Improved BDD-based Discrete Analysis of
Timed Systems

Truong Khanh Nguyen?, Jun Sun!, Yang Liu?, Jin Song Dong? and Yan Liu?

! Information System Technology and Design,
Singapore University of Technology and Design
sunjun@sutd.edu.sg
2 School of Computing
National University of Singapore
{truongkhanh, liuyang, dongjs,yanliu}@comp.nus.edu.sg

Abstract. Model checking timed systems through digitization is relatively easy,
compared to zone-based approaches. The applicability of digitization, however,
is limited mainly for two reasons, i.e., it is only sound for closed timed systems;
and clock ticks cause state space explosion. The former is mild as many practical
systems are subject to digitization. It has been shown that BDD-based techniques
can be used to tackle the latter to some extent. In this work, we significantly im-
prove the existing approaches by keeping the ticks simple in the BDD encoding.
Taking advantage of the ‘simple’ nature of clock ticks, we fine-tune the encoding
of ticks and are able to verify systems with many ticks. Furthermore, we de-
velop a BDD library which supports not only encoding/verifying of timed state
machines (through digitization) but also composing timed components using a
rich set of composition functions. The usefulness and scalability of the library
are demonstrated by supporting two languages, i.e., closed timed automata and
Stateful Timed CSP.

1 Introduction

Model checking of real-time systems has been studied extensively. One popular ap-
proach is zone abstraction [1,2]. The scalability and effectiveness of the zone-based
approach have been proved with successful industrial applications, e.g., [3]. Meanwhile,
it is known that for a large class of timed verification problems, correctness can be es-
tablished using an integral model of time (digital clocks) as oppose to a dense model of
time [4]. For instance, Lamport argued that model checking of real-time systems can be
really simple if digitization is adopted [5]. Digitization translates a real-time verification
problem to a discrete one by using clock ticks to represent elapsed time. The advantage
is that the techniques which are developed for classic automata verification can be ap-
plied without the added complexity of zone operations. One particularly interesting
example is model checking with the assumption of non-Zenoness. A timed execution is
Zeno if infinitely many discrete steps are taken within finite time. For obvious reasons,
Zeno executions are impractical and must be ruled out during the system verification.
It is, however, nontrivial to check whether an execution is Zeno or not based on zone
graphs [6,7]. The problem is much simpler with digitization. An execution of a digi-
tized system is non-Zeno if and only if it contains infinitely many clock ticks. Thus a

finite-state system is non-Zeno if on any of its control cycles, time advances with at least
one time unit. In other words, this cycle contains at least one clock tick transition, which
can be determined efficiently with cycle-detection algorithms. Further, the experiment
in [8] showed that BDD-based model checking of digitized systems is more robust with
the increment in the number of processes, compared with zone-based approaches.

The disadvantage of digitization is that the number of reachable states of the digi-
tized system is an increasing function of the number of clock ticks, which is determined
by the upper-bound of the timing constraints. The experiments in [S] showed that UPp-
PAAL has a clear advantage (over TLC or Spin in verifying the digitized systems) when
the time upper-bound is bigger than 10. The same experiments showed that the sym-
bolic model checker SMV is more robust with the increment in time upper-bounds. The
question is then: Can BDD-based symbolic model checker scale better with large time
upper-bounds? In [9], it has been shown that the size of BDD is very sensitive to time
upper-bounds through a theoretical analysis. As a result, the time upper-bounds were
thus kept very small in their experiments, i.e., no more than 16.

In this work, we re-visit the problem in order to develop efficient model checking
techniques for timed systems. Our investigation shows that if we keep clock ticks sim-
ple, by avoiding clock variables altogether, we are able to obtain a small BDD encoding
of all ticks in a system which scales significantly better than existing approaches. We
are able to verify systems with time upper-bounds in the order of thousands. Further-
more, to make this technique available for different timed modeling languages, we build
a BDD library for encoding and composing digitized timed systems. The motivation is
that complex timed systems are often composed of many components at multiple lev-
els of hierarchies. We propose to use timed finite-state machines (TFSMs) to model
timed system components, which are designed to capture useful system features like
different ways of communication among system components. Next, we define a rich
set of system composition functions accordingly based on TFSMs. The library further
complements the previous approaches (e.g., UPPAAL, Rabbit [8]) by supporting linear
temporal logic (LTL), LTL with weak/strong fairness, non-Zenoness, etc. The useful-
ness of the library is evidenced by showing that it can be readily used to build model
checkers for two different timed modeling languages, e.g., closed timed automata and
Stateful Timed CSP [10].

We evaluate the efficiency of the library using benchmark systems with different
settings. In the first experiment, systems are modeled and verified with an increment in
time upper-bounds. The objective is to show that, by taking advantage of characteristics
of clock ticks, our library is reasonably robust with larger number of clock ticks than
Rabbit. In the second experiment, the systems are verified with the increment in the
number of processes so as to show that our model checker scales up better than model
checkers like UPPAAL. Lastly, we show that our model checker verifies LTL properties,
with/without non-Zenoness, efficiently.

The rest of the paper is organized as follows. Section 2 presents the design of the
library. Section 3 presents the work on supporting two languages. Section 4 evaluates
the performance of the library. Section 5 concludes the work.

