
A Symbolic Model Checking Framework for Hierarchical Systems

Truong Khanh Nguyen∗, Jun Sun†, Yang Liu∗ and Jin Song Dong∗
∗School of Computing, National University of Singapore
Email: {truongkhanh,liuyang,dongjs}@comp.nus.edu.sg
†Singapore University of Technology and Design

Email: sunjun@sutd.edu.sg

Abstract—BDD-based symbolic model checking is capable
of verifying systems with a large number of states. In this
work, we report an extensible framework to facilitate symbolic
encoding and checking of hierarchical systems. Firstly, a novel
library of symbolic encoding functions for compositional oper-
ators (e.g., parallel composition, sequential composition, choice
operator, etc.) are developed so that users can apply symbolic
model checking techniques to hierarchical systems with little
knowledge of symbolic encoding techniques (like BDD or
CUDD). Secondly, as the library is language-independent, we
build an extensible framework with various symbolic model
checking algorithms so that the library can be easily applied
to encode and verify different modeling languages. Lastly, the
applicability and scalability of our framework are demonstrat-
ed by applying the framework in the development of symbolic
model checkers for three modeling languages as well as a
comparison with the NuSMV model checker.

I. SYSTEM OVERVIEW

Binary Decision Diagram (BDD) based symbolic mod-
el checking is capable of verifying systems with a large
number of states. Its effectiveness has been evidenced by
the recent success of the Intel i7 project, where BDD
techniques have been applied to verify the i7 processor [3].
Currently, symbolic model checking techniques are mostly
applied to simple transitions system with little structure.
Complex systems on the other hand are often hierarchical,
where high level system components are composed by sub-
components in many different ways (e.g. choice, parallel
composition, sequential composition, etc). Many languages
are dedicated to model hierarchical systems such as State-
charts (where hierarchy is introduced through composition-
al states), process algebras like CSP (where hierarchy is
introduced through processes), or programming languages
like C++ or Java (where hierarchy is introduced through
classes). These languages are also distinguished from each
other in many aspects, e.g., how different components com-
municate. Applying BDD-based model checking to models
specified using these languages is highly non-trivial. The
input language of the popular NuSMV model check has
limited support for modular hierarchical descriptions. For
instance, it supports only parallel composition and interleav-
ing but not other useful composition operators like choice,
interrupt, etc. Modeling hierarchical systems in NuSMV
could thus be difficult. In this work, we report a model

checking framework designed to facilitate application of
BDD technique to fully hierarchical systems. Our framework
aims to provide a unified solution so that systems modeled
using compositional languages can be encoded and verified
symbolically with minimum efforts.

The first component of our framework is a novel library
(based on the CUDD package) of symbolic encoding func-
tions for system compositions. The library covers common
compositional system behaviors patterns and comes with
well-designed interfaces so that minimum knowledge on
BDD is required in order to apply the encoding functions.
System encoding in our framework works by firstly identi-
fying and encoding primitive system components and then
repeatedly composing encoded system components using
the composition functions. We assume that primitive system
components (e.g., a compositional state which contains no
other compositional states, or a process which invokes no
other processes) are in the form of finite state machines,
which can be encoded using BDD in the standard way.

In order to build a generally useful framework, we take
into account different ways of communication between
system components: communication through shared memo-
ry; synchronous/asynchronous channel communication; and
multi-party barrier synchronization (e.g., CSP-style). Next,
with process algebras like CSP and CCS in mind, a rich set
of system composition functions are provided. Using these
functions, encoded system components can be composed in
a variety of ways, including parallel composition, sequential
composition, interrupt, choice, etc. A symbolic encoding of
a hierarchical system thus can be gradually obtained from
bottom up using the provided functions in the library.

In order to further ease the application of our library, we
build a framework so that the library can be easily applied
to encode and verify different modeling languages. The
framework adopts a layered architecture design as shown
in Fig. 1. The first layer denotes the application domains
and the second layer denotes the corresponding modeling
languages of the application domains. Each language is
encapsulated as a plug-in module by following the design
guildine1. After compilation, input models are parsed into
internal representations (IR), which implement the opera-

1This can be found in PAT user manual Section 5.1.

