
GenericDiff: A General Framework for Model Comparison
Zhenchang Xing
School of Computing

National University of Singapore
xingzc@comp.nus.edu.sg

Abstract
This paper presents GenericDiff, a general framework for model
comparison. The main design challenge of GenericDiff lies in how
to strike a balance between being domain independent yet aware
of domain-specific model properties and syntax. GenericDiff
tackles this challenge by separating the specification of domain-
specific inputs from the generic graph matching process and by
making use of two data structures, i.e., typed attributed graph and
pairup graph, to encode the domain-specific properties and syntax
so that they can be uniformly exploited in the generic matching
process. Comparing large models efficiently is another challenge.
GenericDiff leverages two techniques, i.e., random walk on graph
and bipartite graph matching, to efficiently compute a difference
between models. To date, GenericDiff has been deployed in three
applications to compare UML class models, Labeled Transition
Systems, Program Dependence Graphs and Feature Models. These
applications demonstrate that it is easy to adapt GenericDiff in a
new application domain and GenericDiff is able to produce an
accurate comparison report for diverse types of models.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; F2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical
Algorithm and Problems – Pattern Matching

General Terms
Algorithms, Design, Experimentation

Keywords
Model differencing, Graph matching, Metamodel

1. Introduction
Comparing artifacts and detecting their differences is an
ubiquitous operation, relevant in many application domains, such
as software reuse and evolution [18,20,24,30,47], debugging and
fault localization [33,35,39], malware detection [6], and service
integration [5,52]. It can be present in diverse forms, such as
detecting variants in a software product family, recognizing
changes to a program, debugging evolving behaviors of formal
specifications, identifying deviations of API usage in applications,
and detecting inconsistencies between interacting services. As a
software system is often abstracted in models, a large number of
model comparison algorithms [18,20,24,30,31,33,41,47] have
been proposed, tailored for a specific matching problem and
model representation in different application domains. These
algorithms are highly tuned with domain-specific heuristics, such
as topological restrictions and domain-specific properties.

For example, UMLDiff [47], designed for comparing UML class
models, traverses the containment-spanning tree of two class
models and identifies corresponding entities based on their name
and structure (e.g. inheritance and usage dependency) similarity.
As another example, Nejati et al. [30] propose a matching
algorithm for statechart specifications that determines how close
the behaviors of one state are to those of another based on the state

and transition labels and the approximate bisimilarity of states.
Such algorithms can be fairly accurate and efficient for a given
application domain. However, due to the diversity of matching
problems and model properties/syntax, the heuristics developed
for one application domain cannot be reused in another.
Differencing techniques for new application domains must usually
be built from scratch, which requires significant amount of
thought and effort.

To avoid investing such effort for each new domain where a
comparison algorithm is required, many exact and approximate
graph matching algorithms have been proposed for the general
problem of graph isomorphism and its variants [8]. For example,
Bron and Kerbosh [4] use tree search approach to find the
Maximum Common Subgraph (MCS) of two graphs in a suitably
defined association graph. Shokoufandeh and Dickinson [40]
utilize random walk on graph to obtain a discriminating index of
graph structure. Riesen et al. [37] present an efficient suboptimal
graph isomorphism algorithm based on bipartite graph matching.
These algorithms can be applied to a wide class of models that can
be represented as graphs. But they are usually less efficient, since
the general problem of graph isomorphism is NP-complete [8].
Furthermore, due to the lack of the integration of domain-specific
knowledge in the matching process, they often produce a matching
report that does not correspond well to the domain intuition.

Applications
Domain-Specific Inputs

The Generic Matching Process

Ml

Domain-Specific
Types/Properties

Mr
Parse

Construct
PairUpGraph

TAG
l

TAG
r

PairupFeasibility
Predicates

Pairup
Graph

RW on
PairUpGraph

Tendency
Functions

Rank
Vector

Bipartite
Matching

Symmetric
Differences

Reengineering into SPL

Debugging evolving specs

Understand software evolution

Figure 1 The architecture of GenericDiff

In this paper, we present GenericDiff, a general framework for
software model comparison. As shown in Figure 1, GenericDiff
takes as input two models to be compared and the specifications of
model properties and syntax in terms of domain-specific
types/properties, pairup feasibility predicates and random walk
tendency functions. It casts the problem of comparing two models
as the problem of recognizing the MCS of two Typed Attributed
Graphs (TAGs).

Given two models to be compared, Ml and Mr, GenericDiff
parses the input models into TAGs. It encodes the domain-specific
properties in composite vector attributes to quantify the
corresponding graph nodes and edges. GenericDiff then constructs
a PairUpGraph [4], i.e., a product of two TAGs, to capture the
graph structure of two input models. After that, it performs a
random walk on PairUpGraph, which is a probabilistic iterative
process that propagates the correspondence value from node pair
to node pair based on graph structure. The random walk on
PairUpGraph outputs a rank vector of graph node pairs, each of

which is assigned a quantitative correspondence value, i.e., a
measurement of the quality of the match it represents. GenericDiff
builds a bipartite graph from this rank vector of node pairs and
selects an optimal matching using bipartite matching algorithms
[14,19]. GenericDiff outputs a symmetric difference between two
input models, which serve as input for domain-specific analysis.

We have implemented GenericDiff and deployed it in three
applications to compare product feature models [23], program
dependence graphs (PDGs) [11], labeled transition systems (LTSs)
[7] and UML class models [54]. These models have distinct model
properties and syntax. They are widely adopted for describing the
requirements, structure and behavior of software systems. In this
paper, we illustrate how GenericDiff has been adapted to: 1)
compare UML class models for understanding the evolution of
software design; 2) compare LTSs for debugging changing
behaviors of a CSP# [42] specification; and 3) compare PDGs for
characterizing the differences of software clones. These
applications demonstrate that it is easy to deploy GenericDiff in a
new application domain – it took only a few trials for a domain
expert (who is not necessarily familiar with model and graph
matching techniques) to develop the necessary domain-specific
inputs, which is the only step required to apply GenericDiff to
diverse types of models. Furthermore, GenericDiff effectively
exploits these domain-specific inputs in its generic matching
process and produces a comparably accurate comparison report to
those of domain-specific differencing algorithms.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 presents our GenericDiff framework.
Section 4 demonstrates the adaptation of GenericDiff for the
comparison of UML class models and LTSs. Finally, we conclude
and sketch possible future research directions.

2. Related work
The domain-specific model differencing techniques exploit the
domain-specific topological restrictions and properties to traverse
the mode graph and determine the corresponding entities.
Researchers have presented techniques to compare class model
[31,47], state machine [30,41], program dependency graph
[18,20]. Only a few generic model comparison algorithms and
tools have been proposed. One such algorithm is SiDiff [44].
Similar to GenericDiff, the data model of SiDiff is also typed
attributed graph. However, SiDiff requires the presence of a
primary structure (e.g., a containment tree) in the models to be
compared; and it relies on the ad hoc matching weights assigned to
node attributes to determine the similarity. The EMF Compare
[53] is another generic matching engine. It compares Ecore
models. EMF Compare is metamodel agnostic and its matching
strategy is very close to UMLDiff [47], an algorithm for
comparing UML class model.

Our position paper [48] proposed GenericDiff. In this paper, we
provide a full description of the GenericDiff framework. The
generic matching process of GenericDiff does not assume any
domain-specific properties and graph structure. Given a domain-
specific metamodel, GenericDiff can be easily adapted by
developing the necessary specifications of model properties and
syntax. This is an easier task than determining ad hoc edit costs or
matching weights, since the specification of these domain-specific
inputs corresponds straightforwardly to the underlying metamodel.
Furthermore, instead of selecting mappings based on absolute
similarity metrics and an arbitrary cutoff threshold, GenericDiff
uses bipartite matching algorithms [14,19] that requires only the

relative ranking of candidate pairs to select an optimal subset of
matched pairs from a list of ranked candidates.

