
An Efficient Algorithm for Learning
Event-Recording Automata

Shang-Wei Lin1, Étienne André1, Jin Song Dong1, Jun Sun2, and Yang Liu1

1 School of Computing, National University of Singapore ? ?? ? ? ?

{linsw,andre,dongjs,liuyang}@comp.nus.edu.sg
2 Singapore University of Technology and Design

{sunjun}@sutd.edu.sg

Abstract. In inference of untimed regular languages, given an unknown
language to be inferred, an automaton is constructed to accept the un-
known language from answers to a set of membership queries each of
which asks whether a string is contained in the unknown language. One
of the most well-known regular inference algorithms is the L∗ algorithm,
proposed by Angluin in 1987, which can learn a minimal deterministic
finite automaton (DFA) to accept the unknown language. In this work,
we propose an efficient polynomial time learning algorithm, TL∗, for
timed regular language accepted by event-recording automata. Given an
unknown timed regular language, TL∗ first learns a DFA accepting the
untimed version of the timed language, and then passively refines the
DFA by adding time constraints. We prove the correctness, termination,
and minimality of the proposed TL∗ algorithm.

1 Introduction

In formal verification such as model checking [4, 13], system models and proper-
ties are assumed to be a priori during the verification process. However, modeling
a system appropriately is not an easy task because if the model is too abstract, it
may not describe the exact behavior of the system; if the model is too detailed,
it suffers from the state space explosion problem. Thus an automatic inference
or construction of abstract model is very helpful for system development.

In 1987, Angluin [3] proposed the L∗ learning algorithm for inference of
regular languages. Given an unknown language U to be inferred, L∗ learns a
minimal deterministic finite automaton (DFA) to accept U from answers to a
set of membership queries each of which asks whether a string is contained in U .

After the L∗ algorithm was proposed, it is widely used in several research
fields. The most impressive one is that Cobleigh et al. [5] used the L∗ algorithm
to automatically generate the assumptions needed in assume-guarantee reasoning

? This research is supported by the research grant MOE2009-T2-1-072 (Advanced
Model Checking Systems) in School of Computing, National University of Singapore.

?? This is a pre-version of the paper submitted to ATVA 2011.
? ? ? The original publication is available at www.springerlink.com.

(AGR), which can alleviate the state explosion problem of model checking. An-
other interesting work is that Lin and Hsiung proposed a compositional synthesis
framework, CAGS [10], based on the L∗ algorithm to automatically eliminate all
behavior violating the user-given properties.

However, there were almost no extensions of the learning algorithm to in-
ference timed regular languages until 2004, Grinchtein et al. [7, 8] proposed a
learning algorithm for event-recording automata [2] based on L∗. Grinchtein’s
learning algorithm, TL∗sg, uses region construction to actively guess all possi-
ble time constraints for each untimed word. That is, each original membership
query of an untimed word in L∗ gives rise to several membership queries of timed
words with possible time constraints, which increases the number of membership
queries exponentially with the largest constant appearing in the time constraints.

In this work, we propose an efficient polynomial time learning algorithm
TL∗ for timed regular languages accepted by event-recording automata. Event-
recording automata (ERA) [2] are a determinizable subclass of timed automata
[1] such that a timed language accepted by an ERA can be classified into finite
number of classes. Given a timed regular language UT accepted by ERA, TL∗

first learns a DFA M accepting U (the untimed version of UT) and then pas-
sively refines M by adding time constraints. Thus the number of membership
queries required by TL∗ is much smaller than that of Grinchtein’s algorithm.
We prove that the TL∗ algorithm will correctly learn an ERA accepting the
unknown language UT after a finite number of iterations. Further, we also prove
the minimality of our TL∗ algorithm, i.e., the number of locations of the ERA
learned by TL∗ is minimal.

This paper is organized as follows: Section 2 gives preliminary knowledge and
introduces the L∗ algorithm. The proposed efficient learning algorithm, TL∗, is
described in Section 3. The conclusion and future work are given in Section 4.

2 Preliminaries

We give some background knowledge about timed languages and event-recording
automata in Section 2.1 and introduce the L∗ algorithm in Section 2.2.