Concurrent Systems, Sensor Networks, Hierarchical Probabilistic Systems...

A
b

s
tr

a
c
ti
o

n
M

o
d

e
lin

g

Simulator

Domain-specific Abstraction: data abstraction, zone abstraction, environment abstraction, etc.

Symbolic Representation:

Binary Decision Diagram

Symbolic Verification Algorithms

Deadlock, Reachability, LTL

LTS Module

Counter-

example

Generator

Symbolic Model Checking

Symbolic Encoding

...
Probabilistic

ModuleNesC Module

Operational Semantic

A
n

a
ly

s
is

Figure 1. Architecture Design

tional semantics. This IR can be used by the simulator
for simulating the system behaviors. To perform symbolic
model checking, our BDD library is used to generate the
encoding of the IR in a compositional way. Furthermore, a
set of symbolic model checking algorithms are developed
to verify properties like deadlock-freeness, reachability and
linear temporal logics. If the verification result is false, the
boolean variable assignment satisfying the Boolean model
is returned to the counterexample generator, which will
translate the assignment to a counterexample in the form
of system execution trace for users to locate the bug.

We have developed three symbolic model checkers in our
framework based on our library, i.e., LTS module for model-
ing hierarchical systems by composing label transition sys-
tems, CSP module for modeling concurrent system modeled
using communicating sequential process, and NesC module
for modeling sensor networks based on NesC language.

This framework has been realized as a major part of
the PAT tool [7], which is a self-contained model checker
to support composing, simulating and reasoning of dif-
ferent application domains. PAT comes with user friendly
interfaces, featured model editor and animated simulator.
Most importantly, it supports two different model checking
techniques, i.e., explicit model checking and symbolic model
checking. The work presented in this paper provides support
of symbolic model checking in the PAT framework.

II. ENCODING HIERARCHICAL SYSTEMS

This section explains how primitive system components
are encoded and then how encoded components can be
composed in a hierarchical manner.

A. Encoding Primitive System Components

Without loss of generality, we assume that a primitive
system component takes the form of a finite state machine.
A finite state machine has finitely many local control states
and local variables (with finite domains). A transition is a
link from one local control state to another state, which is
labeled with a guard condition (constituted by global/local
variables), an optional event and a transaction. An event

can be a channel input or output, or a (compound) name
constituted by local variables as well as global variables.
We note that an event (besides channel input/output) can
serve as a synchronization barrier (see later on parallel
composition II-B). A transaction is a sequential program
which possibly updates global/local variables. Note that
a finite state machine may communicate with others in
different ways, e.g. shared variables, event synchronization
or channel communication.

Finite state machines are encoded using BDD in the
standard way. That is, a BDD is used to encode symbolically
the system configuration including valuation of variables,
channels, etc. A transition is encoded using two sets of
Boolean variables −→x and −→x ′, which represent system con-
figurations before and after the transaction. Transactions are
encoded as BDDs constituted by −→x and −→x ′. For instance, if
the transaction is a simple assignment of the form y := expr,
then the encoding would denote that variables in −→x ′ which
encodes y is equivalent to value of expr (based on variables
in −→x) and the rest of −→x ′ remains unchanged. Other pro-
gram constructs like if -then-else or while-do 2 are encoded
similarly (refer to [5] for details). An encoded transition is
in the form: g ∧ e ∧ t such that g (over −→x) is an encoded
guard condition; e is an encoded event and t (over −→x and
−→x ′) is an encoded transaction.

A BDD encoding of a finite state machine, which
is referred to as a BDD machine, is a tuple B =
(
−→V ,−→v , Init,Trans,Out, In) where −→V is a set of unprimed

Boolean variables encoding global variables, event names
and channel names3; −→v is the variables for local variables
and local control states; Init is a formula over −→V and −→v
encoding the initial valuation of the variables; Trans is a
set of encoded transitions; Out (In) is a set of encoded
transitions labeled with synchronous channel output (input).
Note that transitions in Out and In are to be matched by
corresponding input/output from the environment or equiv-
alently other system components.