Our recent works [50] presented how we applied GenericDiff to
compare product feature models [23] for analyzing feature
variants in a family of similar software products. In this paper, we
present three new applications of GenericDiff to the comparison of
three types of more complicated models, i.e., UML class models,
labeled transition systems and program dependence graphs.

Exact and approximate graph matching has been studied for
decades [8]. Recently, graph-based techniques have been receiving
a growing attention from the scientific community, due to the fact
that the computational cost of the graph-based algorithms,
although still high, is now becoming compatible with the
computational power of new computer generations [8].
GenericDiff exploits many concepts and techniques developed in
general graph matching, such as the modular product of two
graphs for solving maximum common subgraph problem [4], the
first-order feasibility rules to capture the matching constraints [9],
the reformulation of graph matching into a considerably simpler
bipartite matching problem [37], the application of random walk
to encode graph topology [15,40], and the propagation of local
constraints to neighboring nodes by an iterative process [46].

Most model comparison algorithms, including GenericDiff,
examine not only the local properties of two entities but also their
structural context. The underlying intuition is that, similar entities
are related to other similar entities. Unlike previous approaches
[44,47,53] that examine only immediate common neighbors,
GenericDiff, inspired by PageRank [32], employs a random walk
on PairUpGraph to spread the correspondence value in the
PairUpGraph. PageRank is an iterative link propagation and
analysis algorithm based on random walk on graph [27]. Inspired
by PageRank, several algorithms [21,28] in data mining domain
have also been proposed for measuring the similarity between
elements based on random walk on graph. However, these
algorithms examine only graph structure. They do not provide
systematic ways to encode domain-specific properties.

Graph-based techniques often seek a reduced representation for
efficient indexing and matching. For example, in [15,40], the
eigenvectors of a graph’s adjacency matrix have been used to
encode important structural properties of the graph. The clone
miner ModelCD [34] uses a numeric vector representation to
approximate graph paths. gSpan, a subgraph pattern miner [51]
encodes graph structures in depth-first search subscripts. SiDiff
[44] represents an element in a collection of numeric metrics.
GenericDiff encodes the domain-specific properties of model
elements and relations in composite vector attributes associated
with the corresponding nodes and edges of model graphs.

3. GenericDiff Framework
In this section, we first justify the rationale behind the design of
GenericDiff from the perspective of metamodeling (Section 3.2).
We then present two data structures, i.e., Typed Attributed Graph
(Section 3.3) and PairUpGraph (Section 3.4), that allows
GenericDiff to effectively encode domain-specific model
properties and syntax in a systematic, domain-independent way. In
Section 3.5, we discuss the random walk on PairUpGraph that
propagates the correspondence value from node pairs to
neighboring node pairs by an iterative process. In Section 3.6, we
discuss how GenericDiff reformulate the maximum common
subgraph problem to a considerably simpler bipartite matching
problem for which polynomial algorithms exist. We also discuss
how GenericDiff reduces the loss of graph-structure information in

this problem reformulation. Finally, we discuss the output of
GenericDiff and its time complexity.

3.1 A running example
We demonstrate the key components of GenericDiff with the
running example shown in Figure 2. The Auctioneer and Bidder
are two interacting protocols that are supposed to coordinate to
complete the bidding process. Clearly, the two protocols are
incompatible. In addition to incompatible messages, there exist
two more complicated behavior inconsistencies. The auctioneer
starts a bid by sending out newItem message and then waits for
new bids or requests for update. The bidder, after receiving
auctionBegin message, initiates a request for permission to join
the bid. But the Auctioneer does not response to this request.
Furthermore, the auctioneer sends out bid update on demand, but
the bidder assumes that the auctioneer sends out update without
explicit request. To detect these inconsistencies, we apply
GenericDiff to compare the state models of the incompatible
Auctioneer and Bidder protocols.

Figure 2 The state models of Auctioneer and Bidder

+kind : StateKind
State

+message : string
Transition

ReceiveSend

+source 1 +outgoing*

+incoming*+target 1

+initial
+regular

<<enumeration>>
StateKind

Figure 3 The metamodel for interacting state models

3.2 The metamodel
GenericDiff separates the specification of domain-specific model
properties and syntax from the generic graph matching process.
The rationale behind this design lies in the metamodeling
capability of separating generic metadata from domain-specific
metamodel. A domain-independent metamodel, such as the Meta
Object Facility (MOF) 2 [54] or Eclipse Ecore [53], is used to
model other metamodels and models. Four key modeling concepts
are Class, DataType, Association, and Property. These modeling
concepts provide a generic data management framework when
they are used in two-level modeling, in which they define generic
models. The generic models consist of fixed types of model
elements and relations. For example, the state models of
Auctioneer and Bidder, represented as generic models, consist of

model elements and relations that are the instances of metaclass
Class and Association.

Often, the specific types and properties of model elements and
relations and the syntactic (i.e., structural) information of models
are prescribed by a domain-specific metamodel in multi-level
modeling. Figure 3 shows the metamodel for the state models in
our running example. This metamodel defines that a state model
consists of states and transitions, i.e., instances of metaclasses
State and Transition. A state represents a situation during which
the system waits for some external events to occur. A state owns a
property of the enumeration type StateKind, which can be of literal
values initial or regular. A state also has a collection of incoming
transitions and a collection of outgoing transitions. A transition is
a directed relation from a source state to a target state. There are
two types of transitions, Send and Receive, which are marked with
+ and – signs in the Auctioneer and Bidder models, respectively.
A transition has a message property that represents the message
being sent or received. In the Auctioneer model, the initial state A
(the state name/index is only for illustration purpose) transits to
the regular state B by sending the message newItem. The transition
newItem is an outgoing transition from the source state A and an
incoming transition to the target state B.

3.3 Typed attributed graph
GenericDiff considers the input model as a generic model and thus
internally represents it as a Typed Attributed Graph (TAG). The
TAG is a generic representation of the input model, which makes
the kernel of GenericDiff independent of specific types of models.
A graph node (i.e., an instance of Class) of TAG represents a
model element. A graph edge (i.e., an instance of Association)
represents a relation between model elements. When parsing the
input model into a TAG, GenericDiff encodes the specific type of
model elements and relations (i.e., their metaclass defined in the
domain-specific metamodel) in a type attribute of the
corresponding graph nodes and edges. Furthermore, given a
domain-specific metamodel, one needs to specify a set of
metaproperties for each type of model elements and relations that
characterize its instances. During the parsing process, GenericDiff
collects the data from the selected properties of model elements
and relations and represent them in a composite vector attribute of
the corresponding graph nodes and edges.

GenericDiff defines a set of atomic vector representations,
associated with standard distance calculators, for four basic data
types, i.e., enumeration, numeric, string and collection (See
Appendix 1). The atomic vectors can then be composed into
composite vectors recursively, representing the domain-specific
properties of structured datatypes. This composite vector attribute
is a compact and uniform representation of the properties of model
elements and relations for efficient graph indexing and matching.

