
Build Your Own Model Checker in One Month
Jin Song Dong

National University of Singapore
dongjs@comp.nus.edu.sg

Jun Sun
Singapore University of Technology and Design

sunjun@sutd.edu.sg

Yang Liu
Nanyang Technological University

yangliu@ntu.edu.sg

Abstract—Model checking has established as an effective
method for automatic system analysis and verification. It is
making its way into many domains and methodologies. Applying
model checking techniques to a new domain (which probably has
its own dedicated modeling language) is, however, far from trivial.
Translation-based approach works by translating domain specific
languages into input languages of a model checker. Because the
model checker is not designed for the domain (or equivalently,
the language), translation-based approach is often ad hoc. Ideally,
it is desirable to have an optimized model checker for each
application domain. Implementing one with reasonable efficiency,
however, requires years of dedicated efforts.

In this tutorial, we will briefly survey a variety of model
checking techniques. Then we will show how to develop a model
checker for a language combining real-time and probabilistic fea-
tures using the PAT (Process Analysis Toolkit) step-by-step, and
show that it could take as short as a few weeks to develop your
own model checker with reasonable efficiency. The PAT system is
designed to facilitate development of customized model checkers.
It has an extensible and modularized architecture to support new
languages (and their operational semantics), new state reduction
or abstraction techniques, new model checking algorithms, etc.
Since its introduction 5 years ago, PAT has attracted more than
2500 registered users (from 500+ organisations in 60 countries)
and has been applied to develop model checkers for 20 different
languages.

I. INTRODUCTION

Software development has entered a mass production era.
To ensure quality, software verification is becoming a com-
pulsory step in the software development life cycle, especially
for safety and critical systems. Among the principal valida-
tion/verification methods (e.g., simulation, testing and theorem
proving), model checking [3] has emerged as a promising and
powerful approach to automatically verify software systems,
e.g., complex circuit design, communication protocols, driv-
er software, software process models, software requirement
models, architectural frameworks, product lines and system
implementations.

Model checking is the application of an automatic process
to verify whether a model satisfies a property by exhaustively
exploring the state space of the model. Till now, it has become
a wide area including many different approaches (e.g., explicit
model checking and symbolic model checking) catering for
different properties (e.g., temporal logics, refinement relation-
ship, etc.) and state space reduction techniques (e.g., partial
order reduction, symmetry reduction, etc.). Applying model
checking in a new domain requires in-depth understanding
of model checking techniques. Unfortunately, the complexity
prevents many domain experts, who may not be experts in

the area of model checking, from successfully applying model
checking to their domains.

In this tutorial, we cover the basic knowledge about model
checking and explain how to adopting model checking in new
application domains. This tutorial consists of two parts. The
first part briefly surveys the state-of-the-art model checker-
s and discusses the challenge in applying model checking
techniques. The second (and the main) part details what are
necessary steps to build a model checker of your language. In
particular, we will show how the PAT framework is designed to
help using a concrete example: how to step-by-step develop a
model checker for hierarchical real-time probabilistic systems.

II. MODEL CHECKING SYSTEMS OVERVIEW

Many model checkers have been developed and successfully
applied to practical systems, among which the most noticeable
ones include SPIN, NuSMV, FDR, UPPAAL, PRISM and Java
Pathfinder. With the successful story of the SLAM project and
the Intel i7 chip verification, model checking keeps marching
its way into new domains/applications. This tutorial will cover
the basic concepts of model checking, including Kripke struc-
tures, safety and liveness properties, temporal logics, basic
model checking algorithms and reduction techniques (partial
order reduction and symmetry reduction). In the end, a detailed
comparison on the state-of-the-art model checkers will be
given.

There are several approaches in applying model checking
to a new domain (and often a new language). A common ap-
proach is based on translating domain specific languages into
input languages of existing model checkers. The advantage of
this approach is that the domain experts need little knowledge
on model checking. This approach is, however, often less
than ideal. Firstly, though model checking is known to be a
“push-button” technique, applying a model checker in its most
effective setting can be very tricky. A precise understanding
of the various verification options is often necessary, which
can be very involved. Secondly, existing model checkers
may be inefficient or insufficient to model domain specific
applications, often due to lack of language features. A possible
remedy is to extend an existing model checker so as to support
new language features, new reduction techniques, or even
new model checking algorithms. It is, however, often more
challenging than expected. Model checkers are complicated
and highly coupled (for the sake of efficiency). Understanding
the (complete) source code of a model checker is extremely
difficult, and often impossible without proper documentation.



Fig. 1. PAT Architecture

Another approach is to develop a model checker from scratch.
In theory, this is ideal as the dedicated model checker can
support the domain specific language, and possible domain
specific state-reduction/abstraction techniques as well as mod-
el checking algorithms. It is, however, probably the most
challenging. The basic functionalities of a model checker
include language parsing, simulation, verification, state reduc-
tion, counterexample generation and display, etc. To finish
all with reasonable soundness guarantee often takes years of
effort. Notice that most of the established model checkers
(e.g., SPIN, NuSMV, UPPAAL and PRISM) are the result of
decades’ development.