B. Composing BDD Machines

In this section, we show how to compose BDD machines
in order to model hierarchical systems. We fix two BDD ma-
chines Bi = (

−→V ,−→v i, Initi,Transi,Outi, Ini) where i ∈ {0, 1}
in the following. We assume that −→v 0 and −→v 1 are disjoint
(otherwise variable renaming is necessary). Note that −→V
is always shared. The following shows some of the most
common composition patterns as examples. Refer to [5] for
the complete list.

Parallel Composition: The parallel composition of
two components B0 and B1 is a BDD machine
(
−→V ,−→v , Init,Trans,Out, In) such that v = v0 ∪ v1; Init =

Init0 ∧ Init1; and the encoded transitions are defined as

2Encoding these programming features are not trivial.
3Note that −→V is fixed before encoding the system components.

follows. Out contains a transition gi ∧ ei ∧ ti ∧ (−→v 1−i =
−→v ′1−i) if gi ∧ ei ∧ ti is a transition in Outi. For instance,
the composition may perform a synchronous channel output
action if B1 can perform such action and the local state of
B0 remains unchanged. In contains a transition gi ∧ ei ∧
ti ∧ (−→v 1−i = −→v ′1−i) if gi ∧ ei ∧ ti is a transition in Ini.
Trans contains three kinds of transitions.
• Local transitions: if gi ∧ ei ∧ ti is a transition in Transi

and ei is an asynchronous channel input/output or ei

is an event which is not to be synchronized, Trans
contains a transition gi ∧ ei ∧ ti ∧ (−→v 1−i = −→v ′1−i).

• Synchronous channel communication: if gi ∧ ei ∧ ti is a
transition in Outi and g1−i ∧ e1−i ∧ t1−i is a transition
in In1−i, Trans contains a transition gi ∧ g1−i ∧ ei ∧
e1−i ∧ ti ∧ t1−i

4.
• Barrier synchronization: if gi ∧ ei ∧ ti is a transition in

Transi and g1−i ∧ ei ∧ t1−i is a transition in Trans1−i

and ei is a synchronization barrier, Trans contains a
transition gi ∧ g1−i ∧ ei ∧ ti ∧ t1−i.
Choice: An unconditional choice between B0 and B1 is

a BDD machine (
−→V g,−→v , Init,Trans,Out, In) such that v =

v0∪ v1∪{choice} where choice is a fresh Boolean variable,
choice = i means Bi is selected; Init = Init0 ∧ Init1, the
variable choice is not initialized and thus B0 and B1 can be
randomly selected; and the encoded transitions are defined
as follows. Out contains a transition (choice = i) ∧ gi ∧
ei ∧ ti ∧ (choice′ = i) ∧ (−→v 1−i = −→v ′1−i) if gi ∧ ei ∧ ti is
a transition in Outi. In contains a transition (choice = i) ∧
gi ∧ ei ∧ ti ∧ (choice′ = i) ∧ (−→v 1−i = −→v ′1−i) if gi ∧ ei ∧ ti
is a transition in Ini. Trans contains a transition (choice =
i) ∧ gi ∧ ei ∧ ti ∧ (choice′ = i) ∧ (−→v 1−i = −→v ′1−i) if
gi ∧ ei ∧ ti is a transition in Transi. In literature, there
are other choices like external/internal choice or conditional
choice, all of which are supported similarly.