2.1 Timed Languages and Event-Recording Automata

Let Σ be a finite alphabet. A timed word over Σ is a finite sequence wt =
(a1, t1)(a2, t2) . . . (an, tn) of symbols ai ∈ Σ for i ∈ {1, 2, . . . , n} that are paired
with nonnegative real numbers ti ∈ R+ such that the sequence t = t1t2 . . . tn of
time-stamps is nondecreasing. For every symbol a ∈ Σ, we use xa to denote the
event-recording clock of a [2]. Intuitively, xa records the time elapsed since the
last occurrence of the symbol a. We use CΣ to denote the set of event-recording
clocks over Σ, i.e., CΣ = {xa | a ∈ Σ}. A clock valuation γ : CΣ 7→ R+ assigns
a nonnegative real number to an event-recording clock.

A clocked word over Σ is a finite sequence wc = (a1, γ1)(a2, γ2) . . . (an, γn) of
symbols ai ∈ Σ for i ∈ {1, 2, . . . , n} that are paired with clock valuations γi such

that γ1(xa) = γ1(xb) for all a, b ∈ Σ and γi(xa) = γi−1(xa) + γi(xai−1
) when

1 < i ≤ n and a 6= ai−1. Each timed word wt = (a1, t1)(a2, t2) . . . (an, tn) can be
naturally transformed into a clocked word cw(wt) = (a1, γ1)(a2, γ2) . . . (an, γn)
where γi(xa) = ti if aj 6= a for 1 ≤ j < i; γi(xa) = ti − tj if there exists aj such
that aj = a for 1 ≤ j < i and ak 6= a for j < k < i.

A clock guard g is a conjunction of constraints of the form xa ∼ n for xa ∈ CΣ ,
n ∈ N, and ∼∈ {<,≤, >,≥}. A clock guard g identifies a hypercube zone JgK ⊆
(R+)|Σ|. We use GΣ to denote the set of clock guards over CΣ . A guarded word is
a sequence wg = (a1, g1)(a2, g2) . . . (an, gn) where ai ∈ Σ for i ∈ {1, 2, . . . , n} and
gi ∈ GΣ is a clock guard. For a clocked word wc = (a1, γ1)(a2, γ2) . . . (an, γn),
we use wc |= wg to denote γi |= gi for all i ∈ {1, 2, . . . , n}.

Definition 1. (Event-Recording Automata) [2]. An event-recording automa-
ton (ERA) D = (Σ,L, l0, δ, L

f) consists of a finite input alphabet Σ, a finite set
L of locations, an initial location l0 ∈ L, a set Lf of accepting locations, and a
transition function δ :⊆ L×Σ×GΣ 7→ 2L. An ERA is deterministic if δ(l, a, g)
is a singleton set when it is defined, and when both δ(l, a, g1) and δ(l, a, g2) are
both defined then Jg1K∩ Jg2K = ∅, where l ∈ L, a ∈ Σ, and g1, g2 ∈ GΣ. A deter-
ministic ERA is complete if for all l ∈ L and for all a ∈ Σ, δ(l, a, gi) is defined
for all i ∈ {1, 2, . . . , n} such that Jg1K∪Jg2K∪ . . .∪JgnK = JtrueK. A guarded word
wg = (a1, g1)(a2, g2) . . . (an, gn) is accepted by an ERA D = (Σ,L, l0, δ, L

f) if
li = δ(li−1, ai, gi) is defined for all i ∈ {1, 2, . . . , n} and ln ∈ Lf . The language
accepted by D, denoted by L(D), is the set of guarded words accepted by D.

Note that in an ERA, each event-recording clock xa ∈ CΣ is implicitly and
automatically reset when a transition with event a is taken, which gives a good
characteristic that each non-deterministic ERA can be determinized by subset
construction [2]. Fig. 1 (a) p. 6 gives a deterministic ERA A1 accepting the
timed word (a, t1)(a, t2)(a, t3) . . ., where t2i = t2i−1 + 3 and t2i+1 = t2i + 1 for
i ∈ N. We can also use a clocked word (a, γ1)(a, γ2)(a, γ3) . . . to represent the
timed word such that γ2i−1(xa) = 1 and γ2i(xa) = 3 for i ∈ N. Or we can use
a guarded word (a, g1)(a, g2)(a, g3) . . . to represent the timed word such that
g2i−1 = (xa = 1) and g2i = (xa = 3) for i ∈ N. Thus A1 accepts the timed
language L(A1) = ((a, xa = 1)(a, xa = 3))∗.

