
Using Monterey Phoenix to Formalize and Verify
System Architectures

Jiexin Zhang∗, Yang Liu†, Mikhail Auguston‡, Jun Sun§ and Jin Song Dong∗
∗School of Computing, National University of Singapore

{jiexinzh,dongjs}@comp.nus.edu.sg
†School of Computer Engineering, Nanyang Technological University, Singapore

yangliu@ntu.edu.sg
‡Department of Computer Science, Naval Postgraduate School, Monterey, California, USA

maugusto@nps.edu
§ISTD, Singapore University of Technology and Design

sunjun@sutd.edu.sg

Abstract—Modeling and analyzing software architectures are
useful for helping to understand the system structures and
facilitate proper implementation of user requirements. Despite
its importance in the software engineering practice, the lack of
formal description and verification support hinders the develop-
ment of quality architectural models. In this work, we develop
an approach for modeling and verifying software architectures
specified using Monterey Phoenix (MP) architecture description
language. Firstly, we formalize the syntax and operational se-
mantics for MP. This language is capable of modeling system
and environment behaviors based on event traces, as well as
supporting different architecture composition operations and
views. Secondly, a dedicated model checker for MP is developed
based on PAT verification framework. Finally, several case studies
are presented to evaluate the usability and effectiveness of our
approach.

I. OVERVIEW

Software Architecture plays a vital role in the high
level design of a software system. In analogy to the civil
engineering, it represents the fundamental structural and
behavioral descriptions of the software system during the
engineering process. Software Architecture specifications
have been widely used in many fields to assist users to get an
intuitive understanding of the whole system on one hand, and
to facilitate different groups to cooperate together by giving
them guidelines and objectives on the other. The challenges
in this field have been focused on how to model a system in
its early design phase. The development cost can be greatly
reduced if mistakes are found early in high-level architecture
designs. In order to address the above problems, the model
checking technique has been widely used in this field. Model
checking is an effective means to verify the system against
properties through automatic and exhaustive search space
exploration.

Among the various architecture description languages,
Monterey Phoenix (MP) [4], [5], [6] is a precise and
innovative language which describes the system behavior
based on rigorous event grammar rules. In this language, the
behavior of the system is defined as a set of events (event

trace) with two basic relations: precedence and inclusion. The
structure of event trace is specified using event grammar rules
and other constraints organized into schemas. The structure
of the system can be designed based on the behavior model,
which provides a topology representation of how the system is
composed and operated by users. Despite its flexible features,
this language is short of verification support. In this work, we
apply model checking technique to MP language for the first
time to support a wide range of properties checking including
deadlock-freeness, reachability, and Linear Temporal Logic
(LTL) properties.

In this paper, we present an automated approach to the
modeling and verification of system architectures in the PAT
framework [15], [22], [14]. Firstly, we cover a rich set of
MP syntax to describe concurrent communications between
the components and connectors of the system. We formally
define the syntax and operational semantics to provide the
foundation of formal analysis. Based on the formal semantics,
we further developed a dedicated model checker based on PAT
verification framework, which supports modeling, simulation
and verification of MP models. Finally, we demonstrate our
approach with the architecture modeling and verification of
the client server, pipe filter and radar weapon system [6],
where the effectiveness and useability of our approach are
evaluated.

Related Work In the past decade, model checking
techniques have been applied to software architecture
designs [25], which aimed at achieving precise specification
and rigorous verification of the intended structures and
behaviors in the design. The advantage of verification is to
determine whether a modeled structure can satisfy a set of
given properties derived from the requirements of a system.
Furthermore, automated verification provides an efficient
and effective means for checking the correctness of the
architecture design. A considerable number of architecture
description languages have been proposed in the past years,
e.g., Wright [2], [3], ACME [9], and CHAM [8], [11]. Wright



and ACME capture the properties and structures of systems
by composing components which interact through connectors,
whereas, CHAM models system architecture in terms of
molecules and transformation rules. The drawback of many
existing approaches lies in the limited verification support to
the software architecture models specified in those notations.
For example, Wright is considered as the prominent language
in modeling the component and connector structures. It makes
the explicit use of parameterizing the specific behaviors of
a particular type. This language is partially encoded into
the FDR model checker [17], where only a subset of the
language is supported and the verification is limited by the
FDR tool (e.g., only compatibility checking and deadlock
analysis are available). In comparison, much more properties
such as reachability, and Linear Temporal Logic (LTL)
properties checking are supported in our approach. Our recent
work [24] on direct verification of extended Wright language
improves [2], [3] with support of reachability and LTL. For
ACME language, it is intended to support mapping from one
architecture description language to an intermediate logical
formalism and adopts an open semantic framework to reason
about the model. Kim and Garlan [13] proposed the modeling
and verification of architecture styles using the Alloy language
and analyzer. In their approach, a few architecture styles
based on ACME descriptions were translated to Alloy and
verified. Although it offers a useful insight to the ability of
applying Alloy in automating the verification of architecture
descriptions, the performance issue is a practical limitation.
In our approach, we support the simulation and verification of
MP models directly without extra transitions which can save
the overhead to a large extent compared with the translation
approach adopted by Wright and ACME languages. The
CHAM language has an effective way to express system
properties but with no verification support. In addition
to the above mentioned specific architecture description
languages, a considerable amount of work has involved the
Z [19] specification language and CSP [10] language. Z
language is a model-based, set-theoretic formalism which
is developed to be highly expressive. The system described
in Z notations includes a set of system states and different
operations. There are also the Object-Z [18] and TCOZ [16]
languages proposed to extend Z with object-oriented styles
and timing primitives. In contrast, CSP language is one of
the process algebra languages. It defines system behaviors
based on process modeling and formal reasoning about
these models. The Wright language uses a subset of CSP
to specify the behaviors of connected elements of a system.
In particular, the concept of schemas in Z notations and the
process expressions of CSP language provide inspiration and
insight for formalizing and refining the behavior models in MP.