2 System Models and BDD Encoding

A timed system may be built from the bottom up by gradually composing system com-
ponents. We propose to model system components using timed finite-state machines
(TFSMs), which are designed to capture a variety of system features. In the following,
we introduce TFSM and system compositions based on TFSMs. Furthermore, we show
abstractly how to generate a BDD encoding of TFSMs in a compositional way.

2.1 Timed Finite-State Machines

Definition 1. A TFSM is a tuple M = (GV,LV S, init, Act, Ch, T') such that GV
is a set of finite-domain shared variables; LV is a set of finite-domain local variables
such that GV N LV = @; S is a finite set of control states; init € S is the initial state;
Act is the alphabet; Ch is a set of synchronous channels®; and T is a labeled transition
relation. A transition label is of the form [guard] evt{ prog} where guard is an optional
guard condition constituted by variables in GV and LV ; evt is either an event name, a
channel input/output or the special tick event (which denotes 1-unit elapsed time); and
prog is an optional transaction, i.e., a sequential program which updates global/local
variables.

A transaction (which may contain program constructs like if -then-else or while-do)
associated with a transition is to be executed atomically. A non-atomic operation is thus
to be broken into multiple transitions. TFSMs support many system features. For in-
stance, TFSMs may communicate with each other through shared variables GV, multi-
party event synchronization (common events in parallel composition are synchronized)
or pair-wise channel communication.

The semantics of M is a labeled transition system (C, init., —) such that C' con-
tains finitely many configurations of the form (o4, 0y, s) such that o, is the valua-
tion of GV and o, is the valuation of LV and s € S is a control state; init, =
(inity, inity, init) where init, is the initial valuation of GV and init, is the initial valua-
tion of LV'; and — is defined as follows: for any (o4, 0y, 5), if (s, [guard]e{prog}, s’) €
T, then (0,07, 5) — (0,07, 8") if the following holds: guard is true given o, and 07;
e is not a synchronous channel input/output; and prog updates o, and o; to a; and
o} respectively. Notice that synchronous input/output cannot occur on its own. Rather,
it must be jointly performed by different TFSMs which execute concurrently. Further-
more, — contains transitions labeled with events to be synchronized, which later will be
synchronized with corresponding transitions from other TFSMs. We remark that tim-
ing constraints are captured explicitly by allowing/disallowing transitions labeled with
tick. For instance, an urgent state is a state which disallows ticks.

Example 1. Fig. 1 shows a TFSM which models a process in Fischer’s mutual exclusion
protocol. The double-lined circle denotes the initial state. GV contains two variables.
Variable ¢d denotes the identifier of the latest process attempting to access the criti-
cal session. It is initialized to O, which means that no process is attempting. Variable

3 Asynchronous channels can be mimicked using shared variables.

[clk < a]
tick {clk++}

tick [id = 0] start{clk := 0}

set fid= 0]
; {id := pid; clk := 0} 1a=
exit reset{clk := 0}

{id = 0; counter--}

[id = pid && clk >=a + 1]
enter {counter++}

tick tick{clk++}

Fig. 1. A TFSM model with clock variables

counter counts the number of processes currently accessing the critical session. By de-
sign, counter should be always less than 2. The local variable pid is a unique process
identifier which is a constant. In addition, variable clk € LV is a clock variable which
tracks the passage of time. Initially, the TFSM awaits until ¢d = 0 and then performs
event start. At state A, it can set id to its pid (indicating that it is trying to get into
the critical session). Event set must occur within o time units as the tick transition is
guarded by clk < a. At state B, the TFSM waits for at least o + 1 time units and then
checks whether id is still same as its pid. If so, it enters the critical session; otherwise,
it restarts from the beginning via the reset event. O

TFSM can be encoded in BDD following the standard approach. That is, a BDD can be
used to encode symbolically the system configuration including valuation of global and
local variables as well as the control states. Using two sequences of Boolean variables
7 and 7’ (which represent system configurations before and after a transition respec-
tively), transitions of TFSMs can be encoded as BDDs constituted by 7 and Z’. An
encoded transition is of the form: g A e A ¢ such that ¢ (over @) is the encoded guard
condition; e is the encoded event and ¢ (over @ and T) is the encoded transaction.
Interested readers are referred to [11] for details on encoding TFSM.

The encoding of a TFSM is a tuple B = (77 @, Init, Trans, Out, In, Tick). Vs
a set of unprimed Boolean variables encoding global variables, event names including
the clock tick, channel names, and channel buffers, which are calculated for the whole
system before encoding. ¥ is a set of variables encoding local variables and local con-
trol states; Init is a formula over V and @, which encodes the initial valuation of the
variables. Trans is a set of encoded transitions excluding tick transitions. Out (In) is
a set of encoded transitions labeled with synchronous channel output (input). Note that
transitions in Out and In cannot occur by itself, but must be paired with corresponding
input/output communication of other components. Out and In are separated from the
rest of the transitions so that they can be matched with corresponding input/output tran-
sitions later. Lastly, Tick is a BDD which encodes all the tick transitions. Note that tick
transitions must be synchronized among all concurrent TFSMs. Keeping tick transitions
separated allows us to realize dedicated optimizations (see below).

tick [id = 0] reset

[id = 0] start

exit
{id = 0; counter--}

[id = pid]
enter {counter++}
tick

Fig. 2. A TFSM model without clock variables

2.2 Keeping Ticks Simple

In order to handle systems with large time upper-bounds, it is important that we keep
the encoding of tick transitions small. There are different ways of capturing timing
constraints. For instance, in Fig. 1, the timing constraints at state A and B are captured
by using ‘clock’ clk, i.e., by increasing clk with the tick transitions and guarding system
transitions with conditions on clk. Another way of modeling timing constraints is to use
only tick transitions without clock variables. For instance, assuming « is 3 in Example
1, Fig. 2 models the same TFSM without clock variables. At state A, at most three tick
transitions are allowed to occur before event set occurs, which captures that set must
occur within three time units.