2.2 The L∗ Algorithm

The L∗ algorithm [3] is a formal method to learn a minimal DFA (with the mini-
mal number of locations) that accepts an unknown language U over an alphabet
Σ. During the learning process, L∗ interacts with a Minimal Adequate Teacher
(Teacher for short) to ask membership and candidate queries. A membership
query for a string σ is a function Qm such that if σ ∈ U , then Qm(σ) = 1;
otherwise, Qm(σ) = 0. A candidate query for a DFA M is a function Qc such
that if L(M) = U , then Qc(M) = 1; otherwise, Qc(M) = 0. The results of
membership queries are stored in an observation table (S,E, T) where S ⊆ Σ∗

is a set of prefixes, E ⊆ Σ∗ is a set of suffixes, and T : (S ∪ S ·Σ)×E 7→ {0, 1}

is a mapping function such that if s · e ∈ U , then T (s, e) = 1; otherwise, i.e.,
s · e /∈ U , then T (s, e) = 0, where s ∈ (S ∪ S ·Σ) and e ∈ E. The L∗ algorithm
categorizes strings based on Myhill-Nerode Congruence [9].

Algorithm 1: L∗ Algorithm

input : Σ: alphabet
output: a DFA accepting the unknown language U

1 Let S = E = {λ} ;
2 Update T by Qm(λ) and Qm(λ · α), for all α ∈ Σ ;
3 while true do
4 while there exists (s · α) such that (s · α) 6≡ s′ for all s′ ∈ S do
5 S ←− S ∪ {s · α} ;
6 Update T by Qm((s · α) · β), for all β ∈ Σ ;

7 Construct candidate DFA M from (S,E, T) ;
8 if Qc(M) = 1 then return M ;
9 else

10 σce ←− the counterexample given by Teacher ;
11 E ←− E ∪ {v} where v = WS(σce) ;
12 Update T by Qm(s · v) and Qm(s · α · v), for all s ∈ S and α ∈ Σ ;

Definition 2. Myhill-Nerode Congruence. For any two strings σ, σ′ ∈ Σ∗,
we say they are equivalent, denoted by σ ≡ σ′, if σ · ρ ∈ U ⇔ σ′ · ρ ∈ U , for all
ρ ∈ Σ∗. Under the equivalence relation, we can say σ and σ′ are the representing
strings of each other, denoted by σ = [σ′]r and σ′ = [σ]r.

L∗ will always keep the observation table closed and consistent. An observa-
tion table is closed if for all s ∈ S and α ∈ Σ, there always exists s′ ∈ S such that
s · α ≡ s′. An observation table is consistent if for every two elements s, s′ ∈ S
such that s ≡ s′, then (s · α) ≡ (s′ · α) for all α ∈ Σ. Once the table (S,E, T)
is closed and consistent, the L∗ algorithm will construct a corresponding can-
didate DFA C = (ΣC , LC , l

0
C , δC , L

f
C) such that ΣC = Σ, LC = S, l0C = {λ},

δC(s, α) = [s · α]r for s ∈ S and α ∈ Σ, and LfC = {s ∈ S | T (s, λ) = 1}.
Subsequently, L∗ makes a candidate query for C. If L(C) 6= U , Teacher gives

a counterexample σce such that σce is positive if σce ∈ L(U) \ L(C); negative if
σce ∈ L(C)\L(U). L∗ analyzes the counterexample σce to find the witness suffix.
A witness suffix is a string that when appended to two strings provides enough
evidence for the two strings to be classified into two different equivalence classes
under the Myhill-Nerode Congruence. Given an observation table (S,E, T) and
a counterexample σce, we define an i-decomposition query of σce, denoted by
Qim(σce), as follows: Qim(σce) = Qm([ui]r · vi) where σce = ui · vi with |ui| = i,
and [ui]r is the representing string of ui in S. The witness suffix of σce, denoted
by WS(σce), is the suffix vi of σce such that Qim(σce) 6= Q0

m(σce). Once the

witness suffix WS(σce) is obtained, L∗ uses it to refine the candidate C until
L(C) = L(U). The pseudo-code of the L∗ algorithm is given in Algorithm 1.