Organization The rest of the paper is organized as follows.
Section II introduces the basic concepts and language features
of MP language. Section III defines the syntax and operational
semantics for MP. Section IV illustrates different properties
we can verified based on MP models. Section V demonstrates

several case studies using the MP model checker with evalua-
tion results. Section VI concludes the paper and discusses the
future work.

II. BASIC CONCEPTS OF MP

In this section, we introduce the basic concepts and lan-
guage features of Monterey Phoenix language. The software
architectures are specified based on behavior models. The
behavior of a system is defined as a set of events (event
trace) with two basic relations: precedence (PRECEDES) and
inclusion (IN). In case of precedence, it means two events
are ordered in time. One event should happen before the
other event. In case of inclusion, it represents one event
appears inside another event. Under this relation, events can
be defined in an appropriate level of granularity and with
hierarchical structures. The two basic relations define a partial
order between events. Two events may happen concurrently if
they are not ordered. The basic relations are transitive, non-
commutative, non-reflexive, and distributive.

A. Event Grammar

The structure of event trace is specified by the event
grammar rules in terms of PRECEDES and IN relations. The
grammar rules have a form of:

A : right-hand-part;

where A stands for event type name. The following event
patterns are used in the right hand part of grammar rules,
where B, C, D stand for event type names or event patterns.

1) A : B C D;

The first event pattern is a sequence which represents the
ordering of events under the PRECEDES relation. This rule
means an event of a type A event contains ordered events b,
c, and d, matching B, C, and D event patterns. Events b, c,
d are IN event a, event b PRECEDES event c, and event c
PRECEDES event d. The sequence pattern may contain any
finite number of events, like “A : B; ” or “A : B C D E; ”.

Events are visualized by small squares, and the two basic re-
lations are visualized by arrows. Specifically, the PRECEDES
relation is denoted by solid arrow and the IN relation is
denoted by dotted arrow. Figure 1 depicts the event trace
specified by this rule:

Fig. 1. An example of event trace defined by the Sequence Pattern



2) A : (∗ B ∗);

The above rule denotes a set of zero or more events of
type B with PRECEDES relation between them. All events
of type B are IN the event of type A. Users can set a
particular scope for this rule in the following way: “A :
(∗ < startScope − endScope > B ∗); ”, where startScope
and endScope are nonnegative integers. A valid event trace
for this rule is shown in Figure 2:

Fig. 2. An example of event trace defined by the Iterative Pattern

3) A : {B, C, D};

The third rule denotes a set of events B, C and D without
PRECEDES relation between them. It represents an event a of
the type A contains unordered events b, c and d of the types B,
C and D, correspondingly. The events b, c, d are all IN event
a. The set pattern may contain any number of event patterns,
like “A : {B, C}; ”, “A : {B, C, D, E}; ”. The event trace in
Figure 3 specifies a valid scenario for this rule:

Fig. 3. An example of event trace defined by the Set Pattern

4) A : {∗ B ∗};

The fourth rule denotes a set of zero or more events
satisfying event pattern B without an ordering relation be-
tween them. Similar to scope sequence rule, users can set
a particular scope for this rule in the following way: “A :
{∗ < startScope− endScope > B ∗}; ”, where startScope and
endScope are nonnegative integers. A valid scenario for this
rule is shown in Figure 4:

Fig. 4. An example of event trace defined by the Scope Set

5) A : [ B ];

This rule denotes an optional event B, all valid scenarios
for this rule are presented in Figure 5:

Fig. 5. Optional Pattern

6) A : (B | C | D);

The sixth rule denotes an alternative - event A can include
event B, or event C, or event D. All valid scenarios for this
rule are shown in Figure 6:

Fig. 6. Examples of event traces defined by the Alternative Pattern

The behavior model of a software system is specified using
a set of event traces together with some constraints organized
in a schema. The concepts of MP schema is inspired by Z
schemas and the architectural concept of configuration. For
a traditional configuration, it usually contains a collection of
components and connectors, where components capture the
behavior of each part of the system and connectors specify
the interactions among components. In terms of MP model,
both components and connectors are expressed by root events,
while other events are used to specify the event structures
and interactions. The detailed structure of MP schema will be
introduced in Section III.

B. Share All

In addition to the basic grammar rules, MP also provides
a mechanism for synchronizing root event behaviors through
specific share all constraint. This operation plays a role
similar to the event synchronization in CSP. The following
shows two examples of the share all constraint:

• A, B SHARE ALL D;
• A + B, C SHARE ALL D;

The events in the left side of the share all constraint should
be root events only, therefore, event A, B, C are all root
events. The first one means that {x : D | x IN A} =
{y : D | y IN B}. The second constraint denotes that
{x : D | x IN A or x IN B} = {y : D | y IN C}.
We will use a Multiple Synchronized Transactions schema
given in Figure 7 to illustrate this constraint. This MP schema
requires that the TaskA and TaskB components are involved
in a strictly synchronized communication. Each Send event



can only appear when the previous Receive event has been
accomplished. A valid event trace specified by this example
is shown in Figure 8 in the case for scope 2.