We argue that clock variables should be avoided altogether if possible for the fol-
lowing reason. Without clock variables, both the tick transitions and other transitions
become simpler since there is no need to introduce a new variable clk; or have trans-
actions to increment clk or to have transition guards on clk. Moreover by generating
explicitly the model with tick transitions, we can reduce the state space of the problem.
For instance, given the encoding in Figure 1, the total number of potential states (i.e.,
the product of the control state and the clock value) is 20, whereas with the encoding in
Figure 2, it is only 11. This latter encoding thus allows us to save one boolean variable
in encoding of one TFSM. This reduction is due to the fact that the latter encodes more
‘domain knowledge’. For instance, some of the 20 states are in fact not reachable (e.g.,
state (A, clk = 4) assuming « is 3) or bi-similar to each other (e.g., state (init, clk = 0)
and (init, clk = 1) where init is the initial state).

However if tick transitions are used instead of the clock variables, the number of
tick transitions in one TFSM is bigger, linear to the product of all clock ceilings in that
TFSM. If we store Tick as a disjunctive partitioned transition function [12], the number
of BDDs to encode tick transitions in a system can grow exponentially. Given a system
with n TFSMs, each of which has m tick transitions, T%ck of the resulted composition
has m™ BDDs which are implicitly disjuncted. As a result, the number of BDD-based
pre-image and post-image operations grows exponentially too. Thus we store Tick as
a single BDD to encode all the tick transitions in a TFSM. It reduces the time spending
on BDD-based computation by taking one complex operation instead of m™ simpler

#proc 4/5/6 (7|8
without clock variables| 0 | 0 [0.1]0.2]0.4
with clock variables |0.6{15[513| x | x
without clock variables| 21 22| 23 | 24|26
with clock variables |32|70]425| x | x
Table 1. Compare two different approaches of encoding timing constraints

time (s)

memory (Mb)

operations. Lastly, we compare the two different approaches of encoding timing con-
straint (i.e., with or without clock variables) and show that avoiding clock variables
leads to a smaller BDD (as suggested by the memory consumption) and subsequently
significantly more efficient verification (as suggested by the verification time). Table 1
summarizes the experiment results on Fischer’s protocol using the model in Figure 1
and 2. Thus, in the following, we always avoid clock variables whenever possible.

2.3 System Composition

A complicated system may consist of many components at multiple levels of hier-
archies; and components at the same level may be composed in many ways. In the
following, we define a few common system composition functions and show how to
generate encodings of these functions without constructing the composed TFSM. We
fix two TFSMs Mz = (GV,LV,“S“ initi7ACti, Ch,, Tz) where i € {07 1}, and
B, = (7, i, Init;, Trans;, Out;, In;, Tick;) which encodes M ; respectively. Notice
that 7 and 77, are disjoint and V is always shared.

Parallel Composition The parallel composition of My and M; is a TFSM M =
(GV,LV,S, init, Act, Ch, T) such that LV = LV, U LVq; S = Sy x Sy; init =
(inity, inity); Act = Acto U Acty; Ch = Chg U Chy; T is the minimum transition
relation such that for any (so, [go] eo{prog0}, s§) € To; (s1,[g1]er{prog:}, s1) € T1.,

- ifeg & (Acty N Acty) U {tick}, ((so, 51), [g0]eo{progo}, (sh, s1)) € T

- if ey & (Acto N Acty) U {tick}, ((so, 81), [91]e1{progi }, (s0, 1)) € T;

- ((s0,81)s[90 N g1]eo{progo; progi}, (s, 1)) € T if g = e; and ey € (Acty N
Acty) U {tick}. In order to prevent data race, we assume that progy and prog; do
not conflict, i.e., update the same variables to different values.

— if eg = ch!v is an output on channel ch with value v; and e; = ch?x is a matching
channel input, ((so, $1), [go A g1]ch.v{progo; progi}, (s, s1)) € T

— if e = chlv is a channel output; and ¢y = ch?x is a matching channel input,
((s0,51): [90 A gr]ch.v{progi; progo}, (sg,s1)) € T+

Notice that a channel input/output from M, may be matched with an output/input
from M _; to form a transition in 7T'. It is promoted to Ch at the same time because a
channel input/output from M, may synchronize with another TFSM in the rest of the
system. In the contrast, an event in (ActyN Acty) U{tick } must be synchronized by both
machines. If Acty N Act; = @, then M and M; communicate only through shared
variables or channels, which is often referred to as interleaving. For instance, Fischer’s
protocol is the interleaving of multiple TFSMs defined in Fig. 1.