AssumeΣ is the alphabet of the unknown regular language U and the number
of locations of the minimal DFA is n. The L∗ algorithm needs n − 1 candidate
queries and O(|Σ|n2 + n logm) membership queries to learn the minimal DFA,
where m is the length of the longest counterexample returned by Teacher.

3 An Efficient Algorithm for Learning ERA

The intuition behind the L∗ algorithm is to classify untimed words into the min-
imal finite number of classes by performing membership queries, and each class
can be represented by a location of a DFA. Because event-recording automata
(ERA) are determinizable, a timed language (guarded words) accepted by an
ERA can also be classified into a finite number of classes. The TL∗ algorithm
tries to find the finite and minimal number of classes (locations).

3.1 The TL∗ Algorithm

Given a timed language UT , the proposed TL∗ algorithm interacts with a timed
Teacher to make two types of queries: the timed membership and timed candidate
queries. A timed membership query for a guarded word wg is a function QmT

such that QmT (wg) = 1 if wg ∈ UT ; otherwise QmT (wg) = 0. A timed candidate
query for an ERA M is a function QcT such that QcT (M) = 1 if L(M) = UT ;
otherwise, QcT (M) = 0. TL∗ assumes Teacher can answer membership queries
for guarded words (instead of timed words) and give counterexamples in guarded
words for candidate queries. This is not a strong assumption since there are data
structures such as DBM [6] to represent time symbolically.

Algorithm 2 gives the pseudo-code of the TL∗ algorithm. The idea behind
TL∗ is to first learn a DFA M accepting Untime(UT), the untimed language
with respect to UT , and then to refine the untimed language by adding time
constraints. Therefore, TL∗ consists of two phases, namely the untimed learning
phase (Lines 1-3) and the timed refinement phase (Lines 7-22). Note that the
splitting of zones in Line 10 can be done by DBM subtraction [11].

We use an example to illustrate the TL∗ algorithm. Suppose the timed lan-
guage UT to be learned is accepted by the ERA A1 as shown in Fig. 1 (a). In the
untimed learning phase, L∗ is used to learn the DFA M1, as shown in Fig. 1 (c),
accepting the untimed language a∗, and the observation table (S,E, T) obtained
by L∗ is shown in Fig. 1 (b). At this time, Σ = {a}, S = {λ}, and E = {λ}.

In the timed refinement phase, TL∗ first modifies the alphabet and the ob-
servation table into timed version, i.e., Σ = {(a, true)}, S = {(λ, true)}, and
E = {(λ, true)}. The current timed observation table T2 is shown in Fig. 1 (d).
Then, TL∗ performs the timed candidate query for the first candidate ERA M1.
However, the answer to the candidate query is “no” with a negative counterexam-
ple (a, xa < 1) ∈ L(M1)\L(UT). Because there is a prefix (a, true) in the observa-
tion such that Jxa < 1K ⊂ JtrueK, the prefix (a, true) is split into (a, xa < 1) and

Algorithm 2: TL∗ Algorithm

input : Σ: alphabet, CΣ : the set of event-recording clocks
output: a deterministic ERA accepting the unknown timed language UT

1 Use L∗ to learn a DFA M accepting Untime(UT) ;
2 Let (S,E, T) be the observation table during the L∗ learning process ;
3 Replace α by (α, true), s by (s, true), and e by (e, true) for each α ∈ Σ, s ∈ S

and e ∈ E;
4 while true do
5 if QTc (M) = 1 then return M ;
6 else
7 Let (a1, g1)(a2, g2) · · · (an, gn) be the counterexample given by Teacher ;
8 foreach (ai, gi), i ∈ {1, 2, . . . , n} do
9 if (ai, g) is a substring of p or e for some p ∈ S ∪ (S ·Σ) and e ∈ E

such that JgiK ⊂ JgK then
10 Let G = {ĝ1, ĝ2, . . . , ĝm} obtained by JgK− JgiK ;
11 Σ ←− Σ \ {(ai, g)} ∪ {(ai, gi), (ai, ĝ1), (ai, ĝ2), . . . , (ai, ĝm)} ;
12 Split p into {p̂0, p̂1, p̂2, . . . , p̂m} where (ai, gi) is a substring of p̂0

and (ai, ĝj) is a substring of p̂j for all j ∈ {1, 2, . . . ,m} ;
13 Split e into {ê0, ê1, ê2, . . . , êm} where (ai, gi) is a substring of ê0

and (ai, ĝj) is a substring of êj for all j ∈ {1, 2, . . . ,m} ;
14 Update T by QmT (p̂j · êj) for all j ∈ {0, 1, 2, . . . ,m} ;