SCHEMA Multiple Synchronized Transactions
ROOT TaskA : (∗ Send ∗);
ROOT TaskB : (∗ Receive ∗);
ROOT Connector : (∗ Send Receive ∗);
TaskA, Connector SHARE ALL Send;
TaskB, Connector SHARE ALL Receive;

Fig. 7. MP Codes for Multiple Synchronized Transactions schema

Fig. 8. Example of event trace for Multiple Synchronized Transactions
schema

C. Slice

For the assertion language, MP proposes a useful clause
Slice to represents a set of concurrent events with in the event
trace.

Concurrent(x, y) ≡ ¬(x PRECEDES y)∧¬(y PRECEDES x)

Slice is a set of events from the event trace, such that

∀ x, y ∈ Slice, Concurrent(x, y)

It can be viewed as a special relation used in assertions.

III. FORMAL SYNTAX AND SEMANTICS OF MP

After introducing the basic concepts of MP language, we are
ready to present the formal syntax and operational semantics
in this section. As introduced in Section II, system behaviors in
MP are described based on behavior models. Different event
traces can be extracted from the well built behavior model.
Each trace represents a valid execution case of the abstract
system machine. Events in MP are the basic elements and
defined at different levels of granularity. According to the
language features, we classify all events into three categories.
They are root events, middle events and leaf events respective-
ly. Among them, root events and middle events can be viewed
as composite events defined by pattern-lists; leaf events are
the atomic events, which are executed at each step during the
process of simulation or verification. Both middle events and
leaf events can appear in the pattern-lists. The behavior model

in MP is expressed via the MP schema which is organized as a
set of root events without PRECEDES or IN relations between
them. Different root events can be synchronized through the
share all constraint.

A. Syntax of MP Schema

The syntax of MP schema is formalized in this subsection.
We start with the formalization of the MP Schema definition
as follows.

Definition 1 (MP Schema): A MP Schema is a 4-tuple
S = (Var, Init,P,C), where Var is a set of global variables;
Init is the initial valuation of the variables; P denotes all the
pattern-lists of root events; C is the share all constraint.

In the above Schema, multiple root events can have several
leaf events in common. The common leaf events are provided
by share all constraint. All the root events should execute their
common leaf events simultaneously. For the respective other
events, they are executed in interleave order. The structure of
root event is defined via the When structure which has a form
as below:

er ::= P when (e1 ⇒ Q1, · · · , en ⇒ Qn) – when structure

where er is the root event, ei (1 ≤ i ≤ n) is the leaf event, P
and Qi (1 ≤ i ≤ n) denote pattern-lists. The When structure
is similar to the interrupt operation in CSP or the exception
handling construct in traditional programming languages such
as C# and JAVA. Event ei (1 ≤ i ≤ n) may be inserted in the
event trace at any place within the root trace, then the trace is
continued with events specified by pattern-list Qi. Users can
also attach a RESTART clause after the When construct so as
to resume the trace from the beginning of the pattern-list for
the root after the interruption.

In MP, the behavioral aspects of the root events or middle
events are described through pattern-list which is the key part
of this language. Next, we will show the syntax of pattern-list.
Most of the syntax is derived from the event grammar rules
given in Section II.

P ::= el – atomic leaf event
| {program} – special event
| Skip – termination event
| P Q – sequence
| (P1 | P2 | .... | Pn) – alternative
| {P1,P2, ...,Pn} – set
| {∗ < a1 − a2 > P∗} – scope set
| (∗ < a1 − a2 > P∗) – iterative
| if b {P} else {Q} – conditional choice
| while b {P} – while loop
| ref{em} – middle event reference

where el denotes the leaf event which is atomic and indivisible,
em denotes middle event, b is a boolean expression, the capital
letters P and Q represent pattern-lists. In addition, we need
to define the scope for the scope set and iterative pattern-lists



in order to make the event trace finite when doing model
checking. Therefore, a1 and a2 are two nonnegative integers
that define the lower bound and upper bound of the scope.

An atomic leaf event el is executed individually. Special
event {program} is a paragraph of sequential program which
is a statement block containing variable assignment, if-then-
else or while structures. The right hand part of assignment is
arithmetic or boolean operation. Special event is considered
as an atomic event and executed in one step. The Skip event
is a successful termination event. This event means a pattern-
list finishes successfully without deadlock. Both special event
and termination event are regraded as leaf events. P Q is the
sequence pattern. It behaves as pattern-list P first until its
termination and then behaves as pattern-list Q. The alternative
pattern (P1 | P2 | .... | Pn) is made internally and non-
deterministically where any Pi (1 ≤ i ≤ n) may execute
subsequently. The set pattern {P1,P2, ...,Pn} denotes inter-
leaving execution where any Pi (1 ≤ i ≤ n) may perform
their local actions without referring to each other. The scope
set {∗ < a1 − a2 > P∗} defines several same pattern-list
P execution without PRECEDES order. In contrast, iterative
pattern (∗ < a1 − a2 > P∗) defines several pattern-list P
execution in PRECEDES order, where each P must perform
when the previous one has been finished. The number of
pattern-list P must fall in the predefined scope in both iterative
patterns. The if b {P} else {Q} is a conditional branching,
when the boolean expression b is evaluated to be true, the
system performs P, else performs Q. All the variables in
expression b are global variables. Similarly, the while loop
while b {P} behaves continuously as pattern-list P or finishes
the while loop immediately according to the value of b. A
middle event can be referenced in the pattern-list.