Let vl, vr be two atomic vectors, we denote their distance as
d(vl,vr), d is the corresponding distance calculator defined in
GenericDiff. Let Vl, Vr be two composite vectors, we denote their
distance as d(Vl, Vr)=�∑ 𝑑(𝑉𝑙[𝑖],𝑉𝑟[𝑖])2𝑛

𝑖=1 , i.e., the Euclidean
length of the distance vector [𝑑(𝑉𝑙[𝑖],𝑉𝑟[𝑖])]𝑖=1..𝑛, where Vl[i] and
Vr[i] are the ith vector element of Vl and Vr. Vl, or Vr can be a null
vector. When defining the vector attributes for selected
metaproperties, one needs to specify the corresponding null atomic
vectors, which can then be composed into composite null vectors.
The null vectors represent the initial, undefined, or simplest state
of a property. They can be (but not necessarily) an empty set, a
zero-length sequence or a zero numeric vector.

Auctioneer

Bidder

In our running example, the TAG of the state model consists of
graph nodes whose type attribute is State and graph edges whose
type attribute is Send or Receive. We specify kind, incoming and
outgoing as three characteristic properties of state. We define the
composite vector representation for the three characteristic
properties of state as [[kind], [|incoming|, |outgoing|]]. Thus, the
composite vector attribute of a graph node consists of two atomic
vectors. One is a literal index vector for the enumeration property
kind. Since we are only interested in whether two literal values are
different, hamming distance is selected to measure the similarity
of two literal index vectors. Given two literal index vector vl, and
vr, their hamming distance is |{𝑖|𝑣𝑙[𝑖] ≠ 𝑣𝑟[𝑖]}|, i.e., the number of
vector elements that are different. The other atomic vector is a
numeric vector summarizing the size of the collection properties
incoming and outgoing. We select Manhattan distance to measure
the size differences between two collections. Given two numeric
vector vl, and vr, their Manhattan distance is ∑|𝑣𝑙[𝑖] − 𝑣𝑟[𝑖]|, i.e.,
the sum of the value differences of corresponding vector elements.
We define the composite null vector of state as [[undefined],[0,0]].

According to the above specification of domain-specific
properties, the vector attribute of state 2 is [[regular],[1,1]] since it
is a regular state and has one incoming and one outgoing
transition. The vector attribute of state B is [[regular],[3,3]]. The
hamming distance of the first literal index vector of these two
states is 0; the Manhattan distance of the second numeric vector is
4. The distance between the composite vector attribute of these
two states is the Euclidean length of the distance vector [0,4], i.e.
√02 + 42 = 4. The distance of state 2 to null is the Euclidean
length of the distance vector [1,2].

We specify message as the characteristic property of transition
and select word set to encode the message property. The message
string is split into a set of words based on case switching. For
example, the message newItem is represented as [new, item]. We
select Jaccard coefficient, a commonly used metric for measuring
the similarity between sets of elements. Given two word sets vl,
and vr, their Jaccard coefficient is |𝑣𝑙 ∩ 𝑣𝑟| |𝑣𝑙 ∪ 𝑣𝑟|⁄ , i.e., the size
of the intersection of two sets divided by the size of their union.
The Jaccard coefficient between the messages newItem and
auctionBegin is 0 since the two messages have no common words.

3.4 PairUpGraph
The composite vector attributes cannot always distinguish the
instances of model elements. For example, one cannot tell whether
state D of the Auctioneer model corresponds to state 3 or 6 of the
Bidder model, since they all have the same composite vector
attributes, [[regular],[1,2]]. The graph topology, i.e., structural
context in which two elements appear can serve as another
discriminating index that characterizes the model elements.

Given two TAGs Gl(Vl,El) and Gr(Vr,Er), corresponding to two
models to be compared, GenericDiff constructs a PairUpGraph
PUG(Vpu,Epu) as follows:

([𝑛𝑙 ,𝑛𝑟], [𝑛𝑙′ ,𝑛𝑟′] ∈ 𝑉𝑝𝑢)^([𝑒𝑙 , 𝑒𝑟][𝑛𝑙,𝑛𝑟]→�𝑛𝑙
′,𝑛𝑟′ � ∈ 𝐸𝑝𝑢)

↔ (𝑛𝑙 ,𝑛𝑙′ ∈ 𝑉𝑙)^(𝑒𝑙
𝑛𝑙→𝑛𝑙

′
∈ 𝐸𝑙) ^(𝑛𝑟 ,𝑛𝑟′ ∈ 𝑉𝑟)^(𝑒𝑟

𝑛𝑟→𝑛𝑟′ ∈ 𝐸𝑟)
^𝑓(𝑛𝑙 ,𝑛𝑟)^𝑓(𝑛𝑙′,𝑛𝑟′)^𝑓 �𝑒𝑙

𝑛𝑙→𝑛𝑟′ , 𝑒𝑟
𝑛𝑙→𝑛𝑟′ �

A PairupGraph is a product of two input TAGs Gl and Gr, i.e.,
Vpu⊆VlVr and Epu⊆ElEr It captures the graph structure of two
models. A node (edge) p of PairUpGraph represents a pair of
nodes (edges) (pl, pr) of two input TAGs. We define the initial
distance value of p as 𝑑(𝑝) = 𝑑(𝑝𝑙 ,𝑝𝑟) = 𝑑(𝑉𝑙 ,𝑉𝑟), where Vl, and
Vr are the composite vector attributes of pl and pr respectively.

As shown for the state, the selected characteristic properties can
be of different data types and of different representations. Thus,
the elements of the composite vectors may differ in their scales.
They have to be normalized before the distance computation of
two composite vectors. Given a set of distance vectors DV of a
type of node (edge) pairs, let dvi be the ith dimension of a distance
vector 𝑑𝑣 ∈ 𝐷𝑉, the normalized value is given by subtracting the
mean (mean-shifting) and then dividing the mean-shifted value by
the standard deviation (auto-scaling):

𝑑𝑣𝑖 =
𝑑𝑣𝑖 − 𝑚𝑒𝑎𝑛({𝑥𝑖|𝑥 ∈ 𝐷𝑉})
𝑠𝑡𝑑𝑑𝑒𝑣({𝑥𝑖|𝑥 ∈ 𝐷𝑉}) (1)

After mean-shifting and auto-scaling, all the dimensions of
𝑑𝑣 ∈ 𝐷𝑉 have the same mean value and standard deviation. To
avoid negative dvi, it will be adjusted by subtracting the minimum
dvi of all types of node (edge) pairs. Equation (1) cannot be
evaluated if the standard deviation is 0, which indicates that the dvi
of all the distance vectors 𝑑𝑣 ∈ 𝐷𝑉 are the same, This actually
indicates a bad choice of characteristic property, vector
representation or distance calculator, since this dimension cannot
help to distinguish the model elements (relations). GenericDiff
ignores such dimensions when computing the distance between
two composite vectors.

4,B [0]

6,D [0]

6,F [1]

1,A [1]
5,C [0]

3,D [0]

0.33/1

0.33/0.07

0.33/1

0.25/0.331/0.33
0.5/0.33

4,E [3] 0.5/0.18
0.5/0.5

0.5/0.5 0.25/0.5

7,B [3]7,E [0]
0.25/1

0.25/1

1,null

(cannotBid,null)

Figure 4 The partial PairUpGraph of two state models

Figure 4 presents a partial PairUpGraph of the TAGs of the
Auctioneer and Bidder models. The initial distance value of state
pairs (i.e., PairUpGraph nodes) is shown in the square bracket. We
do not use normalized distance values here for the reason of
clarity. The metrics on transition pairs (i.e., PairUpGraph edges)
will be explained shortly in Section 3.5.