Sequential Composition: A system where B1 ex-
ecutes whenever B0 terminates is a BDD program
(
−→V g,−→v , Init,Trans,Out, In) such that v = v0 ∪ v1 ∪
{terminated} where terminated is a fresh Boolean variable;
Init = Init0 ∧ Init1 ∧ (terminated = false). Out contains
a transition (terminated = false) ∧ g0 ∧ e0 ∧ t0 ∧
(terminated′ = false) ∧ (−→v 1 = −→v ′1) if g0 ∧ e0 ∧ t0 is a
transition in Out0. Out contains a transition (terminated =
true) ∧ g1 ∧ e1 ∧ t1 ∧ (terminated′ = true) ∧ (−→v 0 = −→v ′0)
if g1 ∧ e1 ∧ t1 is a transition in Out1. In is similarly
defined. Trans is defined as follows. Let X denote the special
event of program termination (like executing of a return
statement in Java or the event generated by process Skip
in CSP). If g0 ∧ e0 ∧ t0 is a transition in Trans0, then
(terminated = false) ∧ g0 ∧ e0 ∧ t0 ∧ (e0 = X ⇔
terminated′ = true) ∧ (−→v 1 = −→v ′1) is a transition in Trans.

4In our encoding, matching synchronous input/ouput is labeled with the
same event. Further, ti and t1−i are assumed to be compatible, e.g., updating
disjoint variables.

If g1 ∧ e1 ∧ t1 is a transition in Trans1, then (terminated =
true) ∧ g1 ∧ e1 ∧ t1 ∧ (terminated′ = true) ∧ (−→v 0 = −→v ′0)
is a transition in Trans.

Interrupt: A system where B1 interrupts B0 whenever
event e occurs is a BDD program which is defined similarly
as sequential composition, except terminated is set to true
only when the event is e (instead of X).

III. EXPERIMENTS AND PERFORMANCE

Our library is implemented in C# with 27 classes and 3248
lines of code. In the following, we present some preliminary
experiments on analyzing the verification of reachability
conditions between NuSMV and our library. The framework
(e.g., source code, API and samples) and the experiment
data are available online5. Note that BDD variable ordering
is solved using the heuristics supported by the CUDD
package. Table I summarizes the comparison on benchmark
systems in terms of the number of Boolean variables (#Var),
maximum size of the BDD during verification (S), and
verification time (T). The test bed is a PC with Intel Core
2 Duo E6550 CPU at 2.33GHz and 3GB RAM.

The experimented systems can be divided in two groups
based on whether they are categorized as hierarchical. The
first group, non-hierarchical systems, contains systems com-
posed of a few complex primitive components. The second
group, hierarchical systems, includes systems composed of
many (relatively simple) primitive components. To model
these hierarchical systems in NuSMV, we use the approach
presented in [1]. Their approach is similar to our approach
as they both add new variables whose type is an enumerated
set consisting of the possible system states to represent the
current state of the system. Their approach often requires
less variables than ours because it employs the whole
structure of the system in adding new variables whereas our
approach only relies on the current composition operator but
does not exploit the sub processes’ structure. Being based on
only one composition operator at a time allows our library
to be extensible, i.e., new compositions can be introduced
without affecting the existing ones. Note that their approach
is not supported in NuSMV and thus adding new auxiliary
variables is done manually.

Table I shows that PAT outperforms NuSMV in all exam-
ples. In most of the examples, NuSMV uses less Boolean
variables. There are two reasons. One is that as auxiliary
variables are often introduced during compositional encod-
ing. The other is that our approach encodes events (with
parameters) which label transition. Nonetheless, NuSMV
only saves more memory than PAT in 5 out of 12 examples.
We notice that if system transitions are associated with
complicated variable updates, then our encoding results in a
smaller BDD (as in example of the first group) and hence
outperforms NuSMV. This is possibly due to differences

5http://www.comp.nus.edu.sg/~pat/bdd

Table I
EXPERIMENTAL RESULTS

Model Our Lib NuSMV
#Var S(Mb) T(s) #Var S(Mb) T(s)

Sliding 3× 3 86 21 1 83 81 91
Sliding 4× 4 142 26 1 - OOM -

Light Off 60 22 1 56 297 97
Dining Phil. 10 120 63 3 85 72 84
Dining Phil. 13 150 210 18 109 394 2101
Semaphore 50 204 73 26 209 60 110
Semaphore 75 304 139 157 310 76 815

Hierarchy 1 112 685 83 109 80 153
Hierarchy 2 124 671 68 125 71 689
Hierarchy 3 126 47 3 125 90 750
Hierarchy 4 252 62 6 251 79 326
Hierarchy 5 226 1326 473 227 61 682

in transition definitions. While our tool defines transition
by describing how the variables change, NuSMV defines
how variables change separately and needs to synchronize
correctly variables’ changes in one transition.