15 while there exists (s · α) such that s · α 6≡ s′ for all s′ ∈ S do
16 S ←− S ∪ {s · α} ;
17 Update T by QmT ((s · α) · β) for all β ∈ Σ ;

18 v ←−WS((a1, g1)(a2, g2) · · · (an, gn)) ;
19 if |v| > 0 then
20 E ←− E ∪ {v} ;
21 Update T by QmT (s · v) and QmT (s · α · v) for all s ∈ S and α ∈ Σ ;

22 Construct candidate M from (S,E, T) ;

l1 l2
a[xa = 1]

a[xa = 3]

(a) ERA A1

λ
λ 1 (s0)
a 1

(b) T1

1

a

(c) M1

λ
λ 1 (s0)

(a, true) 1

(d) T2

Fig. 1. Untimed Learning Phase

(a, xa ≥ 1), and the timed membership queries for (a, xa < 1) and (a, xa ≥ 1) are
performed, respectively. The current observation table T3 is shown in Fig. 2 (a).
However, T3 is not closed because there is (a, xa < 1) with no s ∈ S such that
s ≡ (a, xa < 1), so (a, xa < 1) is added into S and the membership queries for
(a, xa < 1)(a, xa < 1) and (a, xa < 1)(a, xa ≥ 1) are performed, respectively.
The closed observation table T4 and its the corresponding ERA M2 are shown

in Fig. 2 (b) and (c), respectively. At this time, Σ = {(a, xa < 1), (a, xa ≥ 1)},
S = {(λ, true), (a, xa < 1)}, and E = {(λ, true)}.

λ
λ 1 (s0)

(a, xa < 1) 0
(a, xa ≥ 1) 0

(a) T3

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa ≥ 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa ≥ 1) 0

(b) T4

1 0
a

a

(c) M2

Fig. 2. Timed Refinement 1

In the second iteration of the timed refinement phase, TL∗ performs the
timed candidate query for M2. However, the answer is still “no” with a positive
counterexample (a, xa = 1) ∈ L(UT) \ L(M2). Because there are two prefixes
(a, xa ≥ 1) and (a, xa < 1)(xa ≥ 1) in the observation table (S,E, T) such
that Jxa = 1K ⊂ Jxa ≥ 1K, the prefix (a, xa ≥ 1) is split into (a, xa = 1) and
(a, xa > 1), and the prefix (a, xa < 1)(xa ≥ 1) is split into (a, xa < 1)(xa = 1)
and (a, xa < 1)(xa > 1), respectively. The timed membership queries for the
new prefixes are performed. The current closed observation table T5 and its
corresponding ERA M3 are shown in Fig. 3 (a) and (b), respectively. At this
time, Σ = {(a, xa < 1), (a, xa = 1), (a, xa > 1)}, S = {(λ, true), (a, xa < 1)},
and E = {(λ, true)}.

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa = 1) 1
(a, xa > 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa = 1) 0
(a, xa < 1)(a, xa > 1) 0

(a) T5

1 0

a[xa = 1]

a[xa 6= 1]

a

(b) M3

Fig. 3. Timed Refinement 2

In the third iteration of the timed refinement phase, TL∗ performs the timed
candidate query for the ERA M3. However, the answers is still “no” with a
negative counterexample π = (a, xa = 1)(a, xa = 1) ∈ L(M3) \ L(UT). This
time, no prefix or suffix in the observation table has to be split. TL∗ analyzes
the counterexample as follows. Q0

mT (π) = QmT ((a, xa = 1)(a, xa = 1)) = 0.
Q1
mT (π) = Q1

mT ([(a, xa = 1)]r(a, xa = 1)) = QmT ((a, xa = 1)) = 1 6= Q0
mT (π).

Thus, we have a witness suffix v = (a, xa = 1), and v is added into the set E.
Then the membership queries for s · (a, xa = 1) for all s ∈ S are performed. The
closed observation table T7 and its corresponding ERAM4 are shown in Fig. 4 (a)
and (b), respectively. At this time, Σ = {(a, xa < 1), (a, xa = 1), (a, xa > 1)},
S = {(λ, true), (a, xa < 1), (a, xa = 1)}, and E = {(λ, true), (a, xa = 1)}.