The construction of PairUpGraph is guided by a set of user-
defined pairup feasibility predicates. There are two kinds of pairup
feasibility predicates, respectively regarding the domain-specific
types/properties and syntax of the models to be compared. The
feasibility predicates define (but not limited to) the type
compatibilities, minimum property similarities and topological
constraints that a pair of graph nodes (edges) must satisfy so that
they can be paired-up as matching candidates. These predicates
are evaluated against a fact base (e.g., a relational database in
current implementation of GenericDiff) of input model graphs
Gl(Vl,El) and Gr(Vr,Er) and PairUpGraph PUG(Vpu,Epu).

In our running example, we specify three type/property-based
feasibility predicates as follows:

𝑓(𝑒𝑙 , 𝑒𝑟) = (𝑒𝑙 𝑖𝑠 𝑆 & 𝑒𝑟 𝑖𝑠 𝑅) | (𝑒𝑙 𝑖𝑠 𝑅 & 𝑒𝑟 𝑖𝑠 𝑆)
𝑓(𝑛𝑙 ,𝑛𝑟) = 𝑓1(𝑛𝑙 ,𝑛𝑟)^𝑓2(𝑛𝑙 ,𝑛𝑟)

𝑓1(𝑛𝑙 ,𝑛𝑟) = (𝑛𝑙 . 𝑘𝑖𝑛𝑑 == 𝑛𝑟 .𝑘𝑖𝑛𝑑)
𝑓2(𝑛𝑙 ,𝑛𝑟) = 𝑑(𝑛𝑙 ,𝑛𝑟) < 𝑚𝑖𝑛�𝑑(𝑛𝑙 ,𝑛𝑢𝑙𝑙),𝑑(𝑛𝑢𝑙𝑙,𝑛𝑟)�

The first predicate 𝑓(𝑒𝑙 , 𝑒𝑟) defines the type compatibility of
transitions. Since we compare two interacting state models, a Send
(Receive) transition in one model can only be paired-up with a
Receive (Send) transition in the other model. The second predicate
𝑓1(𝑛𝑙 ,𝑛𝑟) defines that only the same kind of states can be paired-

up. The third predicate 𝑓2(𝑛𝑙 ,𝑛𝑟) defines that two states can be
paired-up iff their distance value is less than the minimum
distance value of the relevant states to null. For example, the state
2 of the Bidder model and the state B of Auctioneer model will not
be paired-up, since the number of their incoming and outgoing
transitions is “too” different. In Section 4.1.2, we will present
some examples of syntax-based feasibility predicates (e.g.,
constraints on containment hierarchy) for comparing class models.

Given the initial PairUpGraph, GenericDiff can optionally create
and append null node (edge) pairs to the PairUpGraph as defined
in the following equation:

[𝑛𝑙′ ,𝑛𝑢𝑙𝑙] ∈ 𝑉𝑝𝑢^[𝑒𝑙 ,𝑛𝑢𝑙𝑙][𝑛𝑙,𝑛𝑟]→�𝑛𝑙
′,𝑛𝑢𝑙𝑙� ∈ 𝐸𝑝𝑢

↔ [𝑛𝑙 ,𝑛𝑟] ∈ 𝑉𝑝𝑢 ^ 𝑒𝑙
𝑛𝑙→𝑛𝑙

′
∈ 𝐸𝑙 ^ ∀𝑒𝑟

𝑛𝑟→𝑛𝑟′ ∈ 𝐸𝑟
^ ∄�[𝑛𝑙′,𝑛𝑟′] ∈ 𝑉𝑝𝑢^[𝑒𝑙 , 𝑒𝑟][𝑛𝑙,𝑛𝑟]→�𝑛𝑙

′,𝑛𝑟′ � ∈ 𝐸𝑝𝑢�
Let el be an edge in Gl and let the source nl of el be paired-up

with a node nr in Gr, if el has not been paired-up with any edge er
originating from nr, then a null edge pair (el,null) to a null node
pair (nl’,null) will be created and appended to the node pair (nl,nr).
Similarly, the null node (edge) pair can be created for the target
node of el and for the edges in Gr. The null node (edge) pairs
capture the discrepancies of the structural context of a pair of
nodes. Take the state pair (3,D) as an example. The edge
cannotBid from the state 3 to state 1 in the Bidder model has not
been paired-up with any edges originating from the state D in the
Auctioneer model, since state 1 cannot be paired-up with the state
B and E (they are different kinds of states). Consequently, a null
edge pair to a null node pair have been appended to the state pair
(3,D). In contrast, the state pair (6,D) does not link to any null
node (edge) pairs, since all the edges from (to) the state 6 have
been paired-up with some edges from (to) the state D.

3.5 Distance propagation by random walk
Given a PairUpGraph PUG, GenericDiff performs a random walk
[27] on PUG, which is an iterative process that propagates the
distance value from node pairs to node pairs based on graph
structure. Each iteration propagates the distance values one step
forward along the edges, until the random walk stabilizes. Due to
the presence of cycles in PairUpGraph, the distance values can
thus be mutually reinforced.

A random walk on graph can be described by a probabilistic
model that allows us to compute the probability 𝑟𝑛(𝑡) of being
located in each node n at step t. The probability distribution on all
the nodes is represented by a vector 𝑟(𝑡) = [𝑟1(𝑡), … , 𝑟𝑁(𝑡)], N
being the number of nodes in the graph. Each position in 𝑟(𝑡) is
indexed for a graph node. The probabilities 𝑟𝑛(𝑡) are updated at
each step as follows:

𝑟𝑛(𝑡 + 1) = �𝑗𝑢𝑚𝑝(𝑠,𝑛) × 𝑗𝑢𝑚𝑝(𝑠) × 𝑟𝑠(𝑡) (2)
𝑠∈𝐺

+ � 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) × 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) × 𝑟𝑠(𝑡)
𝑠∈𝑠𝑟𝑐(𝑛)

where 𝑗𝑢𝑚𝑝(𝑠,𝑛) and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) are the probabilities of
moving from node s to node n by jumping or by following an
edge, respectively, and 𝑗𝑢𝑚𝑝(𝑠) and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) represent the bias
between these two possible actions. These parameters describe the
behavior of random walk. Since they represent probabilities, their
values must be normalized such that 𝑗𝑢𝑚𝑝(𝑠) + 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) = 1,
∑ 𝑗𝑢𝑚𝑝(𝑠,𝑛) = 1𝑠∈𝐺 , and ∑ 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) = 1𝑠∈𝑠𝑟𝑐(𝑛) .

By default, GenericDiff assumes a random walk on PairupGraph
for which the action bias 𝑗𝑢𝑚𝑝(𝑠) and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) are independent

of the node pair s. Thus, GenericDiff takes as input a
parameter𝑑𝑓 ∈ (0,1) (0.85 by default) such that 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) = 𝑑𝑓
and 𝑗𝑢𝑚𝑝(𝑠) = 1 − 𝑑𝑓 . 𝑑𝑓 defines the extent to which the
random walk depends on the local attributes and on the graph
topology. We define 𝑗𝑢𝑚𝑝(𝑠,𝑛) and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) as follows:

𝑗𝑢𝑚𝑝(𝑠,𝑛) =
𝐹𝑗(𝑠,𝑛)

∑ 𝐹𝑗(𝑠, 𝑧)𝑧∈𝐺

𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) =
𝐹𝑓(𝑒𝑠→𝑛)

∑ 𝐹𝑗(𝑒𝑠→𝑧)𝑧∈𝑡𝑟𝑔(𝑠)

where 𝐹𝑗(𝑠,𝑛) and 𝐹𝑓(𝑒𝑠→𝑛) represent the tendency functions of
jumping from the node pair s to the node pair n or following an
edge pair 𝑒𝑠→𝑛 from s to n. Using this definition, both 𝑗𝑢𝑚𝑝(𝑠,𝑛)
and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠,𝑛) meet the normalization constraints required by
the random walk model except for the nodes without outgoing
edges (i.e., sink nodes). For these nodes, we set 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠𝑠𝑖𝑛𝑘) =
0 and 𝑗𝑢𝑚𝑝(𝑠𝑠𝑖𝑛𝑘) = 1.