IV. DISCUSSION

In summary, we developed a self-contained framework to
support BDD encoding of hierarchical systems. This work
is related to symbolic model checkers like NuSMV [2] or
JTLV [6]. The framework is designed such that users only
need the minimum knowledge of BDD in order to use it.
It is thus different from approaches like JTLV, which are
designed to allow flexible control of BDD packages for
advanced users. Furthermore, it was intended to support
systematic encoding of (at least a large subset of) existing
compositional languages with ease. In the future, our frame-
work will be extended to support more kinds of domains
like sensor networks or hierarchical probabilistic systems.
There are nonetheless still unsolved regarding encoding, as
illustrated in the following.

Firstly, the auxiliary variables sometimes result in an
encoding which is not optimal. Consider one example where
two system components, each with 1000 control states,
execute in parallel. Based on parallel composition defined
in Section 2, 20 Boolean variables are necessary to encode
local states of the two components. It however may be the
case that only 10000 state pairs are possible in the compo-
sition (due to synchronization, shared variables, etc.), which
implies that 14 variables are sufficient. In order to minimize
the overall time, one thus has to find a balance between
quick encoding (which may imply more verification time)
and fast verification (which may be implied by an optimal
encoding). One heuristic we adopt is to define primitive
system components to be the maximum sub-systems which
do not contain concurrency. Identifying the sub-systems thus
requires simple static system analysis.

Secondly, compositional languages often support recur-
sion, e.g., through process referencing in process algebras
or method calls in programming languages. Notice that it is

assumed implicitly in our setting that all recursions are con-
tained in the primitive system components. Supporting arbi-
trary recursion is difficult because an unbounded recursion
may result in irregular or even non-context-free languages
which obviously cannot be encoded using finite number
of Boolean variables. As a result, unless there is a bound
on the number of recursions (e.g., the limit of the stack
size in programming language like Java), often not arbitrary
models in a compositional language can be encoded using
our framework. In our work on applying this framework to
support the CSP# language (which is a language extending
CSP with programming language features), static analysis
is adopted to determine whether a model can be encoded
based on the model architecture.

While the presented work focusing on compositional
encoding, one particularly challenging and important on-
going work is compositional verification, i.e., given a system
property, how to synthesize (according to the composition
function) and verify properties of each component which
are then sufficient to guarantee the system property. Existing
work includes compositional refinement checking supported
by FDR and symbolic compositional verification such as [4].
Previous work on compositional verification often assumes
that system components communication through message
passing or event synchronization but not shared memory. We
are currently extending the library to support compositional
verification of restricted system models (e.g., no shared
variables) while researching on how to relax the restrictions.

REFERENCES

[1] R. J. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno,
D. Notkin, and J. D. Reese. Model Checking Large Software
Specifications. In SIGSOFT FSE, pages 156–166, 1996.

[2] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2:
An OpenSource Tool for Symbolic Model Checking. In CAV,
pages 359–364, 2002.

[3] R. Kaivola et al. Replacing Testing with Formal Verification
in Intel CoreTM i7 Processor Execution Engine Validation. In
CAV, pages 414–429, 2009.

[4] W. Nam, P. Madhusudan, and R. Alur. Automatic symbolic
compositional verification by learning assumptions. Formal
Methods in System Design, 32(3):207–234, 2008.

[5] T. K. Nguyen, J. Sun, Y. Liu, and J. S. Dong. A BDD
Library for Model Checking Hierarchical Systems. Tech-
nical report, National Univ. of Singapore, Januray 2011.
http://www.comp.nus.edu.sg/~pat/bdd/bddtechnicalreport.pdf.