Let (7, @, Init, Trans, Out, In, Tick) be the BDD encoding the parallel compo-
sition of By and By. We have 7 = ¥ U T1; Init = Inity A Init;. Trans contains
three kinds of transitions.

— local transition: if g; A e; A t; is a transition in Trans; and e; is an event which
is not to be synchronized (i.e., e; & (Acty N Acty) U {tick}), Trans contains a
transition g; A e; A t; A (V1_; = U7_;), where (T71_; = ¥]_,) denotes that
the local variables of B;_; are unchanged.

— channel communication: if g; A e; A t; is a transition in Out;; and g1 _; A e;_; A
t1_; is a transition in Iny_;; and e; and e;_; are matching channel input/output,
Trans contains a transition g; A g1_; A e; A t; A ti_i*.

— barrier synchronization: if g; A e; A t; is a transition in Trans; and g1—; A e; A
t1_; is a transition in Trans;_; and e; € (ActoN Acty) is a synchronization barrier
and ¢; and t; _; do not conflict, Trans contains transition g; A g1_; A e; A t; A
tlfi.

Out/In contains a transition g; A e; A t; A (T1_; = Uy ;) if i A e A t;is
a transition in Out;/In; respectively. These transitions could be paired with matching
input/output from other TFSMs running in parallel later. Lastly, T%ck contains the tran-
sition g; A g1—; N tick N t; N ti—; if g; A tick A t; is a transition in Tick; and
g1—i A tick A tl—i is in Tz'ckl_i.

Unconditional Choice An unconditional choice between M and M7 isa TFSM M =
(GV,LV,S,init, Act, Ch, T) such that LV = LVy U LV7; S = ((Sp U {done}) x
(81 U {done})); init = (inity, inity); Act = Acty U Acty; Ch = Chy U Chy; and
T is the minimum transition relation defined as follows. Notice that we introduce a
special state done which denotes the state of one component after the other component
is chosen. For any (s, [go]eo{progo}, s§) € To; any (s1, [g1]er{prog: },s]) € Th,

- if eg = e1 = tick, ((s0, 1), [90 N g1]tick{progo; prog:}, (s}, s1)) € T}

— if eg # tick, ((so,), [go]eo{progo}, (s}, done)) € T forall s € Sy U {done};

- if e # tick, ((s, s1), [g1]ex{prog: }, (done, s7)) € T forall s € Sy U {done};

- if eg = tick, ((so, done), [go]tick{progo}, (s}, done)) € T}

— if e; = tick, ((done, s1), [g1]tick{prog: }, (done, s1)) € T}
Initially when the choice is not resolved, if both components take a tick transition, then
so does the choice. Only after one of the components takes an action, the choice is
resolved and the other component goes to the done state.

Let (7, @, Init, Trans, Out, In, Tick) be the BDD encoding of the choice be-
tween By and B such that & = ¥ U o'y U {choice} where choice € {—1,0,1}isa
fresh integer variable of value -1 (i.e., the choice is not resolved), O (i.e., M has been
chosen), or 1 (i.e., Mj has been chosen); Init = Inity A Inity A (choice = —1);
Trans, Out, In contain the transition (choice = —1 V choice = i) A g; A e; N t; A
(choice’ = 1) if g; A\ e; A t; is a transition in Trans;, Out; or In; respectively. Lastly,
a transition (choice = —1) A g; A gi—; A tick A t; A ti—; A (choice’ = —1)isin
Tick if g; N\ tick A t; is a transition in Tick; and g1_; A tick A t;_; is a transition
in Tick;_;. Moreover Tick also contains tick transitions from M, when the choice is
already resolved, (choice = i) A g; A tick A t; A (choice’ = i).

* In our encoding, matching synchronous input/output are labeled with the same event.

Timeout A common timed composition function is timeout, i.e., if a system component
is not responding within certain time units, then another component takes over control.
Given M, and M and a constant d, the timeout is a TFSM M = (GV, LV S, init,
Act, Ch, T) such that LV = LVo U LVy; S = Sy U Sy U {state; | 1 < i < t};
it = inity; Act = Acty U Acty; Ch = Chg U Chy; and T is the minimum transition
relation defined as follows. Notice that we introduce ¢ states to remember the time
passage while the M, delays its first action. For any (so, [go]eo{pr090}, 8})) € To; any
(s1,[g1]er{progi}, s1) € Th, T is defined as follow

- (inity, tick, statey) € T

— (state;, tick, state;41) € T where 1 < i<t —1

— (state, T, init;). The timeout occurs and the control is passed to M.

- (s, [go]eo{progo}, si) € T forall s € inity U{statey, ..., state; } where sy = inity,
ep is not a tick. Actions from initial state can happen during the d-unit-long period.

- (S0, [go]eo{progo}, s) where sy # inity

= (s1,[gi]er{prog:i },s1) € T

The corresponding encoding of M is built in the standard way. Notice that timeout can
be equivalently defined by adopting an integer clock variable clk which is updated by
every tick transition and guarding every transition of M with a constraint on clk. The
above definition, however, keeps tick transitions simple by avoiding clock variables.