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0
(a, xa = 1)(a, xa > 1) 0 0

(b) T7

11 10 00
a[xa = 1] a

a[xa 6= 1] a

(c) M4

Fig. 4. Timed Refinement 3

In the fourth iteration of the timed refinement phase, TL∗ performs the timed
candidate query for the ERA M4 again. However, the answer is still “no” with
a positive counterexample π = (a, xa = 1)(a, xa = 3) ∈ L(UT) \ L(M4). Three
prefixes (a, xa > 1), (a, xa < 1)(a, xa > 1), and (a, xa = 1)(a, xa > 1) in the
observation table T7 have to be split, and the new split prefixes are shown in
Fig. 5 (a). The timed membership queries for the new split prefixes concate-
nated with e for all e ∈ E are performed. Then the TL∗ algorithm analyzes
the counterexample. Since Q0

mT (π) = Q1
mT (π) = Q2

mT (π), therefore there is
no witness suffix for π. The closed observation table T8 is shown in Fig. 5 (a),
and it corresponding ERA M5 is constructed as shown in Fig. 5 (b). At this
time, Σ = {(a, xa < 1), (a, xa = 1), (a, 1 < xa < 3), (a, xa = 3), (a, xa > 3)},
E = {(λ, true), (a, xa < 1), (a, xa = 1)}, and E = {(λ, true), (a, xa = 1)}.

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)

(a, 1 < xa < 3) 0 0
(a, xa = 3) 0 0
(a, xa > 3) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0

(a, xa < 1)(a, 1 < xa < 3) 0 0
(a, xa < 1)(a, xa = 3) 0 0
(a, xa < 1)(a, xa > 3) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0

(a, xa = 1)(a, 1 < xa < 3) 0 0
(a, xa = 1)(a, xa = 3) 1 1
(a, xa = 1)(a, xa > 3) 0 0

(a) T8

11 10 00
a[xa = 1] a[xa 6= 3]

a[xa = 3]

a[xa 6= 1]

a

(b) M5

Fig. 5. Timed Refinement 4

In the fifth iteration of the timed refinement, TL∗ performs the timed candi-
date query for M5. This time, Teacher says that L(M5) = UT , and the learning
process of TL∗ is finished.

3.2 Analysis of the TL∗ Algorithm

Given a timed language UT accepted by a deterministic ERAA = (Σ,L, l0, δ, L
f),

TL∗ learns Com(A) to accept UT . In the learning process of TL∗, each untimed
word (α, true) for α ∈ Σ might be split into |GA| timed words, where GA is the
set of clock zones partitioned by the clock guards appearing in A. For example,
the clock guards appearing in A1, as shown in Fig. 1 (a) p. 6, are xa = 1 and
xa = 3, so GA = {xa < 1, xa = 1, 1 < xa < 3, xa = 3, xa > 3}. Thus, each mem-
bership query of untimed word (a, true) gives rise to |GA| timed membership
queries. Totally, TL∗ needs to perform O(|Σ|·|GA|·|L|2+|L| log |π|) membership
queries to learn Com(A), where π is the counterexample given by Teacher. By
Theorem 1, TL∗ needs to perform O(|L|+ |Σ| · |GA|) candidate queries.

Lemma 1. Given a closed and consistent observation table (S,E, T), any de-
terministic ERA consistent with T must have at least |S| locations.

Proof. We first define a row in the observation table. If p ∈ S∪ (S ·Σ) is a prefix
(row) of the table, we use row(p) to denote the function f : E 7→ {0, 1} defined
by f(e) = T (p ·e) for e ∈ E. Let M = (Σ,L, l0, δ, Lf) be an ERA consistent with
T . We then define f ′(s) = δ(l0, s) for every s ∈ S. For any two s1, s2 ∈ S, we have
row(s1) 6= row(s2) implying that there exists e ∈ E such that T (s1 ·e) 6= T (s2 ·e).
Since M is consistent with T , exactly one of δ(l0, s1 · e) and δ(l0, s2 · e) is in Lf

implying that δ(l0, s1) and δ(l0, s2) are distinct locations. Thus, f ′(s) takes on
at least |S| values implying that M has at lease |S| locations.