[6] A. Pnueli, Y. Sa’ar, and L. D. Zuck. Jtlv: A Framework for
Developing Verification Algorithms. In CAV, volume 6174 of
LNCS, pages 171–174. Springer, 2010.

[7] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In CAV, pages 709–714, 2009.

APPENDIX

In our tool presentation, we will demonstrate the LTS
module step by step as follows. First, we will give an
overview of this module and its architecture design. Second,
we will introduce the modeling languages for the compo-
sitional systems, specifically CSP# language. In the third
part, we would like to explain how the system is encoded
from the primitive components to the whole system. The
Dining Philosopher problem is used as the illustration. Then
we will present 3 kinds of assertion supported by LTS
module including reachability analysis, deadlock analysis
and LTL model checking. Following that, we will conduct
the demonstration to illustrate modeling languages and the
functionalities (model composition, simulation and verifica-
tion). Finally, we will discuss some experiment results and
possible future works.

A.1 Overview of LTS module in PAT

Created in 2007, the current version of PAT6 is 3.3.1.
PAT is a self-contained framework to support composing,
simulating and reasoning of concurrent, real-time systems
and other possible domains. It comes with user friendly
interfaces, featured model editor and animated simulator.
Most importantly, PAT implements various model checking
techniques catering for different properties such as deadlock-
freeness, divergence-freeness, reachability, LTL properties
with fairness assumptions, refinement checking and prob-
abilistic model checking. To achieve good performance,
advanced optimization techniques have been implemented in
PAT, e.g. partial order reduction, symmetry reduction, pro-
cess counter abstraction, parallel model checking, symbolic
model checking. So far, PAT has has 1200 registered users
from 267 organizations in 35 countries and regions.

Our framework has been applied in PAT as the LTS
module. This module provides symbolic reachability analy-
sis, deadlock analysis, and LTL model checking. Users can
model the system by first drawing the primitive components
as finite state machines and then composing them with CSP#
operators. And then the symbolic model checking algorithm
is called and returns a counter example if the model does
not satisfy the specification.

A.2 Compositional System Modeling

The LTS module provides users a friendly interface to
draw the primitive system components which are in the
form of finite state machines. Moreover, a system modeling
language, called CSP#, is also provided to define the system
hierarchically. A CSP# model may contain multiple process
definitions. A process definition gives a process expression a
name, which can be referenced in process expressions. The
following is a BNF description of the process expression.

6http://www.comp.nus.edu.sg/~pat

P = Stop | Skip – primitives
| e{prog} → P – event prefixing
| ch!exp→ P | ch?x→ P – channel communications
| P \ X – hiding
| P ; Q – sequential composition
| P 2 Q | P u Q – choice operators
| if b {P} else {Q} – conditional choice
| [b]P – state guard
| P ‖ Q – parallel composition
| P ||| Q – interleave composition
| P 4 Q – interrupt

To illustrate the syntax, we use the Dining Philosopher
example to demonstrate the hierarchical modeling support
of the CSP# language.

#define N 2;
Phil(i) = get.i.(i + 1)%N → get.i.i→ eat.i→

put.i.(i + 1)%N → put.i.i→ Phil(i);
Fork(x) = get.x.x→ put.x.x→ Fork(x)

[] get.(x− 1)%N.x→ put.(x− 1)%N.x→ Fork(x);
College() =|| x : 0..N − 1 • (Phil(x) || Fork(x));

This is the model of the Dinging Philosopher with two
philosophers. Each philosopher i.th tries to get the left fork
(i + 1).th and the right fork i.th, then he can eat. After
eating, he will put the forks in that sequence (i + 1).th,
and i.th. The processes Fork(0), Fork(1) run parallel with
Phil(0) and Phil(1) to guarantee that when a fork is used by
a philosopher, others philosophers could not get that fork.

A.3 Encode the system
In this section we will show you how we encode the sys-

tem hierarchically by using the Dining Philosopher example.
The system includes four processes, Phi0,Fork0,Phi1,Fork1
running parallel together. These four processes are called
primitive components which are defined by representing as
finite state machines. Firstly we will show how to encode
a primitive component as a BDD machine with the process
Phi0 as an example. Then we will present how we combine
these BDD machines to get the BDD machine of the whole
system.