Deadline A timed system requirement may put a bound on the execution time of a
component, i.e., a component must terminate before certain time units. A TFSM M,
with a deadline d is a TFSM M = (GV, LV, S, init, Act, Ch, T) such that LV =
LVy; S = 8y x {0,1,---, d} where the numbers represent the number of elapsed time
units; init = (inity,0); Act = Acty; Ch = Chy; and T is the minimum transition
relation such that:

— forany (s, [g]e{prog}, s") € To and e # tick, ((s, do), [g]e{prog}, (s', do)) € T
forall dy € {0,1,---,d}.

— for any (s, [g]tick{prog},s’) € To, ((s, do), [g]tick{prog}, (s',dy + 1)) € T for
alldy € {0,1,-,d —1).

Similarly, the corresponding BDD encoding of M is built in the standard way.
Through literature survey and case studies, we collected and defined more than twenty
composition functions. Other functions like time/event interrupt, sequential composi-
tion, conditional choice, repetition, etc., are similarly defined. Interested readers can
refer to [11] for the complete list. We remark that the compositions remain as TFSM
and therefore not only system components can be composed repeatedly but also the
library of system composition functions is extensible.

3 Case Studies

In this section, we show how to support model checking of two fairly different lan-
guages, i.e., closed timed automata and Stateful Timed CSP, using our library.

3.1 Closed Timed Automata

Given a set of clocks C, the set &(C) of closed clock constraints § is defined inductively
by:d:=z ~n|8§|d A where ~¢ {=,<,>};zisaclockin C and n € R
is a constant. Without loss of generality (Lemma 4.1 of [13]), we assume that n is an
integer constant. The set of downward closed constraints obtained with ~=<is denoted
as P (). A clock valuation v for a set of clocks C is a function which assigns a real
value to each clock. A clock valuation v satisfies a clock constraint §, written as v |= 6,
if and only if 4 evaluates to true using the clock values given by v. For d € R, let v+d
denote the clock valuation v’ such that v'(¢) = v(¢) + d forall ¢ € C.For X C C,
let clock resetting notion [X +— 0]v denote the valuation v’ such that v'(¢) = v(c) for
allce C\ X and v'(z) = 0forall z € X.

Definition 2. A closed timed automaton A is a tuple (S, init, X, C, L, —) where S is
a finite set of states; init € S is an initial state; X' is an alphabet; C' is a finite set of
clocks; L : S — @S(C) is a function which associates an invariant with each state;
—: 8 x X x ®(C) x 2¢ x S is a labeled transition relation.

A transition (s, e,d, X, s") €— is fired only if § and L(s) are satisfied by the current
clock valuation v and [X — O]v satisfies L(s’). After event e occurs, clocks in X are
set to zero. Given any clock ¢ in C, the upper-bound of time constraints associated
with a clock ¢, denoted as [c], is called its ceiling. A closed timed automaton can be
digitized [4] and interpreted as a TFSM M = (&, D, St, Tinit, Act, &, T') which is
defined as follows. A state in S? is a pair (s, v) where s € S and v is the valuation of
all the clocks in C such that for every clock ¢ € C, v(c) is a number in {0,-- -, [¢]};
Tinit = (init, vo) where vy is a clock valuation which assigns every clock value 0; and
T contains two kinds of transitions.

— event-transitions: for any (s, e,d, X, s’") €=, ((s,v), e, (s',v")) € T if v satisfies
§ and L(s) and v' = [X +~ 0]v and v’ satisfies L(s’).

— time-transitions: for any (s, v) € S, ((s,v), tick, (s,v")) € T such that for any
ce C,v'(c)=wv(c)+1ifv(c) < [c]orv'(c) = v(c) otherwise; and v’ satisfies
L(s).

Notice that timing constraints are captured using tick transitions and therefore in the
event-transitions above, the transitions are not guarded. It is obvious that our library
can be used to support verification of closed timed automata as well as many additional
features introduced in UPPAAL. For instance, interleaving of multiple closed timed au-
tomata can be encoded using the parallel composition function; pair-wise synchronous
channel communications can be captured using channels supported in the library; etc.
Furthermore, it is straightforward to support hierarchical timed automata [14, 15] using
our library (by applying the corresponding composition functions) as long as all clock
constraints are closed.

It is worth mentioning that a clock which is shared by multiple timed automata is
modeled as a shared variable (ranging from 0 to [¢]) in GV rather than resolved using
tick transitions, due to arbitrary clock resetting. A tick transition in the composition
is associated with a program which increases every shared clock except those which
have reached their ceilings. This encoding complicates the encoding of tick transitions.
Nonetheless, we observe that many real-world timed systems use local clocks only.

3.2 Stateful Timed CSP

Stateful Timed CSP (STCSP) [10] extends Timed CSP to capture hierarchical timed
systems with non-trivial data structures and operations. Different from timed automata,
STCSP relies on implicit clocks to capture timed aspects of system behaviors. It has
been shown that STCSP, like Timed CSP, is equivalent to closed timed automata with
T-transitions [10], and thus can be potentially supported by our library.

A STCSP model is a tuple S = (Var, initg, P) where Var is a finite set of finite-
domain global variables, init is the initial valuation of the variables and P is a timed
process. Process P can be defined using a rich set of process constructs. The following
shows a core subset of them.