III. DEVELOP DOMAIN SPECIFIC MODEL CHECKER USING
PAT

The PAT (short for Process Analysis Toolkit) framework [6],
[16], [8], [9] is designed to solve the problems encountered
in applying model checking techniques in new domains or
languages. It is a self-contained environment for system mod-
eling, simulation and verification. It comes with cross-platform
support, internationalization with 6 languages, user friendly
graphical interfaces, featured model editors and an animated
simulator. Most importantly, it adopts a layered architecture
so as to achieve extensibility.

Figure 1 above shows the layered architecture of PAT [9].
Each layer is explained as follows.

• Modeling Layer The top level of the architecture is the
supported application domains (e.g., distributed system,
service oriented computing, security protocols and so on).
For each application domain, modeling layer identifies
the domain specific language syntax, well-formedness
rules as well as formal operational semantics, which
are all encapsulated in a separate module. The main
components in modeling layer are the language parser
and model components (including syntax classes, vari-
ables, channels, etc.). The (operational) semantics of the
language shall be implemented in the syntax classes of
the language constructs, which can be either explicit state
representation or symbolic representation using Boolean

formulae.
• Abstraction Layer Model checking techniques gener-

ally only work with finite state systems. When a sys-
tem has infinitely many states according to its concrete
operational semantics, (automated) state abstraction is
essential. For example, a real-time system always has
infinitely many states since there is an arbitrary small
interval between any two time points. Hence abstraction
techniques like zone abstraction [4] can be used to gen-
erate finite systems. Even when the state space is finite,
effective abstraction/reduction techniques may reduce the
state space significantly. For example, process counter ab-
straction [19] can group identical processes using process
counter variables and ignore process identifiers (if they
are irrelevant). In PAT, the abstraction layer implements
abstraction techniques as independent functions, which
map a concrete state to an abstract state. These functions
are invoked during the state space exploration to generate
abstract states. Abstraction/reduction techniques, like par-
tial order reduction, are language or algorithm dependent,
which are then treated differently.

• Intermediate Representation Layer (IRL) IRL contains
different semantic models supported in PAT. Each seman-
tic model defines a state interface class with methods to
drive the state space exploration. After compilation, the
input model is converted to an initial state interface class.
Then the state space can be generated on-the-fly starting
from the initial state by following the operational seman-
tics (and applying abstraction/reduction techniques). PAT
supports three semantic models, i.e., Labeled Transition
System, Timed Transition System and Markov Decision
Processes.
For explicit model checking, the state interface class has a
number of operations, which allow the underlying model
checking algorithms to drive the execution of the system
and collect information from system states. The state
interface can also be used by the simulator to show the
system state space graphically.
For symbolic model checking, different operations are
defined so that a symbolic representation is generated
to capture the language semantics, usually in the form
of Boolean formulae. The Boolean formulae are usually
stored in the form of Binary Decision Diagram (BDD) for
symbolic model checking or Conjunctive Normal Form
(CNF) for bounded model checking.

• Analysis Layer This layer mainly contains reusable mod-
el checking algorithms. In the explicit model checking
approach, a set of verification algorithms have been
developed for each semantic model in IRL. For example,
deadlock checking, reachability checking, LTL verifi-
cation with fairness assumptions [18], [7], refinement
checking [13], [21] have been developed for LTS. The
verification algorithms only invoke state interface to
explore the state space. Therefore, the modeling language
is separated from the verification algorithms completely.
If the verification result is false, a counterexample is



produced, which can be visualized via the simulator.
For the symbolic model checking approach, symbolic
verification algorithms [12], [11], [10] are developed for
the generated BDD encoding of the system. Alternatively,
SAT solvers can be used for solving CNF equations for
bounded model checking [17].

PAT has been applied to model and verify a variety of
systems, ranging from recently proposed concurrent algorithm-
s [5], sensor networks [22], security protocols [1] to real-world
systems like the multi-lift and pacemaker systems. Previously
unknown bugs have been discovered [15], [1]. Experiment
results (can be found in PAT website) show that PAT is
capable of verifying systems with large number of states
and outperforms the state-of-the-art model checkers in some
cases. PAT has attracted more than 2500 registered users.
Mostly important, PAT’s extensibility has been evidenced
by the number of different languages that it supports: 20,
including CSP# [14], NesC [22], PRTS [20], Stateflow [2],
Timed Automata, etc. In the following, we illustrate what are
the necessary steps to build a customized model checker for
your own.

1) Define Syntax of Your Language The first step is to
define the syntax of a modeling language for your target
systems. In this tutorial, the targeted modeling language,
PRTS, is a hierarchial language combining concurrency,
real-time and probabilistic features. The detailed syntax
can be found in PRTS module in PAT user manual. With
the syntax constructs, the Module Generator tool in PAT
can generate the code skeleton for the module including
the necessary interfaces and languages syntax classes.