The tendency function 𝐹𝑗(𝑠,𝑛) and 𝐹𝑓(𝑒𝑠→𝑛) are usually defined
according to domain-specific properties. By default, GenericDiff
defines 𝐹𝑗(𝑠,𝑛) = 𝑑(𝑛) and 𝐹𝑓(𝑒𝑠→𝑛) = 𝑑(𝑒𝑠→𝑛) + 𝑑(𝑛), i.e., as
a linear function of the distance value of relevant node and edge
pairs. In this definition, the random walk will be more likely to
jump to node pairs or to follow edges which link nodes having
similar properties. We adopt this default definition of tendency
functions in our running example. Figure 4 show the resulting
𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) probabilities on the PairUpGraph edges (transition
pairs). The two numbers are the forward and reverse (see below)
𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) probabilities respectively. Note that 𝐹𝑗(𝑠,𝑛) and
𝐹𝑓(𝑒𝑠→𝑛) become constants if the model elements and relations
do not have any characteristic properties. This results in
𝑗𝑢𝑚𝑝(𝑠,𝑛) = 1/𝑁, i.e., the target of a jump is selected using a
uniform probability distribution over all the N node pairs in the
PairUpGraph. Similarly, all the edges from node pair s have the
same probability to be followed, i.e., 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) = 1/
|𝑡𝑟𝑔(𝑠)|, where |𝑡𝑟𝑔(𝑠)| is the number of outgoing edges of s.

Equation (2) is recursive. A solution to the Equation (2) for a
PairupGraph can be reached by power iteration method [32] to a
fix point. We define the initial vector 𝑟(0) = [𝑑(1), … ,𝑑(𝑁)] ,
i.e., the initial distance value of all N nodes in PairUpGraph.
GenericDiff keeps computing 𝑟(𝑡 + 1) until the Euclidean
distance between 𝑟(𝑡 + 1) and 𝑟(𝑡) becomes less than a parameter
𝜖 > 0, or it stops the computation after a user-defined maximum
number of iterations. After the power iteration method terminates,
the vector 𝑟is normalized by mean-shifting and auto-scaling.

Table 1 The rank vector of state pairs
Rank Pair Rank Pair Rank Pair
1 1,A 5 6,F 10 7,D
2 7,E 6 4,B … …
3 5,C … … 15 3,F
4 6,D 9 3,D … …

Given a PairUpGraph PUG, GenericDiff performs two random
walks: one is on the PUG and the other on the PUGreverse obtained
by reversing the edges of the original PUG. Let 𝑟 = [𝑟𝑖]𝑖=1..𝑁 and
𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = �𝑟𝑖_𝑟𝑒𝑣𝑒𝑟𝑠𝑒�𝑖=1..𝑁 be the stable probability vectors
obtained from the two random walks respectively. It was shown
[21] that ri and ri_reverse, i.e., the probability of being at the ith node
pair after lots of exploration of PairUpGraph exactly models the
correspondence of that pair of nodes. That is, a pair of nodes with

high probability of being visited can be thought of as being
“similar” to each other. GenericDiff computes a rank vector

𝑅 = ��𝑟𝑖2 + 𝑟𝑖_𝑟𝑒𝑣𝑒𝑟𝑠𝑒2 �
𝑖=1..𝑁

where ri and ri_reverse are the ith element of r and rreverse
repsectively. Table 1 shows the rank vector R (partial) for the
running example. After the distance propagation, it becomes clear
now that state pair (6,D) are more similar than state pair (3,D)

3.6 Bipartite matching
GenericDiff reduces the problem of Maximum Common Subgraph
(MCS) into a bipartite graph matching, for which polynomial
algorithms exist. Given two TAGs Gl(Vl,El) and Gr(Vr,Er), the
PairUpGraph PUG(Vpu,Epu) and the rank vector R, GenericDiff
constructs a bipartite graph BG(S,T,E,W) as follows:
𝑆 = �𝑛𝑙|𝑛𝑙 ∈ 𝑉𝑙^[𝑛𝑙 , ?] ∈ 𝑉𝑝𝑢�,𝑇 = �𝑛𝑟|𝑛𝑟 ∈ 𝑉𝑟^[? ,𝑛𝑟] ∈ 𝑉𝑝𝑢�

 𝐸 = �𝑒𝑛𝑙→𝑛𝑟�[𝑛𝑙 ,𝑛𝑟] ∈ 𝑉𝑝𝑢�,𝑊:𝐸 → 𝑅
where S and T are two disjoint sets that consist of nodes of one

of the two TAGs that have been paired-up with some nodes of the
other TAG, E contains edges that connect a node in S to one in T
iff two nodes have been paired-up, W is a weight function that
maps an edge in E to the correspondence measure of the
corresponding node pair. GenericDiff solves the bipartite matching
using two algorithms, i.e., Gale-Shapley (GS) algorithm [14] for
finding 1-to-1 stable matching and Hospital Resident (HR)
algorithm [19] for many-to-1 stable matching. Given the
preference lists of 𝑛𝑙 ∈ 𝑆 and 𝑛𝑟 ∈ 𝑇, a bipartite matching is stable
iff there are no two nodes nl and nr who prefer each other to their
current partners. Note that both algorithms analyze the relative
preferences of node pairs instead of their absolute correspondence
measures to find an optimal matching.

At first glance, the formulation of MCS problem as bipartite
matching seems like a bad idea, since it throws away all the
important graph structure, until one recalls that the graph structure
is really encoded in the correspondence measures of node pairs
during the distance propagation process. However, due to the fact
that the selection of each node pair is considered individually,
there is nothing in bipartite matching formulation that ensures that
the global structure among corresponding node pairs are obeyed.
For example, GS algorithm reports that state pair (3,F) as a match.
Unfortunately, state 3 and state F should not be paired-up at all if
one knows that state pair (4,B) is a match, since the selection of
(4,B) rules out the possibility of the candidate (4,C) being a match
and (3,F) cannot be paired-up if (4,C) were not paired-up.

To address this issue, GenericDiff combines the above bipartite
matching with a greedy, best-first search to eliminate the
candidate pairs that violate the global structure of already selected
pairs. Let (nl,nr) be a selected node pair. Let (ni,nj) be a candidate
pair in the initial collection of impossible pairs {(nl,?)}U{(?,nr)},
i.e., all other node pairs with nl or nr. GenericDiff detaches (ni,nj)
from its neighboring node pairs. For an affected neighboring node
pair, if it has not yet been selected as a match and it becomes
isolated after detachment, i.e., not incident to any edges, then this
neighboring node pair is appended to the collection of impossible
pairs. This process continues until the collection of impossible
pairs is empty. And then, GenericDiff returns to the bipartite
matching to select another node pair as a match. Using this
strategy, state pair (3,F) will be marked as an impossible pair after
the selection of state pair (4,B), which prevents it from being
selected by GenericDiff.