Theorem 1. TL∗ is correct and terminates in a finite number of iterations.

Proof. The correctness is based on the fact that TL∗ returns an ERA only if it
accepts the unknown timed language UT . Let A = (Σ,L, l0, δ, Lf) be an ERA
accepting UT . In each iteration, TL∗ either adds a row into S in the observation
table (S,E, T) or splits a clock guard of an event α ∈ Σ into at least two disjoint
clock guards. Since the observation table should be consistent with A (otherwise,
Teacher must have given wrong answers to membership queries), TL∗ adds at
most |L| rows into S. At last, each split clock guard will belong to GA. Thus,
TL∗ terminates after O(|L|+ |Σ| · |GA|) iterations.

Theorem 2. The ERA learned by TL∗ has the minimal number of locations.

Proof. Given a closed and consistent observation table (S,E, T), TL∗ constructs
an ERA M exactly with |S| locations. By Lemma 1, we can conclude that M
has the minimal number of locations.

Comparison. Grinchtein et al.’s TL∗sg uses region construction to actively guess
all possible time constraints for an untimed word, so an original untimed mem-
bership query in L∗ gives rise to several membership queries of time words.
The number of timed membership queries required by the TL∗sg algorithm is

O(|Σ×GΣ | ·n2|π| · |w|
(|Σ|+K
|Σ|

)
) where n is the number of locations of the learned

ERA, π is the counterexample given by Teacher, w is the longest guarded word

queried, and K is the largest constant appearing in the clock guards. We can ob-
serve that the number of timed membership queries required by TL∗sg increases
exponentially with the largest constant K and the size of the alphabet |Σ|. To
learn the timed language accepted by A1, as shown in Fig. 1 (a) p. 6, TL∗sg needs
34 timed membership queries, while our TL∗ only needs 16 timed membership
queries. Note that our TL∗ algorithm is not affected by the largest constant K.
If we change the guarded word a[xa = 3] in A1, as shown in Fig. 1 (a), into
a[xa = 100], the number of membership queries required by our TL∗ algorithm
is still 16, while that required by TL∗sg increases exponentially.

4 Conclusion and Future Work

We proposed an efficient polynomial time algorithm, TL∗, for learning ERAs.
TL∗ can also be applied to other subclasses of timed automata, such as event-
predicting automata [2], as they are determinizable. Our future work will imple-
ment TL∗ into the PAT model checker [12, 14] such that PAT can automatically
generate the assumptions for assume-guarantee reasoning for timed systems.

Acknowledgment. This work benefited from the discussions via e-mails with
Olga Grinchtein, one of the authors of [7, 8].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science 211(1-2), 253–273 (1999)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

4. Clarke, E.M., Emerson, E.A.: Design and sythesis of synchronization skeletons
using branching time temporal logic. In: Proceedings of the Logics of Programs
Workshop. vol. 131, pp. 52–71 (1981)

5. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Proceedings of the 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). vol.
2619, pp. 331–346 (2003)

6. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Proceedings of Workshop on Automatic Verification Methods for Finite State
Systems. LNCS, vol. 407, pp. 197–212. Springer-Verlag (June 1989)

7. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
In: Proceedings of the Conference on Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems. vol. 3253, pp. 379–396 (2004)

8. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theorectical Computer Science 411(47), 4029–4054 (2010)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

10. Lin, S.W., Hsiung, P.A.: Counterexample-guided assume-guarantee synthesis
through learning. IEEE Transactions on Computers 60(5), 734–750 (2011)

11. Lin, S.W., Hsiung, P.A., Huang, C.H., Chen, Y.R.: Model checking prioritized
timed automata. In: Proceedings of the International Symposium on Automated
Technology for Verification and Analysis (ATVA). vol. 3707, pp. 370–384 (2005)

12. Liu, Y., Sun, J., Dong, J.S.: Analyzing hierarchical complex real-time systems. In:
Proceedings of the 8th ACM SIGSOFT International Symposium on the Founda-
tions of Software Engineering (FSE). pp. 365–366. ACM (2010)

13. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Proceedings of the International Symposium on Programming. vol.
137, pp. 337–351 (1982)

14. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under
fairness. In: Proceedings of the 21th International Conference on Computer Aided
Verification (CAV). vol. 5643, pp. 709–714 (2009)