2) Encode Your Language Semantics The second step
is to define the operational semantics of your language.
This is achieved again through implementing pre-defined
state interface. The interface is called Configuration,
which defines the notion of global states. It should
compactly encapsulate every relevant varying elements
in the systems. In Configuration class. the method
Next returns a set of next-configurations given a cur-
rent configuration of the system. Depending the semantic
model, the next configurations may be in different forms.
For instance, if the semantic model is labeled transition
transition, then it is a set of configurations. For the
targeted PRTS language in this case study, the semantic
model is Markov Decision Processes, then it is a set
of distributions. Furthermore, the Configuration class
is often the place where domain specific state reduc-
tion/abstraction techniques can be implemented.

3) Extend PAT’s Model Checking Libraries It is pos-
sible that a domain may have specialized properties,
which require dedicated model checking algorithms;
or the domain has certain property which implies a
more efficient algorithm for checking certain property.
PAT’s design allows seamless integration of new model
checking algorithms and optimization techniques. To
create a new property, users need to create a new

assertion class, inheriting the base Assertion class and
implementing its pre-defined interface. In this example,
we will implement an SCC-based algorithm in PAT to
verify LTL property with fairness assumptions and show
that it outperforms SPIN significantly [16].

IV. VALUE AND SCOPE

The audiences will learn every step of developing a model
checker. The intended audiences of this tutorial are academics,
graduate students, researchers, software architects and analyst-
s. We particularly welcome those who want to apply formal
methods (especially model checking techniques) into a their
own application domains.

REFERENCES

[1] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu,
and J. S. Dong. AuthScan: Automatic Extraction of Web Authentication
Protocols from Implementations. In NDSS, February 2013.

[2] C. Chen, J. Sun, Y. Liu, J. Dong, and M. Zheng. Formal modeling
and validation of stateflow diagrams. International Journal on Software
Tools for Technology Transfer (STTT), 14:653–671, 2012.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 2000.

[4] K. G. Larsen, P. Pettersson, and Y. Wang. Uppaal in a Nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-
2):134–152, 1997.

[5] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model Checking Linearizability
via Refinement. In FM, pages 321–337, 2009.

[6] Y. Liu, J. Sun, and J. S. Dong. An Analyzer for Extended Compositional
Process Algebras. In ICSE Companion, pages 919–920. ACM, 2008.

[7] Y. Liu, J. Sun, and J. S. Dong. Scalable Multi-Core Model Checking
Fairness Enhanced Systems. In ICFEM, pages 426–445, 2009.

[8] Y. Liu, J. Sun, and J. S. Dong. Developing model checkers using pat.
In ATVA, pages 371–377, 2010.

[9] Y. Liu, J. Sun, and J. S. Dong. PAT 3: An Extensible Architecture
for Building Multi-domain Model Checkers. In ISSRE, pages 190–199,
2011.

[10] T. K. Nguyen, J. Sun, Y. Liu, and J. S. Dong. A model checking
framework for hierarchical systems. In ASE, pages 633–636, 2011.

[11] T. K. Nguyen, J. Sun, Y. Liu, and J. S. Dong. Symbolic model-checking
of stateful timed csp using bdd and digitization. In ICFEM, pages 398–
413, 2012.

[12] T. K. Nguyen, J. Sun, Y. Liu, J. S. Dong, and Y. Liu. Improved bdd-
based discrete analysis of timed systems. In FM, pages 326–340, 2012.

[13] J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Revisited:
Introducing a Process Analysis Toolkit. In ISoLA, pages 307–322, 2008.

[14] J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating Specification and
Programs for System Modeling and Verification. In TASE’09, pages
127–135. IEEE Computer Society, 2009.

[15] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and E. Andre. Modeling and
Verifying Hierarchical Real-time Systems using Stateful Timed CSP.
TOSEM, 22(1), 2012.

[16] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In CAV, pages 702–708, 2009.

[17] J. Sun, Y. Liu, J. S. Dong, and J. Sun. Bounded Model Checking of
Compositional Processes. In TASE, pages 23–30, 2008.

[18] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Specifying and Verifying
Event-based Fairness Enhanced Systems. In ICFEM, pages 318–337,
2008.

[19] J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong. Fair model
checking with process counter abstraction. In FM, pages 123–139, 2009.

[20] J. Sun, Y. Liu, S. Song, J. S. Dong, and X. Li. Prts: An approach for
model checking probabilistic real-time hierarchical systems. In ICFEM,
pages 147–162, 2011.

[21] T. Wang, S. Song, J. Sun, Y. Liu, J. S. Dong, X. Wang, and S. Li. More
anti-chain based refinement checking. In ICFEM, pages 364–380, 2012.

[22] M. Zheng, J. Sun, D. Sanán, Y. Liu, J. S. Dong, and Y. Gu. Towards
bug-free implementation for wireless sensor networks. In SenSys, pages
407–408, 2011.