P = Stop | Skip | e = P | a{program} — P | if (b) {P} else {Q} | P; Q
| PAX[(P| Q)| PI[X]| Q| Wait[d] | P timeout[d] Q
| P interrupt|d] @ | P within[d] | P deadline[d] | Q

The un-timed process operators are either borrowed from CSP [16] or self-explanatory.
We thus focus on the timed operators. Assume that d is a positive integer constant.
Process Wait[d] idles for exactly d time units (and becomes Skip afterwards). Process
P timeout[d] Q behaves exactly as P if the first observable event of P occurs before d
time units (since process P timeout[d] @ is activated). Otherwise, @ takes over control
after exactly d time units. In process P interrupt[d] @Q, if P terminates before d time
units, P interrupt[d] @ behaves exactly as P. Otherwise, P interrupt[d] @ behaves
as P until d time units and then @ takes over. In contrast to P timeout[d] @, P may
engage in multiple observable events before it is interrupted. Process P within[d] must
react within d time units, i.e., an observable event must be engaged by process P within
d time units. In process P deadline[d], P must terminate within d time units, possibly
after engaging in multiple observable events.

Example 2. Fischer’s mutual exclusion algorithm can be modeled as a STCSP model
(V, v;, Protocol) where V contains two variables id and counter, which play the same
roles as in Example 1.

Proc(pid) =if (id =0) {
Started(pid)

Started(pid) = (set{id := pid} — Wait|a + 1]) within|a];
if (id = pid) {
enter{ counter := counter + 1} —
exit{ counter := counter — 1; id := 0} — Proc(pid)
} else {
reset — Started(pid)
}

Process Protocol is the parallel composition of the process, i.e., Proc(1) || --- ||
Proc(n) where n is a constant representing the number of processes. Process Proc(pid)
models a process with a unique integer identifier pid. If id is O (i.e., no other process

is attempting), id is set to be pid by action set. Note that set must occur within « time
units (captured by within[a]). Next, the process idles for o + 1 time units (captured by
Wait[o + 1]). It then checks whether id is still pid. If so, it enters the critical section
and leaves later. Otherwise, it restarts from the beginning via reset action.

Given a STCSP model S = (Var, initg, P), its discrete operational semantics are de-
fined through a set of firing rules. Elapsed time is defined explicitly through transitions
labeled with tick. Interested readers are referred to [10]. Supporting STCSP with our
library is not trivial due to two reasons. Firstly, STCSP is capable of specifying irreg-
ular or even non-context-free languages (due to unbounded recursion, refer to [16] for
concrete examples), which are beyond the expressiveness of our library. We thus focus
on a subset of STCSP models which are finite-state, as defined in [10]. Secondly, it is
not clear what are primitive system components given a STCSP model. Notice that aux-
iliary variables are sometimes introduced in the BDD composition, which may result in
a non-optimal encoding. Given a simple system with 1000 simple choices, ideally, 10
Boolean variables are sufficient to capture all outcomes. If the choice pattern is applied
each time instead, then 999 Boolean variables are added. This example may suggest that
the composition functions should be avoided, whereas we argue that the composition
functions may be inevitable as knowing the exact number of states in the composition
is as hard as reachability analysis. In order to minimize the overall time, one thus has to
find a balance between quick encoding (which may imply more verification time) and
fast verification (which may be implied by an optimal encoding).

In this work, given a STCSP model, static system analysis is firstly performed
so as to identify maximum sub-systems which do not contain a parallel composition.
For instance, in Example 2, the identified maximum sub-system is Proc(pid) where
pid € {1,---,n}. Next, one TFSM is generated systematically from the maximum
sub-systems, according to the firing rules, and then encoded using BDD. Finally, the
BDD encodings are composed using the respective composition functions so as to gen-
erate the BDD encoding of the model. Notice that extending our library with functions
to support process constructs in STCSP is straightforward based on its formal opera-
tional semantics.

4 Evaluation

The BDD library [11] has been implemented as part of the PAT framework [17, 18].
It is based on the CUDD package, with about thirty classes and thousands of lines of
C# code. A range of properties are supported, e.g., reachability analysis or LTL with
or without non-Zenoness assumptions or fairness assumptions, etc. Verification of LTL
with non-Zenoness assumption is based on a symbolic implementation of the automata-
based approach [19], with an additional checking for non-Zenoness (i.e., a strongly
connected component is accepting if it is not only Biichi fair but also contains at least
one tick transition).

In the following, we evaluate the model checker for closed timed automata devel-
oped based on the library, by comparing its performance with existing timed automata
model checkers. An automatic translator is developed to translate timed automata into

bound 32164 (128(256(512|1024(2048/3096
PAT [0.5{1.4| 5 | 17 | 68293 [1297|3018
Rabbit|5.5[44 |570] x | x | x | X | X
memory| PAT 16|21 |41 |49 [104]| 298 | 494 | 519
Table 2. Fischer’s protocol with 4 processes

time

bound 20(40| 80 |160|320| 640 |1280(2560
PAT [0.5{1.3] 4 | 9 [29] 105|428 |1853
Rabbit|2.6|5.313.4|54.4/256|1510] x | X
memory| PAT [17]24] 31 | 35 | 62| 122 | 303 | 446
Table 3. Railway control system with 4 stations

time

TFSM using the approach documented in Section 3.1. Notice that there is limited tool
support (other than our own) for STCSP. Three benchmark systems are used: Fischer’s
protocol, a railway control system and the CSMA/CD protocol. All models are avail-
able online [11]. The test bed is a PC with Intel Core 2 Duo E6550 CPU at 2.33GHz
and 2GB RAM. Because the maximal memory for Rabbit is 800MB, in the first two
experiments, PAT and Rabbit are both allocated 800MB memory. For other cases, tools
are set to run until the memory exhausts.