The bipartite matching has also been used to determine the
correspondence of the edges of matched node pairs. Given two
matched node pairs s(sl,sr) and n(nl,nr), i.e., s(sl,sr) and n(nl,nr) in
the stable matching, GenericDiff constructs a bipartite graph
BG(S,T,E,W) based on the edge pairs e(el,er) from the node pair s
to node pair n, where 𝑆 = {𝑒𝑙}, 𝑇 = {𝑒𝑟}, 𝐸 = �𝑒𝑒𝑙→𝑒𝑟|[𝑒𝑙 , 𝑒𝑟] ∈
𝐸𝑝𝑢} and 𝑊: 𝑒𝑒𝑙→𝑒𝑟 → 𝑑(𝑒𝑙 , 𝑒𝑟) , and then use GS algorithm to
determine edge correspondences.

3.7 The output of GenericDiff
GenericDiff reports a symmetric difference between two model
graphs Gl(Vl,El) and Gr(Vr,Er), i.e., a set M of matched model
elements and relations and two sets Il and Ir of unmatched model
elements and relations. Each match in M represents a pair of
model elements or relations, one from each model, which are
reported by GenericDiff as matching. The sets Il and Ir consist of
model elements and relations that are only present in Ml or Mr, i.e.,
𝐼𝑙 = ({𝑛𝑙|𝑛𝑙 ∈ 𝑉𝑙^∄[𝑛𝑙 , ?] ∈ 𝑀}, {𝑒𝑙|𝑒𝑙 ∈ 𝐸𝑙^∄[𝑒𝑙 , ?] ∈ 𝑀} and
𝐼𝑟 = ({𝑛𝑟|𝑛𝑟 ∈ 𝑉𝑟^∄[? ,𝑛𝑟] ∈ 𝑀}, {𝑒𝑟|𝑒𝑟 ∈ 𝐸𝑟^∄[? , 𝑒𝑟] ∈ 𝑀}).

In our running example, the match set M contains five pairs of
matched states [A,1], [B,4], [C,5], [D,6] and [E,7]; it also contains
seven pairs of matched transitions, such as,
[−𝑖𝑡𝑒𝑚𝑆𝑜𝑙𝑑𝐵→𝐴, +𝑔𝑎𝑣𝑒𝑙4→1] and [+𝑏𝑖𝑑𝐵→𝐷 ,−𝑛𝑒𝑤𝐵𝑖𝑑4→6] .
Further examining the messages of matched transitions reveals the
incompatible messages between two interacting models.
Furthermore, the unmatched set Il contains one unmatched state F
and three unmatched transitions in the Auctioneer model
(highlighted in red); Ir contains two unmatched states (state 2 and
3) and five unmatched transitions from the Bidder model
(highlighted in blue). These unmatched states and transitions
reveal the behavior inconsistencies between the Auctioneer and
Bidder protocols.

3.8 The complexity of GenericDiff
GenericDiff offers polynomial time complexity. The parsing of an
input model into a typed attributed graph scans sequentially the
model elements and relations and encode their properties, and thus
its complexity is O(|V|+|E|) where |V| and |E| are the number of
model elements and relations respectively. The construction of
PairUpGraph examines the pairup feasibility of edges of two
models to be compared and its worse case complexity is
O(|El|×|Er|). The complexity of random walk on PairUpGraph is
proportional to the number of edges in the PairupGraph, which is
in turn proportional to the product of edge numbers of two models.
Thus, the complexity of random walk is also O(|El|×|Er|). Finally,
the complexity of stable marriage [14] and hospital resident
algorithm [19] is O(|Vl|×|Vr|)|.

4. Evaluation
In this section, we present three applications of GenericDiff:
compare UML class models of object-oriented software, compare
the operational semantic models (LTSs) of CSP# specifications,
and compare the PDGs of code clones. We focus on two research
questions. First, can the domain-specific types/properties and
syntax be effectively encoded in the specification of domain-
specific inputs to GenericDiff? Second, is GenericDiff comparably
accurate to domain-specific differencing algorithms?

4.1 Understanding software design evolution
Recognizing the changes that a system has gone through its
lifecycle is essential to understanding how and why a system has
reached its current state. We have applied GenericDiff to identify
the renamings and moves of program entities as object-oriented

software evolves. Renaming and move are two types of
elementary changes in the evolution of object-oriented software.
Recognizing them is the goal of several domain-specific
differencing algorithms, such as UMLDiff [47] for comparing
UML class models, since it constitutes an essential prerequisite for
the accurate analysis of software design and its evolution
[24,31,47]. In this application, we applied GenericDiff to the
empirical data used in [47] to evaluate UMLDiff. The data set
consists of the reverse-engineered UML class models of 11
releases of HtmlUnit, a unit testing framework for web
applications, and of 31 releases of JFreeChart, a Java library for
drawing charts. This allows us to comparatively evaluate the
accuracy of GenericDiff and UMLDiff in recognizing renamed and
moved program entities.
4.1.1 Domain-specific types and properties
Table 2 summarizes the metaclasses and metarelations for the
reverse-engineered class models of Java systems that UMLDiff
compares [47]. According to this metamodel, when parsing the
reverse-engineered class model, GenericDiff builds a TAG,
consisting of graph nodes whose type attribute corresponds to one
of the nine metaclasses of model elements, and consisting of graph
edges whose type attribute corresponds to one of the 13
metarelations and metaassociations of relations between model
elements. Note that we consider stereotypes as distinct types in the
specification of domain-specific types for GenericDiff, since
different stereotypes represent distinct semantics of model
elements and relations. For example, Usage<<call>> represents the
invocation relation between two operations, while Usage<<read>>
represents that an operation accesses the content of a property.

Table 2 The metamodel for reverse-engineered class models
Metaclass Subsystem (Subsys), Package (Pkg), Class,

Interface, DataType, Property, Operation,
Operation<<constructor>>, Parameter

Metarelation Generalization, Abstraction<<realize>>,
Usage<<call>>/<<instantiate>>/<<read>>/<<write>>/<<throw>>

Metaassociation ElementOwnership, DeclaredParameter,
FeatureType, ParameterType,
DeclaredException, CatchException

Table 3 The composite vector attribute of model elements
Subsys/Pkg [|𝑜𝑤𝑛𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡|]
Class/Inteface [|𝑜𝑤𝑛𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡|], [|𝐼𝑛𝑈𝑠𝑎𝑔𝑒|, |𝑂𝑢𝑡𝑈𝑠𝑎𝑔𝑒|]
Property [|𝑈≪𝑟𝑒𝑎𝑑≫|, |𝑈≪𝑤𝑟𝑖𝑡𝑒≫|]
Operation [|𝐷𝑒𝑐𝑙𝑎𝑟𝑒𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟|], [|𝑈≪𝑐𝑎𝑙𝑙≫|]

[|𝑈≪𝑟𝑒𝑎𝑑≫|, |𝑈≪𝑤𝑟𝑖𝑡𝑒≫|, |𝑈≪𝑐𝑎𝑙𝑙≫|, |𝑈≪𝑡ℎ𝑟𝑜𝑤≫|]

UMLDiff compares the name property and neighborhood (i.e.,
related elements) of two elements; it computes two similarity
metrics, i.e., lexical and structure similarity for identifying
corresponding elements in the two versions of the class model.
The lexical similarity refers to the string similarity between the
names of two model elements. UMLDiff splits names into a
sequence of words, using dots, dashes, underscores and case
switching as delimiters and computes the longest common
subsequence (LCS) [45] for measuring the similarity between two
names. Accordingly, to adapt GenericDiff, we specify the name as
a domain-specific property of model element. We use word
sequence as the representation of names and select the longest
common subsequence to measure the similarity between names.

