follows. Obviously inita and initc
satisfy C1. From inita , there is one distribution chosen from the following two kinds
of distributions.

A: e ∈ Actτ with probability 1 to s ′a ; that is inita
e
 s ′a .

B: pcase specifying a real probability distribution to a set of states.

If case A is chosen, there are two possibilities.
(I) e is τ transition which is generated because of some timed constructors expi-

ration, e.g. rule await . If this is true, it means some timed constructors are enabled at
inita , and also initc . Let d be the smallest parameter in those activated timed con-
structors, e.g. d = 2 in (Wait [2]; a → Skip)within[3]. Then let σ first choose
timed transition d from initc , that is initc

d→ sc , and second choose τ in sc , that is
sc

τ→ s ′c , indicating the expiration of those activated timed constructors having pa-
rameter d . Thus in (Da

M)η we have (inita , (τ, 1), s
′
a) ∈ Pra and in Dσ

M we have
(initc , (d , τ, 1), s

′
c) ∈ Prc . It is easy to show (inita , initc) ∈ R and s ′a and s ′c sat-

isfy C1.
(II) e is an ordinary action inDa

M . In this case, e must also be enabled in initc . So let
σ choose e , and we have (inita , (e, 1), s

′
a) ∈ Pra in (Da

M)η and (initc , (0, e, 1), s
′
c) ∈

Prc in Dσ
M . It is also obvious that (inita , initc) ∈ R and s ′a and s ′c satisfy C1.

If case B is chosen, similar to proof in 1), we could get (inita , initc) ∈ R, and
s ′a and s ′c satisfy C1 if they are the successive states from inita and initc respectively
following the same probabilistic choice.

In summary, no matter which case is chosen in inita , scheduler σ inDM can choose
a corresponding distribution from initc , such that (inita , initc) ∈ R and their suc-
cessive states s ′a and s ′c satisfy C1. Step by step, we could build σ which guarantees
Dσ

M ≈ (Da
M)η for arbitrary (Da

M)η . Therefore 2) is true.
As a conclusion, all DTMC fromDM can be covered byDa

M and vice versa, so that
this theorem is true.

2

5.2 Refinement Checking

Given an MDP D and a (non-probabilistic) MDP E , letPmax (D w E) denote the max-
imum probability of D refining E in un-timed trace semantics. Formally, it is defined
as follows.

supδ PD({π ∈ run(Dδ) | trace(π) ∈ trace(E)})

Intuitively, it is the maximum probability of exhibiting any trace of E by D . Similarly,
we define Pmin(D w E) to be the minimum probability. The following theorem states
that it is sound and complete to refine-check the abstract models.

Theorem 3. Let M be a model and N be a non-probabilistic model. Pmax (DM w
DN) = Pmax (Da

M w Da
N) and Pmin(DM w DN) = Pmin(Da

M w Da
N). 2

Proof Based on theorem 2, for each trace ex in DM , there is a trace ex ′ in Da
M which

is stutter equivalent to ex , and vice versa. Since we just consider non-timed trace re-
finement, we could conclude trace(ex) = trace(ex ′); what is more, ex and ex ′ have the
same probability. Similarly, we could get DN and Da

N are also trace equivalent. So the
theorem holds obviously. 2

For refinement checking between a finite MDP(the abstract model) and a finite non-
probabilistic MDP(the property), we could simply it to probability reachability analysis,
which is based on the following theorem.

Theorem 4. LetM be an MDP; N be an non-probabilistic MDP; D =M× de(N)
in which de(N) means the deterministic MDP got from N using standard superset
method. If G ⊆ D and for every pair (s, s ′) ∈ G , s ′ = φ, then Pmax (M w N) =
1− Pmin

D (G) and Pmin(Mw N) = 1− Pmax
D (G).

Proof Let δ be any scheduler forM. Note that δ can be extended to be a scheduler
for D straightforwardly. For simplicity, we use δ to denote both of them. Let X ⊆
paths(M). The following shows that the equivalence holds with any scheduler.

Pδ
M ({π ∈ paths(M) | trace(π) ∈ traces(N)})
≡ 1− Pδ

M ({π ∈ paths(M) | trace(π) 6∈ traces(N)}) – by def.
≡ 1− Pδ

D({π ∈ paths(D) | trace(π) 6∈ traces(N)}) – (1)
≡ 1− Pδ

D(G) – (2)

(1) is true because for every path ofM, there is a path ofD with the same probability (as
N is non-probabilistic) and the same trace; and vice versa. (2) is true because by [10],
a path of D such that trace(π) 6∈ traces(N) if and only if it visits some state in G .
It can be shown then Pmax (M w N), which is Pmax

M ({π ∈ paths(M) | trace(π) ∈
traces(N)}), is 1− Pmin

D (G) and Pmin(Mw N) is 1− Pmax
D (G). 2

Intuitively, the theorem holds because, with any scheduler, the probability of M not
refining L is exactly the probability of reaching G inM× de(N). As a result, refine-
ment checking is reduced to reachability probability in D. There are known approaches
to compute Pmax

M (G) and Pmin
M (G), e.g., using an iterative approximation method or

by solving linear programs [1].

References

1. C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008.

2. G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient Timed Reachability
Analysis Using Clock Difference Diagrams. In CAV, volume 1633 of LNCS, pages 341–353.
Springer, 1999.

3. R. Bellman. A Markovian Decision Process. Journal of Mathematics of Mechanics, 6, 1957.
4. J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and Tools. In Lectures on

Concurrency and Petri Nets, volume 3098 of LNCS, pages 87–124. Springer, 2003.
5. J. Davies. Specification and Proof in Real-Time CSP. Cambridge University Press, 1993.
6. D. L. Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems. In

Automatic Verification Methods for Finite State Systems, volume 407 of LNCS, pages 197–
212. Springer, 1989.

7. C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
8. C. Morgan, A. McIver, K. Seidel, and J. W. Sanders. Refinement-Oriented Probability for

CSP. Formal Asp. Comput., 8(6):617–647, 1996.
9. J. Ouaknine and J. Worrell. Timed CSP = Closed Timed Safety Automata. Electrical Notes

Theoretical Computer Science, 68(2), 2002.
10. A. W. Roscoe. Model-checking CSP. pages 353–378, 1994.
11. J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen. Integrating Specification and Programs for System

Modeling and Verification. In TASE, pages 127–135. IEEE Computer Society, 2009.