The first question is how well the library scales with the number of clock ticks.
In the first experiment, we exponentially increase the upper bound of the timing con-
straints while keeping the number of processes constant. Table 2, 3 and 4 summarize
the verification time, which includes both system encoding time and searching time (in
seconds), and peak memory usage (in Megabytes). X means either out of memory or
running more than 2 hours.

All of the properties verified are safety condition which are unreachable from the
initial state. The row bound shows the maximum time upper-bound. The bound in
CSMA/CD protocol is in the form m /n where m is the time for signal propagation and
n is the time for data transmission. The memory consumption of Rabbit is not available
from the tool.

The data confirm that time and memory consumptions do increase with the number
of tick transitions. Nonetheless, PAT is more robust than Rabbit, e.g., Rabbit exhausts
the memory earlier, whereas PAT is able to handle relatively large time upper bounds
(e.g., more than one thousand for all three cases). This outperformance can come from
of our strategy of Keeping Ticks Simple (section 2.2). Zone-based approaches like the
one implemented in UPPAAL are more robust to the increment of the bound. UPPAAL’S
time/memory consumption remains constant (i.e., about one second and 30Mb) as ex-
pected. However, notice that UPPAAL’s performance could be sensitive to the ratio
of time bounds in a model (even if the bounds are small), which is not the case for
digitization-based approaches. We refer the readers to [5] for details.

In the second experiment, we increase the number of processes (while keeping the
time upper bounds constant) and compare the performance of PAT, UPPAAL and Rabbit.
The verification results are summarized in Table 5, 6 and 7. It can be seen that both PAT
and Rabbit offer significantly better performance than UPPAAL on Fischer’s protocol

bound 8/248(12/372|16/497|20/621|26/808|40/1243
PAT | 5 10 21 35 67 205
Rabbit| 10 | 32.7 | 67 90 | 342 | 1160
memory| PAT | 31 72 126 | 245 | 468 518
Table 4. CSMA/CD with 4 processes

time

#proc | 8 |12 (16|24 |32 40| 50
PAT |0.4|1.1|4 20|61 |195|531
time |UPPAAL| 1 [200| x| X | X | X | X

Rabbit (1.6/4.4 (12| 60 [180|473|1142
PAT |17|26 |47|136|278|386| 757
memory |[UPPAAL|29 629 x| X | X | X | X

Table 5. Fischer’s protocol with time upper-bound 4

and the CSMA/CD protocol. For railway control system, PAT and Rabbit take more
time than UPPAAL for less than 10 processes. It is likely due to the queue data structure
in the model, which is costly to support using BDD. Compared with Rabbit, in this
experiment, PAT is better than Rabbit in Fischer’s protocol and railway control system
whereas Rabbit is faster than PAT in CSMA/CD protocol

In addition to reachability analysis, our library offers verification of the full set of
LTL formulae, LTL with non-Zenoness assumption, etc. In the following, we compare
the performance of verifying liveness properties, with non-Zenoness (row -Zeno) or
without non-Zenoness (row +Zeno). Two approaches are compared, i.e., zone-based
approach implemented in UPPAAL and the BDD-based approach proposed in this work
(i.e., row PAT). The liveness properties are all progress properties which are supported
by UPPAAL. Notice that verification with non-Zenoness is not supported in UPPAAL.
Furthermore, Rabbit does not support liveness.

As shown in Table 8, BDD-based approach can handle more processes than UP-
PAAL for Fischer’s protocol and CSMA/CD. It is, however, slower than UPPAAL for
railway control system. Encoding the queue data structure symbolically, e.g., pushing
and popping an element, makes the BDD of the transition function complex. Thus the
BDD-based operations over the transition functions are slow. In addition, the experi-
ments suggest that checking non-Zenoness does incur computational overheads. The
reason of these overheads is that the additional computation to discard the strongly
connected components which do not contain any tick transition.

5 Discussion

The technical contribution is twofold. Firstly, we develop a BDD library which supports
verification of timed systems based on digitization. The library is shown to be reason-
ably robust with a large number of tick transitions and efficient in verifying benchmark
systems. Secondly, based on the library, two model checkers are developed to support
two different timed modeling languages.