We present two MP schemas to illustrate the syntax more
clearly. One is the Client Server schema in Figure 9 and
the other is the Pipe Filter schema in Figure 10. Both of
the schemas are defined in the scope of case 2. In the
Client Server schema, the Client can request information from
the Server and then block itself to wait for the reply. When the
Server receives requests, it will process them and send back
the results to Client. After receiving the results, the Client will
unblock itself and continue executing. The Connector is used
to restrict the order of event between Client and Server. This
structure is quite commonly used in nowadays applications
such as the Browser/Server structure. The second one is the
Pipe Filter schema which models a system whose execution is
driven by data flow. There are two Filter components and one
Pipe component in this system. Both of the Filters can receive
data, process data and send out data. The Pipe is responsible
for transmitting data from one Filter to another and keep
the data flow direction. The Connector here is restricting the
order of event, where the Filter One sending out data must be
performed before the Pipe getting data in and the Filter Two
receives data only after the data is sent out from the Pipe.
This structure is also popular which can find its applications in
many industrial examples, such as the data flow applications,

Map-reduce model in cloud computing and Yahoo! Pipes.

B. Operational Semantics

In this subsection, we will present the operational
semantics, which translates a model into a Labeled Transition
System (LTS). The sets of behaviors can be extracted from
the operational semantics accordingly. We start with the
definition of system configuration. It captures the global
system state during system executions.

Definition 2 (Configuration): A system configuration is
composed of two components (V,P), where V is the current
valuation of all global variables, P is the current pattern-list
expression.

The operational semantics for pattern-list is presented as
firing rules associated with each pattern-list construct. Let ΣP
denote a set of shared events of pattern-list P defined by share
all constraint. Let ξ{P1 + · · · + Pn} denote a set of events
shared by a union of pattern-lists from P1 to Pn defined by
share all constraint. If a leaf event el ∈ ξ{P1 + · · · + Pn},
we can derive that el ∈ ΣPi (1 ≤ i ≤ n). For simplicity, a
function upd(V, prog), to which given a sequential program
and valuation V , returns the modified valuation function V ′

according to the semantics of the program. We write V � b
(or V 6� b) to denote that condition b evaluates to be true (or
false) given V . ε denotes an empty event which performs no
action.

Figure 11 illustrates the firing rules. In event rule, the
model behaves as an atomic leaf event el. An atomic event
is performed in one step during the process of simulation or
verification. The program rule is defined for the special event
which is a paragraph of sequential program. The system
will update the values of global variables according to the
semantics of the program in this rule. The alternative rule is
a multiple choice rule. The system can choose any pattern-list
Pi (1 ≤ i ≤ n) to execute subsequently. In sequence rules
(sequence1 and sequence2), the system executes pattern-list
P first. When P is found to be finished, the model will
continue to execute pattern-list Q. The three share rules
(share1, share2 and share3) define the behavior of the root
pattern-lists under the share all constraint. The shared leaf
events of multiple pattern-list unions should be executed
simultaneously. For other unshared events, they are performed
without specific order. Assuming that we have two pattern-list
unions: {P1 + · · · + Pn} and {Q1 + · · · + Qm}, which share
all leaf event el. When the system executes rule share3, one
pattern-list Pi (1 ≤ i ≤ n) from union {P1 + · · ·+ Pn} and the
other pattern-list Qj (1 ≤ i ≤ m) from union {Q1 + · · ·+ Qm}
are chosen to execute the event el simultaneously. If event el

is not a shared event, it can be executed without any specific
order, which is defined by rule share1 and rule share2. The
two when rules (when1 and when2) denote a root pattern-list
which can be interrupted by multiple pattern-lists. When the
system executes the when rules, the first event of pattern-list



SCHEMA Client Server
ROOT Client : {∗ < 2− 2 > Request Info Receive Result Executing ∗} Skip;
ROOT Server : {∗ < 2− 2 > Receive Con Processing Provide Result ∗} Skip;
ROOT Connector : (∗ < 2− 2 > Request Info Receive Con Provide Result Receive Result ∗) Skip;
Client, Connector SHARE ALL Request Info, Receive Result;
Server, Connector SHARE ALL Receive Con, Provide Result;

Fig. 9. A Client Server Schema

SCHEMA Pipe Filter
ROOT Filter One : {∗ < 2− 2 > Get Data Processing Data Send Data ∗} Skip;
ROOT Filter Two : {∗ < 2− 2 > Receive Data Processing Data Dispatch Data ∗} Skip;
ROOT Pipe : {∗ < 2− 2 > Data In Data Out ∗} Skip;
ROOT Connector : {{∗ < 2− 2 > (Send Data Data In) ∗} {∗ < 2− 2 > (Data Out Receive Data) ∗} } Skip;
Filter One, Connector SHARE ALL Send Data;
Filter Two, Connector SHARE ALL Receive Data;
Pipe, Connector SHARE ALL Data In, Data Out;