The structure similarity of two elements measures the overlap
between the set of elements to which the two elements are related,
according to a given relation type. For example, the structure
similarity of two operations is determined by the parameters they
declare, their incoming usage dependencies (the operations that
call them), and their outgoing usage dependencies (the properties
they read and write, the operation they call, the classes/interfaces
they instantiate and the exceptions they throw). Accordingly, we
define a composite numeric vector for approximating the
neighborhood of different types of elements (see Table 3). The
numeric vector summarizes the number of the related elements of
a given relation type. We select Manhattan distance to measure the
differences between the neighborhoods of two elements.
4.1.2 Pairup feasibility predicates
The UML specification [54] guarantees that all model elements
can be visited by traversing the containment hierarchy (i.e., the
spanning tree induced by ElementOwnership relations) of a class
model and the children of their containing parent are unique in
terms of their names. UMLDiff exploits this domain-specific
heuristics to prune matching candidates: (H1) it considers as
matches the elements with the same Fully-Qualified Names
(FQNs); (H2) it considers as matches the same-name elements
contained in a pair of renamed or moved elements; (H3) it
considers as renaming candidates only the unmatched elements
within the context of a pair of mapped containing elements; (H4) it
considers as move candidates only the unmatched same-name
elements. We define three pairup feasibility predicates for
GenericDiff to prune the matching candidates accordingly:

𝑓(𝑛𝑙 ,𝑛𝑟) = 𝑓1(𝑛𝑙 ,𝑛𝑟) & �𝑓2(𝑛𝑙 ,𝑛𝑟) | 𝑓3(𝑛𝑙 ,𝑛𝑟)�
𝑓1(𝑛𝑙 ,𝑛𝑟) = 𝑠1(𝑛𝑙 ,𝑛𝑟) | 𝑠2(𝑛𝑙 ,𝑛𝑟)

𝑓2(𝑛𝑙 ,𝑛𝑟) = 𝑠3(𝑛𝑙 ,𝑛𝑟) & �𝑠4(𝑛𝑙 ,𝑛𝑟) | �𝑠5(𝑛𝑙 ,𝑛𝑟) & 𝑠6(𝑛𝑙 ,𝑛𝑟)��

 𝑓3(𝑛𝑙 ,𝑛𝑟) = ! 𝑠3(𝑛𝑙 ,𝑛𝑟) & �𝑠4(𝑛𝑙 ,𝑛𝑟) & 𝑠5(𝑛𝑙 ,𝑛𝑟) & 𝑠6(𝑛𝑙 ,𝑛𝑟)�
𝑠1(𝑛𝑙 ,𝑛𝑟) = (𝑛𝑙 .𝐹𝑄𝑁 == 𝑛𝑟 .𝐹𝑄𝑁)

𝑠2(𝑛𝑙 ,𝑛𝑟) = (∄𝑛𝑙′ ∈ 𝑉𝑙 ,𝑛𝑙′.𝐹𝑄𝑁 == 𝑛𝑟 .𝐹𝑄𝑁) &
(∄𝑛𝑟′ ∈ 𝑉𝑟 ,𝑛𝑙 .𝐹𝑄𝑁 == 𝑛𝑟′ .𝐹𝑄𝑁)

𝑠3(𝑛𝑙 ,𝑛𝑟) = [𝑛𝑙 . 𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑟 .𝑝𝑎𝑟𝑒𝑛𝑡] ∈ 𝑉𝑝𝑢
𝑠4(𝑛𝑙 ,𝑛𝑟) = (𝑛𝑙 .𝑛𝑎𝑚𝑒 == 𝑛𝑟 .𝑛𝑎𝑚𝑒)

𝑠5(𝑛𝑙 ,𝑛𝑟) = ∄𝑛𝑙′ ∈ 𝑉𝑙 , [𝑛𝑙′. 𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑟 .𝑝𝑎𝑟𝑒𝑛𝑡] ∈ 𝑉𝑝𝑢
& 𝑛𝑙′.𝑛𝑎𝑚𝑒 == 𝑛𝑟 .𝑛𝑎𝑚𝑒

𝑠6(𝑛𝑙 ,𝑛𝑟) = ∄𝑛𝑟′ ∈ 𝑉𝑟 , [𝑛𝑙 .𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑟′ . 𝑝𝑎𝑟𝑒𝑛𝑡] ∈ 𝑉𝑝𝑢
& 𝑛𝑙 .𝑛𝑎𝑚𝑒 == 𝑛𝑟′ .𝑛𝑎𝑚𝑒

The predicate f1 enacts the UMLDiff heuristics H1. An element
in one model can only be paired-up with the element of the same
fully-qualified name in the other model if there is such a
counterpart. The predicate f2 enacts H2 and H3. Given two
elements nl and nr, if their containing elements are paired-up (s3),
the two elements can be paired-up if they have the same-name (s4)
or if there are no other elements 𝑛𝑙′ (𝑛𝑟′) whose containing element
(parent) is paired-up with the containing elements of nr (nl) and
whose name is the same as that of nr (nl) (s5 and s6). The predicate
f3 enacts H4. Given two elements nl and nr, if their containing
elements are not paired-up (s3), the two elements can be paired-up
if they have the same-name (s4) and if there are no other elements
𝑛𝑙′ (𝑛𝑟′) whose containing element is paired-up with the containing
elements of nr (nl) and whose name is the same as that of nr (nl).

In addition to the above four heuristics, UMLDiff considers two
elements as renaming or move candidates only if their similarity

metric is above the user-specified renaming or move thresholds.
Accordingly, we define another predicate as follows:

𝑓4(𝑛𝑙 ,𝑛𝑟) = (|{𝑛𝑙′}| > 0 | |{𝑛𝑟′ }| > 0) &
min(|{𝑛𝑙′′}|, |{𝑛𝑟′′}|)
�{𝑛𝑙′}� + |{𝑛𝑟′ }|

> 𝑇

where 𝑛𝑙′ ∈ 𝑛𝑒𝑏(𝑛𝑙) , 𝑛𝑟′ ∈ 𝑛𝑒𝑏(𝑛𝑟) , [𝑛𝑙′′,𝑛𝑟′′] ∈ 𝑛𝑒𝑏([𝑛𝑙 ,𝑛𝑟])
represents the neighboring elements or element pairs of 𝑛𝑙, 𝑛𝑟 and
[𝑛𝑙 ,𝑛𝑟] in the input graphs Gl, Gr and PairUpGraph PUG,
respectively, and T is a user-specified threshold. We set T at 0.3,
which is the threshold used in [47] to evaluate UMLDiff. The
predicate f4 defines that two elements can only be paired-up if
there are “enough” related elements being paired-up. Note that
according to f4, an element cannot be paired-up with an “isolated”
element, i.e., the elements with no neighboring elements.
4.1.3 Other domain-specific inputs
UMLDiff shows that the similarity between two elements can be
inferred by considering the similarity of their neighbors [47].
Thus, in the application of GenericDiff for comparing UML class
models, we use the default GenericDiff random walk tendency
functions 𝐹𝑗(𝑠,𝑛) = 𝑑(𝑛) and 𝐹𝑓(𝑒𝑠→𝑛) = 𝑑(𝑒𝑠→𝑛) + 𝑑(𝑛) ,
which defines 𝐹𝑗(𝑠,𝑛) and 𝐹𝑓(𝑒𝑠→𝑛) as linear functions of the
distance value of relevant node pair and edge pair.