Fig. 2 shows the model of the Dining Philosopher exam-
ple. In this model, there are 10 events {get.0.1, get.0.0, eat.0,
put.0.1, put.0.0, get.1.0, get.1.1, eat.1, put.1.0, put.1.1}. We
use a global variable event whose value ranges from 0 to 9
to encode these event, 0 for get.0.1, 1 for get.0.0, . . ., and
9 for put.1.1 which means that in the BDD implementation,
the variable event actually needs four boolean variables to
encode its value. For each primitive component, we use a
local variable state to encode the state of the finite state
machine. The finite state machine of the process Phi0 has
5 states, state1, state2, state3, state4, state5, so similarly the
variable state has the value range from 0 to 4 to encode
these states. Then the BDD machine of the process Phi0 is
a tuple B = (

−→V ,−→v , Init,Trans,Out, In) where:

Figure 2. LTS Canvas

•
−→V = {event}.

• −→v = {state}.
• Init = (state = 0).
• Trans = (state = 0 ∧ state′ = 1 ∧ event′ = 0) ∨

(state = 1 ∧ state′ = 2 ∧ event′ = 1) ∨ (state = 2 ∧
state′ = 3 ∧ event′ = 2) ∨ (state = 3 ∧ state′ = 4 ∧
event′ = 3) ∨ (state = 4 ∧ state′ = 0 ∧ event′ = 4).

• Out, In are empty because there is no channel commu-
nication.

Similarly we have the BDD machines of four processes,
Phi0,Fork0,Phi1,Fork1. Because these processes run in par-
allel, we use the supported function for Parallel Composition
in our framework to have the final BDD machine. For the
simplicity, we will not write down the BDD machine. You
can refer to II-B to get the BDD machine.

A.4 Property Verification
We will explain the supported properties and verification

algorithms developed using the Dining Philosopher example.
• Deadlock checking.

#assert College() deadlockfree;

• Rreachability checking.
• LTL properties.

#assert College() |= [] <> eat.0;

A.5 Demonstration
A.5.1 Specification Editor: Fig. 3 shows the specification

editor which is used to specify the model and the verified
properties.

Another way to define a process in PAT is to draw the
process as a finite state machine in the LTS Canvas. Fig. 2
is a different definition of Phil() process.

A.5.2 Simulator: We will illustrate the simulator (Fig. 4)
using the previous loaded example. Firstly, we will show
the complete states graph generated based on the execu-
tion. Secondly, we will play the animation of automatically
random simulation. Thirdly, we will show how the user
guided simulation is conducted step-by-step. Finally, we will
demonstrate the functions of execution trace display and
replay.

A.5.3 Verification: We will verify properties in the Dining
Philosopher example to illustrate the verification support
(see Fig. 5).

A.6 Experiments

Table I summarizes the comparison on benchmark sys-
tems in terms of the number of Boolean variables (#Var),
maximum size of the BDD during verification (S), and
verification time (T). The test bed is a PC with Intel Core 2
Duo E6550 CPU at 2.33GHz and 3GB RAM. In the sample
systems, the hierarchy of systems are measured by the
number of composition operators (e.g. parallel composition
and non-deterministic choice) used to compose the system.
According the extent of the hierarchy, these examples can
be divided in 2 groups. The first group contains systems
composed of a few complex primitive components (module
in NuSMV). The second group includes systems composed
of a number of simple primitive components.

A.7 Conclusion and Future Works

In the end, we would like to briefly talk about the related
work and future research directions.

Figure 3. Main Window of LTS module with Dining Philosopher example

Figure 4. Process Simulation Screen

Figure 5. Verification Panel

	System Overview
	Encoding Hierarchical Systems
	Encoding Primitive System Components
	Composing BDD Machines

	Experiments and Performance
	Discussion
	References
	Appendix