Fig. 10. A Pipe Filter Schema

Qi (1 ≤ i ≤ n) may be inserted in the event trace at any
place within the root trace, then the trace is continued with
events specified by pattern-list Qi. For restart rule, users
can choose to put a RESTART clause after the interruption
pattern-list Qi (1 ≤ i ≤ n). It defines that the event trace
can restart from the beginning of the root pattern-list after
the interruption. The iterative rules (iterative1 and iterative2)
describe a scope sequence operation which implies the
pattern-list P can happen sequentially for a number of times.
Integer a is randomly chosen between a1 and a2 in order
to specify the number of iteration times. If the value of a
is chosen to be 0, the system has no behavior. Otherwise, it
will behave as rule iterative1. The set rule denotes a set of
various pattern-lists execute concurrently without an ordering
relation between them. The pattern-lists in set are executed
without PRECEDES order. The middle rule denotes that you
can place a pattern-list P behind a middle event M. This
rule captures the behavior of the IN relation. The middle
event can be regarded as a pattern-list reference. The scope
rules (scope1 and scope2) denote a number of pattern-list P
execute concurrently without PRECEDES order. Rules scope1
and scope2 are defined according to the value of a. The two
condition (condition1 and condition2) rules define how to
execute the conditional choice. If expression b is evaluated to
be true, the pattern-list P is executed, otherwise pattern-list Q
is executed. The two while (while1 and while2) rules define
how the while loop works. If the value of expression b is true,
the model behaves continuously as pattern-list P. Otherwise,
it will finish the loop.

The MP Schema is translated into the Label Transition
System (LTS) to perform simulation and verification. The
definition of LTS is given as below.

Definition 3 (Label Transition System (LTS)): Label
Transition System (LTS) is represented by a 3-tuple
M = (S, init,Tr) where S denotes the set of states; init
denotes the initial state which belongs to S; Tr is the
transition relation which has the form of (S, e, S′) where e is
a leaf event, S and S′ are system configurations before and
after the transition.

The labeled transition relationship conforms to the opera-
tional semantics presented in Figure 11. A finite execution
of MP model is a finite sequence of alternating states/events
〈s0, e0, s1, e1, · · · , en, sn+1〉 where s0 = init and si

ei→ si+1

for all 0 ≤ i ≤ n. The event trace of MP Schema is
extracted from the execution sequence by excluding all the
states 〈e0, e1, · · · , en〉. Each trace can be viewed as a valid
execution of the abstract MP machine.

IV. VERIFICATION

The Process Analysis Toolkit (PAT) [15], [22], [14] is
designed to apply state-of-the-art model checking techniques
for system analysis. Our MP model checker is dedicated
implemented based on PAT framework to support the MP
model analysis and verification. It comes with user friendly
interfaces, featured model editor and animated simulator.
The user friendly simulator can interactively and visually
simulates system behaviors by random simulation, user-guide
step by step simulation, complete state graph generation and
counterexample visualization. Most importantly, it implements
various verification techniques catering for different properties
including deadlock-freeness, reachability, Linear Temporal
Logic (LTL) properties (with or without fairness assumptions)
and refinement checking [20].

There are two types of properties we are concerned with



[ event ]

(V, el)
el→ (V, ε)

[ program ]
(V, {prog})→(upd(V, prog), ε)

1 ≤ i ≤ n, (V,Pi)
el→ (V ′,P′

i )
[ alternative ]

(V, (P1 | P2 | .... | Pn))
el→ (V ′,P′

i )

(V,P)
el→ (V ′,P′)

[ sequence1 ]

(V,P Q)
el→ (V ′,P′ Q)

(V,Q)
el→ (V ′,Q′),P = ε

[ sequence2 ]

(V,P Q)
el→ (V ′,Q′)

(V,Pi)
el→ (V ′,P′

i ) , 1 ≤ i ≤ n, el 6∈ ΣPi
[ share1 ]

(V, < P1, · · · ,Pi, · · · ,Pn, Q1, · · · ,Qm >)
el→ (V ′, < P1, · · · ,P′

i , · · · ,Pn, Q1, · · · ,Qm >)

(V,Qj)
el→ (V ′,Q′

j ) , 1 ≤ j ≤ m, el 6∈ ΣQj
[ share2 ]

(V, < P1, · · · ,Pn, Q1, · · · ,Qj, · · · ,Qm >)
el→ (V ′, < P1, · · · ,Pn, Q1, · · · ,Q′

j , · · · ,Qm >)

(V,Pi)
el→ (V ′,P′

i ), (V,Qj)
el→ (V ′,Q′

j ), 1 ≤ i ≤ n, 1 ≤ j ≤ m, el ∈ ξ{P1 + · · ·+ Pn}, el ∈ ξ{Q1 + · · ·+ Qm}
[ share3 ]

(V, < P1, · · · ,Pi, · · · ,Pn, Q1, · · · ,Qj, · · · ,Qm >)
el→ (V ′, < P1, · · · ,P′

i , · · · ,Pn, Q1, · · · ,Q′
j , · · · ,Qm >)

(V,P)
el→ (V ′,P′)

[ when1 ]

(V,P when (Q1, · · · ,Qn))
el→ (V ′,P′ when (Q1, · · · ,Qn))

(V,Qi)
el→ (V ′,Q′

i ) , 1 ≤ i ≤ n
[ when2 ]

(V,P when (Q1, · · · ,Qi, · · · ,Qn))
el→ (V ′,Q′

i )

(V,Qi)
el→ (V ′,Q′

i ) , 1 ≤ i ≤ n
[ restart ]

(V,P when (Q1, · · · ,Qi[RESTART], · · · ,Qn))
el→ (V ′,Q′

i P when (Q1, · · · ,Qi[RESTART], · · · ,Qn))

(V,P)
el→ (V ′,P′) , 0 ≤ a1 ≤ a ≤ a2 , a 6= 0

[ iterative1 ]

(V, (∗ < a1 − a2 > P ∗)) el→ (V ′,P′ P · · · P︸ ︷︷ ︸
a− 1

)

0 ≤ a1 ≤ a ≤ a2 , a = 0
[ iterative2 ]