#proc |6 |7 | 8|9 [10
PAT |[1.8| 6 | 16| 58 |169
time |UPPAAL|0.2|1.1|7.9(83.1| x
Rabbit (53805 x | X | X
PAT 33|64 |170{460|715
UPPAAL|26| 36 |111|835| x
Table 6. Railway control system with time upper-bound 5

memory

#iproc | 8 (10| 12 | 14 [16|32| 64 |128
PAT |0.3]|0.3] 0.4 | 0.6 |0.85 | 45 |593
time |UPPAAL|0.4|3.0{22.9| 163 | x | x| X | X
Rabbit | 1|1 |1.3] 1.4 |1.5/3(16.1|80
PAT |16|17| 18 | 25 |28|73|312|661
UPPAAL|29(51(292(1894| x | x| X | X
Table 7. CSMA/CD with time upper-bound 1/4

memory

This work follows the line of research on using digital clocks for modeling and ver-
ifying timed systems. In [4], the usefulness and limitations of digital clocks have been
formally established, which forms the theoretical background of this work. In contrast
to the approach in [5] where integer clock variables are used, we use tick transitions only
and avoid clock variables so as to obtain a smaller BDD encoding of tick transitions. As
a result, we are able to verify systems with many more ticks or processes. In the name
of improving modularity, Lamport’s method is slightly improved by work in [20]. This
work continues the line of work by Beyer [9, 8] to cope with large time upper-bounds
and supports liveness properties and liveness with fairness/non-Zenoness. This work
is remotely related to work on symbolic model checking of timed systems [21]. As
for future work, we are constantly optimizing the library so as to encode further state
reduction techniques, e.g., symmetry reduction and, more importantly, compositional
verification techniques.

Acknowledge

We would like to thank anonymous reviewers for their extremely valuable comments.
This research is partially supported by project IDG31100105/IDD11100102 from Sin-
gapore University of Technology and Design, and TRF project ‘Research and Develop-
ment in the Formal Verification of System Design and Implementation’.

Model Fischer Railway Control || CSMA/CD
#proc 6| 8 (101214 |16 |6 |7 | 8 | 9 ||[4]|/6| 8|9
PAT | 5| 39 |177]599|1653|4345|/ 14 |48 157 | 887 ||0.2| 3 | 24 |106
UPPAAL|2.3|6711| X | X | x | x [/0.4]2.6]24.1| 242 || 0 |0.6/662| x
-Zeno| PAT | 9 | 59 |269(980(3014| x |/21|66|207|1006(/0.4| 5 | 55 |368
Table 8. LTL model checking with/without non-Zenoness

+Zeno

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

B. Berthomieu and M. Menasche. An Enumerative Approach for Analyzing Time Petri Nets.
In IFIP Congress, pages 41-46, 1983.

D. L. Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of LNCS, pages 197—
212. Springer, 1989.

. K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal Modeling and Analysis of an

Audio/video Protocol: an Industrial Case Study using UPPAAL. In RTSS, pages 2—13, 1997.

. T. A. Henzinger, Z. Manna, and A. Pnueli. What Good Are Digital Clocks? In ICALP,

volume 623 of LNCS, pages 545-558. Springer, 1992.

. L. Lamport. Real-Time Model Checking Is Really Simple. In CHARME, volume 3725 of

LNCS, pages 162-175. Springer, 2005.

. S. Tripakis. Verifying Progress in Timed Systems. In 5th International AMAST Workshop

ARTS on Formal Methods for Real-Time and Probabilistic Systems, volume 1601 of LNCS,
pages 299-314. Springer, 1999.

. F. Herbreteau, B. Srivathsan, and 1. Walukiewicz. Efficient Emptiness Check for Timed

Biichi Automata. In CAV, volume 6174 of LNCS, pages 148-161, 2010.

. D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A Tool for BDD-Based Verification of Real-

Time Systems. In CAV, volume 2725 of LNCS, pages 122-125, 2003.

. D. Beyer and A. Noack. Can Decision Diagrams Overcome State Space Explosion in Real-

Time Verification? In FORTE, pages 193-208. Springer, 2003.

J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and E. André. Modeling and Verifying Hierarchical
Real-time Systems using Stateful Timed CSP. ACM Transactions on Software Engineering
and Methodology, 2011. to appear.

T. K. Nguyen, J. Sun, Y. Liu, J. S. Dong, and Y. Liu. BDD-based Discrete Analysis of Timed
Systems. http://www.comp.nus.edu.sg/%$7Epat/bddlib/, 2012.

Jerry R. Burch, Edmund M. Clarke, and David E. Long. Symbolic Model Checking with
Partitioned Transistion Relations. In VLSI, pages 49-58, 1991.

R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126:183-235, 1994.

X. L. Jin, H. D. Ma, and Z. H. Gu. Real-Time Component Composition Using Hierarchical
Timed Automata. In QSIC, pages 90-99. IEEE, 2007.

A. David, R. David, and M. O. Mdller. From HUPPAAL to UPPAAL - A Translation from
Hierarchical Timed Automata to Flat Timed Automata. Technical report, Department of
Computer Science, University of Aarhus, 2001.

C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall, 1985.

J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness.
In CAV, volume 5643 of LNCS. Springer, 2009.

Yang Liu, Jun Sun, and Jin Song Dong. Developing Model Checkers Using PAT. In ATVA,
pages 371-377, 2010.

M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verifi-
cation. In LICS, pages 332-344. IEEE Computer Society, 1986.

H. Wang and W. MacCaull. Verifying Real-Time Systems using Explicit-time Description
Methods. In QFM, volume 13 of EPTCS, pages 67-78, 2009.

G. Morbé, F. Pigorsch, and C. Scholl. Fully Symbolic Model Checking for Timed Automata.
In CAV, volume 6806 of LNCS, pages 616-632. Springer, 2011.