(V, (∗ < a1 − a2 > P ∗))→(V, ε)

(V,Pi)
el→ (V ′,P′

i ) , 1 ≤ i ≤ n
[ set ]

(V, {P1, · · · ,Pi, · · · ,Pn})
el→ (V ′, {P1, · · · ,P′

i , · · · ,Pn})

M =̂ P, (V,P)
el→ (V ′,P′)

[ middle ]

(V,M)
el→ (V ′,P′)

(V,P)
el→ (V ′,P′) , 0 ≤ a1 ≤ a ≤ a2 , a 6= 0

[ scope1 ]

(V, {∗ < a1 − a2 > P ∗}) el→ (V ′, {P′,P, · · · ,P︸ ︷︷ ︸
a− 1

})

0 6 a1 ≤ a ≤ a2 , a = 0
[ scope2 ]

(V, {∗ < a1 − a2 > P ∗})→(V, ε)

V � b, (V,P)
el→ (V ′,P′)

[ condition1 ]

(V, if b {P} else {Q}) el→ (V ′,P′)

V 6� b, (V,Q)
el→ (V ′,Q′)

[ condition2 ]

(V, if b {P} else {Q}) el→ (V ′,Q′)

V � b, (V,P)
el→ (V ′,P′)

[ while1 ]

(V,while b {P}) el→ (V ′,P′ while b {P})

V 6� b
[ while2 ]

(V,while b {P})→ (V, ε)

Fig. 11. Firing Rules

in model checking. One is the safety property which guar-
antees nothing bad happens. Examples of safety properties
are deadlock-freeness and reachability checking. The other
one is the liveness property which checks whether something
good eventually happens. For this property, Linear Temporal

Logic is a good candidate because the MP model makes
explicit use of the events, states and variables. Moreover, the
LTL provides a very intuitive and very mathematically precise
notation for expressing properties about the Linear Temporal
relation between the states/events in execution [7].



In MP model checker, we implement two searching strate-
gies: Depth-first-search (DFS) and Breadth-first-search (BFS)
to support the deadlock-freeness and reachability checking. A
MP model is deadlock-free if and only if there does not exist
a finite execution 〈s0, e0, s1, e1, · · · , en, sn+1〉 such that sn+1

is a deadlock state (i.e., a state at which no firing rules are
applicable). Given a proposition p, a state satisfying the predi-
cate is reachable (or equivalently p is reachable) if and only if
there exists a finite execution 〈s0, e0, s1, e1, · · · , en, sn+1〉 such
that sn+1 = (Vn+1,Pn+1) and Vn+1 � p. Compared with the
former two, the Linear Temporal Logic is relatively complex
but is very useful in checking liveness properties. Given
the Client Server structure, we want to verify whether each
Request Info event performed by Client will be responded with
a Provide Result event from Server eventually. This property
could be stated as below, where � and ♦ are modal operators
which denote ‘always’ and ‘eventually’ respectively.

� (Request Info ⇒ ♦Provide Result)

Such properties are very important in demonstrating the nor-
mal operations of systems. The integrated LTL formula [21]
is defined as follows:.

φ ::= p | a | ¬φ | φ ∧ ψ | Xφ |�φ | ♦φ | φUψ

where p ranges over a set of propositions (formulated via
predicates on global variables in MP) and a ranges over the
events. Let π = 〈s0, e0, s1, e1, · · · , ei, si, · · ·〉 be an infinite
execution. Let πi be the suffix of π starting from si.

πi � p ⇔ si � p
πi � a ⇔ ei−1 = a
πi � ¬φ ⇔ ¬(πi � φ)
πi � φ ∧ ψ ⇔ πi � φ ∧ πi � ψ
πi � X ∧ φ ⇔ πi+1 � φ
πi ��φ ⇔ ∀ j ≥ i • πj � φ
πi � ♦φ ⇔ ∃ j ≥ i • πj � φ
πi � φUψ ⇔ ∃ j ≥ i • πj � ψ ∧

∀ k | i ≤ k ≤ j− 1 • πj � φ

A model satisfies φ if and only if every infinite trace satisfies
φ. A variety of properties can be expressed in LTL formulaes
very concisely. In MP model checker, users can verify LTL
properties with or without fairness. Moreover, different levels
of fairness are supported including global fairness, event-level
strong fairness and weak fairness. Interested readers could
refer to [23] and [22] for more details.

V. CASE STUDY AND EVALUATION

A. Modeling and Verifying Radar Weapon System

In this section, we apply our approach to model and verify
the Radar Weapon system [6] to demonstrate the MP language
as well as the MP model checker implemented in PAT. The
Radar Weapon system is described via five components.
Each of them represents a subsystem modeled by root event.
The five subsystems are Generator, Radar, Weapon, Control
and Enemy Missile respectively. The Generator is in charge

of supplying power for Radar and Weapon when both of
them are deployed. The Radar is responsible for detecting
the Enemy missile. If the enemy is detected, it will activate
the Weapon. When the Weapon attacks the enemy, it can
either hit or miss it. The Control subsystem is used to
coordinate the behaviors of Generator and Radar. The Radar
must start working only after the Generator is launched. The
environment is represented by Enemy Missile which may
either approach or hit any of Generator, Radar, or Weapon. If
the Generator is hit, the consequence is causing termination
of energy production or consumption correspondingly. If the
Radar and Weapon are hit, they can be repaired and resume
work afterwards. The MP code of this system is given in
Figure 12.

In this system, if the Generator is hit by the Enemy Missile,
the deployed Radar, Weapon will get in the critical state of
missing the power supply. If the system is in the critical
state, the Radar and Weapon should stop working in a real
word situation. Therefore, we want to guarantee that after the
system entering critical state, the Radar and Weapon cannot
be launched anymore. In order to check the designed system,
we express the above properties in LTL formulaes as follows:

�(Generator hit⇒ !(♦Weapon On))

�(Generator hit⇒ !(♦Radar On))

The first property means whenever the Generator is hit, the
Weapon will not be launched eventually. Similarly, the second
property means whenever the Generator is hit, the Radar can
not be launched eventually. We verify these two properties in
MP model checker. Both of the verification are done in the
scope of case 2. The verification results reveal that the first
property is valid. However, the second property is not satisfied.
One counterexample is displayed as follows:

Approaching→ Approaching→ Generator hit
→ Generator Off → Repair → Idle→ Idle
→ Idle→ Idle→ Generator On→ Radar On

From the trace of the counterexample, we can see that after
being hit, the Generator can be repaired and restart work.
Therefore the Radar can be launched after the Generator is
hit. Whereas, the Weapon On event is simultaneously syn-
chronized by the Radar, Weapon and Enemy Missile. Even
if the Radar is launched, the Weapon still cannot be triggered
after the Generator is hit. We can modify the system schema
by removing the Repair event and the RESTART clause from
the Generator root event to make the properties of the system
desirable. The modification means that the Generator cannot
be repaired after it is hit by Enemy Missile. We continue to
verify the above two properties in MP model checker, both of
the properties turn out to be valid in this situation.

B. Performance Evaluation

We conducted experiments on the client server, pipe filter
and radar weapon system to evaluate the performance. In order
to compare with other tools, we model the client server and



SCHEMA RadarWeaponSystem
// =============================== Root
ROOT Generator : (∗ < 2− 2 > Idle Generator On Generating Generator Off ∗)

WHEN { Generator hit ⇒ Generator Off Repair [RESTART] };
ROOT Radar : (∗ < 2− 2 > Idle Radar On Radar Working Radar Off ∗)

WHEN { Radar hit ⇒ Radar Off Repair [RESTART] };
Radar Working : (∗ < 2− 2 > ( Target detected | No target ) ∗);
Target detected : Weapon On;
ROOT Weapon : (∗ < 2− 2 > (Idle | Weapon On Shoot Recharge) ∗)

WHEN { Weapon hit ⇒ Repair [RESTART] };
Shoot : ( Hit | Miss );
ROOT Control : (∗ < 2− 2 > Generator On Radar On Monitoring

Radar off Generator Off ∗)
WHEN { Generator hit ⇒ Generator Off Repair [RESTART] ,

Radar hit ⇒ Radar Off Repair Radar On [RESTART] };
ROOT Enemy missile : (∗ < 2− 2 > ( Approaching | Target detected ) ∗) Boom

WHEN { Hit⇒ Win };
Boom : ( Generator hit | Radar hit | Weapon hit | Miss );
// ============================== Constraint
Radar, Weapon, Enemy missile share all Weapon On;
Weapon, Enemy missile share all Hit, Weapon hit;
Control, Generator share all Generator On, Generator Off ;
Control, Radar share all Radar On, Radar Off ;
(Generator + Radar), Control share all Repair;
Control, Generator, Enemy missile share all Generator hit;
Control, Radar, Enemy missile share all Radar hit;
// ============================== Assertion
#assert RadarWeaponSystem |=�(Generator hit⇒!(♦Weapon On));
#assert RadarWeaponSystem |=�(Generator hit⇒!(♦Radar On));

Fig. 12. MP code of The Radar Weapon System

pipe filter structures both in PAT and Alloy [12]. In case
of the client server structure, the property that each request
performed by the client will be responded by the server
eventually is verified. For the pipe filter structure, the property
that data received by one filter is transferred to and dispatched
by another filter is checked. Table I shows the experiment
results. The data are obtained with Intel Core 2 Quad 9550
CPU at 2.83GHz and 3GB memory. Symbol ‘-’ denotes out
of memory. The number of states and transitions are acquired
in PAT. The experiments are done in scope of different cases.
From the table, we can see PAT performs better than Alloy
in most cases. This is because the operational semantics
are directly implemented in PAT without extra transitions.
Furthermore, PAT adopts explicit model checking which can
handle 109 number of states in hours. Alloy uses SAT solvers
as the verification engine, which is often less scalable for
big systems and the performance is highly constrained by the
capability of the SAT solvers. The models can be precisely
constructed through MP schemas. But in Alloy, users have to
explicitly model the relations between events which is complex
and tedious.

We further evaluate the performance of our approach

through much bigger cases of the radar weapon system. The
experiment results is displayed in Table II, where one of
the LTL properties that whenever the Generator is hit, the
Weapon will not be launched eventually is verified in PAT.
The results show that PAT performs reasonably well and
can handle large scope cases in short time. Models used
in the experiments can be download from the web page
http://www.comp.nus.edu.sg/~pat/mp/. PAT can be download-
ed from [1]. Note that we compare PAT with Alloy only
because there is no other verification support for MP.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an automated approach for
the modeling and verification of MP models in the PAT
framework. We first defined the formal syntax and operational
semantics of the MP architecture specification language. This
language is capable of modeling system and environment
behaviors based on event traces, as well as supporting
different architecture composition operations and views.
Based on the formal semantics we implemented a dedicated
model checker for MP in the PAT framework. Finally,
we demonstrate the effectiveness of our approach through
modeling and verification of client server, pipe filter and



Model Scope Property Results States/Transitions PAT(Sec) Alloy(Sec)
Client Server 3 �(Request Info→ ♦Provide Result) valid 366/690 0.04 0.12
Client Server 4 �(Request Info→ ♦Provide Result) valid 2751/5932 0.22 2.07
Client Server 5 �(Request Info→ ♦Provide Result) valid 21522/53160 1.44 -

Pipe Filter 2 �(Get Data→ ♦Dispatch Data) valid 426/1041 0.11 0.09
Pipe Filter 3 �(Get Data→ ♦Dispatch Data) valid 3132/10180 0.36 2.60
Pipe Filter 4 �(Get Data→ ♦Dispatch Data) valid 34702/159655 2.94 -

TABLE I
EXPERIMENT RESULTS OF COMPARING PAT WITH ALLOY

Model Scope Property Results States Transitions Time(Sec)
Radar Weapon 6 �(Generator hit→ !(♦Weapon On)) valid 355466 1435108 47.24
Radar Weapon 7 �(Generator hit→ !(♦Weapon On)) valid 619127 2521028 94.58
Radar Weapon 8 �(Generator hit→ !(♦Weapon On)) valid 1006569 4125666 178.70
Radar Weapon 9 �(Generator hit→ !(♦Weapon On)) valid 1551272 6391642 255.28

TABLE II
EXPERIMENT RESULTS OF HANDLING LARGE SCOPE CASES IN PAT

radar weapon system. In addition, performance evaluations
were presented to measure the scalability of the approach.

In the future, we plan to extend MP language with real-time
and probabilistic properties to capture the quantitative time
and uncertainty factors of different components in a software
system. We will also develop a Graphic User Interface (GUI)
to assist the visual design of the software architectures
in MP model checker. The GUI should provide diagram
representations of the architecture models as well as support
the definitions of the formal specifications. In addition, we can
further our work via designing an architecture style library
which embodies a set of commonly used architecture styles to
facilitate the modeling process. Some hot architecture styles
such as cloud computing and Service-oriented architectures
can be included.

REFERENCES

[1] Process Analysis Toolkit. http://www.comp.nus.edu.sg/~pat/research/.
[2] R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic

software architectures. In FASE, pages 21–37, 1998.
[3] R. Allen and D. Garlan. A formal basis for architectural connection.

ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.
[4] M. Auguston. Monterey phoenix, or how to make software architecture

executable. In OOPSLA Companion, pages 1031–1040, 2009.
[5] M. Auguston. Software architecture built from behavior models. ACM

SIGSOFT Software Engineering Notes, 34(5):1–15, 2009.
[6] M. Auguston and C. Whitcomb. System architecture specification based

on behavior models. In Proceedings of the 15th ICCRTS Conference
(International Command and Control Research and Technology Sympo-
sium), Santa Monica, CA, June 22-24 2010.

[7] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[8] F. Corradini, P. Inverardi, and A. L. Wolf. On relating functional
specifications to architectural specifications: A case study. Sci. Comput.
Program., 59(3):171–208, 2006.

[9] D. Garlan, R. T. Monroe, and D. Wile. Acme: an architecture description
interchange language. In CASCON, page 7, 1997.

[10] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21:666–677, 1978.

[11] P. Inverardi and A. L. Wolf. Formal specification and analysis of
software architectures using the chemical abstract machine model. IEEE
Trans. Software Eng., 21(4):373–386, 1995.

[12] D. Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology, 11(2):256–290,
2002.

[13] J. S. Kim and D. Garlan. Analyzing architectural styles with alloy.
In Proceedings of the ISSTA 2006 workshop on Role of software
architecture for testing and analysis, ROSATEA ’06, pages 70–80, New
York, NY, USA, 2006. ACM.

[14] Y. Liu, J. Sun, and J. S. Dong. An Analyzer for Extended Compositional
Process Algebras. In ICSE Companion, pages 919–920. ACM, 2008.

[15] Y. Liu, J. Sun, and J. S. Dong. Pat 3: An extensible architecture for
building multi-domain model checkers. In ISSRE, pages 190–199, 2011.

[16] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP:
An Introduction to TCOZ. In Proceedings of the 20th International
Conference on Software Engineering (ICSE 1998), pages 95–104, 1998.

[17] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall
PTR, 1997.

[18] G. Smith. The Object-Z Specification Language. Kluwer Academic
Publishers, 2000.

[19] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

[20] J. Sun, Y. Liu, and J. S. Dong. Model checking csp revisited: Introducing
a process analysis toolkit. In Proceedings of the Third International Sym-
posium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2008), volume 17 of Communications in Computer
and Information Science, pages 307–322. Springer, 2008.

[21] J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating specification and
programs for system modeling and verification. In TASE, pages 127–
135, 2009.

[22] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In Proceedings of the 21th International
Conference on Computer Aided Verification (CAV 2009), pages 702–
708, June 2009.

[23] J. Sun, Y. Liu, J. S. Dong, and H. Wang. Specifying and Verifying
Event-based Fairness Enhanced Systems. In ICFEM’08, volume 5256
of LNCS, pages 318–337. Springer, 2008.

[24] J. X. Zhang, Y. Liu, J. Sun, J. S. Dong, and J. Sun. Model Checking
Software Architecture Design. In HASE, June 2012. accepted.

[25] P. Zhang, H. Muccini, and B. Li. A classification and comparison of
model checking software architecture techniques. Journal of Systems
and Software, 83(5):723–744, 2010.