In the evolution of object-oriented software, refactorings often
results in many-to-1 correspondences between model elements.
For example, extract superclass moves a few methods from
subclasses to a new superclass. Thus, we configure GenericDiff to
use HR algorithm [19] for finding many-to1 matching.
4.1.4 Results
The matching process of UMLDiff is hardcoded with the specific
element/relation types, properties and heuristics that are effective
for the comparison of UML class models. In this section, we
defined these domain-specific types, properties and heuristics as
the specification of domain-specific inputs to GenericDiff,
separated from its generic matching process. Overall, GenericDiff
achieves the comparable accuracy to UMLDiff. The GenericDiff’s
precision and recall in recognizing renamed and moved program
entities is 92% and 88% for JFreeChart and 97% and 98% for
HtmlUnit. The precision and recall of UMLDiff is 91% and 93%
for JFreeChart and 95% and 98% for HtmlUnit [47].

The recall of GenericDiff in JFreeChart case study is slightly
worse than that of UMLDiff. This is because the reverse-
engineered class models contain certain amount of elements with
no related elements [47,48], such as the methods with no incoming
and outgoing usage dependencies or the empty interfaces. The
composite vector attributes of these elements are all zero vectors.
Furthermore, such elements when paired-up become the isolated
nodes in PairUpGraph; they cannot effectively participate in the
distance propagation process. Thus, we exclude them from the
PairUpGraph (see f4). Since these elements do not use or are used
by other elements, ignoring them does not pose a significant threat
to the quality of GenericDiff’s results.

4.2 Debugging evolving system behaviors
The Labeled Transition System (LTS) [7] provides a generic
operational semantic model for analyzing and verifying the
behavior of computer programs. Program behaviors (generated
from the operational semantics) evolve as the program evolves.
Even when a program remains unchanged, its LTS model explored
by a model checker or analyzer may still change due to the
application of different model optimization techniques [7].
Pinpointing the differences in the evolving LTSs of a program can

lead to effective analysis of program faults and the behavioral
change patterns of the program. In this application, we have
applied GenericDiff to compare the evolving LTSs of CSP# [42]
programs.
4.2.1 Syntax and operational semantics of CSP#
CSP# (Communication Sequential Program #) [42] is a
specification language for modeling and verifying the behavior of
concurrent programs. A CSP# program consists of several process
definitions, in the form of 𝑃(𝑥1, 𝑥2 … , 𝑥𝑛) = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑥𝑝, where
P is the process name, 𝑥1, 𝑥2 … , 𝑥𝑛 is an optional list of process
parameters and ProcessExp is a process expression. The process
expression defines the computational logic of the process. Figure 5
presents the partial BNF description of CSP# process expression.
CSP# supports various types of process constructs, including
primitives, event prefixing, channel communication, hiding, and
various process compositions. The CSP# parser parses a CSP#
program into a configuration graph CG(V,E), i.e., the internal
syntactic model of a CSP# program. A CG(V,E) is a rooted
directed graph, where the vertex set V contains the processes
defined in the program and the edge set E contains the
composition relations between the processes.

P = Stop | Skip (primitives)
| e.x{prog} → P (event prefixing)
| ch!x → P | ch?x → P (channel output/input)
| P \ X (hiding)
| P[] Q (choice operators)
| if b {P} else {Q} (conditional choice)
| P; Q | P || Q | P||| Q | P ∆ Q (compositions)
| ref(Q) (process reference)

Figure 5 The BNF description of CSP# process expression
The structural operational semantics of CSP# language [42]

defines the behavior of a CSP# program in terms of a set of
transition rules. These rules translate the syntactic model of a
CSP# program into an LTS. An LTS is a 3-tuple (S, init, →),
which consists of a set S of global states, the initial states init∈S,
and a set of labeled transition relations →. A state is composed of
two components (V, P) where V is a valuation function mapping a
variable name (or a channel name) to its value (or a sequence of
items in the buffer) and P is the current process expression. A
transition is a labeled directed relation from a source state to a
target state. The transition label represents the engaged event,
which has a name and an ordered list (possible empty) of
parameter expressions.
4.2.2 Comparing configuration graphs

The process definitions may change as the CSP# program
evolves. As they are a key factor to determine the state similarity
in the corresponding LTSs, we first apply GenericDiff to compare
the configuration graphs of two versions of a CSP# program in
order to determine the corresponding process definitions in two
versions of the program. GenericDiff parses a configuration graph
into a TAG, consisting of graph nodes whose type attribute
represents the type of the corresponding process defined in the
program, and consisting of graph edges whose type attribute
represents the composition relation between the processes.

We specify several characteristic properties for discriminating
processes. First, we encode the name of event prefixing (e) and
channel output/input (ch) process in a char sequence and use LCS
[45] to measure the similarity between two names. Second, we
encode the valuation of parameter expression x of event prefixing
and channel output/input process in a numeric vector and use

Manhattan distance to measure the similarity between two
parameter expressions. Third, we encode the boolean expression b
of the conditional choice process and the sequential program prog
attached to the event prefixing process in a char sequence and use
LCS [45] to measure the similarity between two boolean
expressions or sequential programs. Finally, we define a numeric
vector for summarizing the number of composed processes of
choice, parallel and interleave process. We use Manhattan distance
to measure the similarity between the numbers of composed
processes.

We define two pairup feasibility predicates for the comparison
of configuration graphs. First, each type of CSP# process
construct defines a distinct system behavior. It makes no sense to
pairup process constructs of different types. Thus, we define that,
given the graph nodes nl and nr of two processes, they can be
paired-up iff 𝑛𝑙 . 𝑡𝑦𝑝𝑒 == 𝑛𝑟 . 𝑡𝑦𝑝𝑒 , i.e., their type attributes are
the same. Second, we do not want two very different processes to
be paired-up. Thus, we define that two graph nodes can be paired-
up iff the distance between the two nodes is less than the
minimum distance value of the node to null, i.e., 𝑑(𝑛𝑙 ,𝑛𝑟) <
𝑚𝑖𝑛�𝑑(𝑛𝑙 ,𝑛𝑢𝑙𝑙),𝑑(𝑛𝑢𝑙𝑙,𝑛𝑟)�.

As the graph edges of configuration graph represent the
composition relations between processes, the similar process tend
to be composed of other similar processes. Thus, we use the
default random walk tendency function of GenericDiff framework,
which are defined as linear functions of the distance value of
relevant node and edge pair. Finally, we instruct GenericDiff to
select a one-to-one matching between processes.
4.2.3 Comparing labeled transition systems

GenericDiff parses an input LTS into a TAG, consisting of
graph nodes whose type attribute is state and graph edges whose
type attribute is transition.

We specify two characteristic properties for discriminating state
nodes. First, we encode the valuation V of global variables and
channels at a state in a composite numeric vector, consisting of a
numeric vector for the variables of primitive data types (integer
and boolean) and a numeric vector for each variable of array or
structured data type. Note that the definition of this composite
numeric vector may be recursive, since the array and structure data
type may contain other array and/or structured data types. Given
the composite vector attributes of two state nodes, we use
Manhattan distance to measure the similarity between the
valuation of global variables and channels at two states. This
distance computation may also be recursive.

Second, the process expression P at a state is another
discriminating property of state nodes. However, comparing the
process expression literally cannot express the similarity of the
behaviors of states. In this application, we approximate the process
expression P at state S with a set of active processes, which
consists of the event prefixing and channel output/input processes
obtained from P according to the structural operational semantics
of CSP#. These active processes define the behavior of the state S,
i.e., performing these processes advances the LTS one step further
from the state S. Give the sets of active processes of two state
nodes, we use Jaccard coefficient, a commonly used metric for
comparing two sets of elements to measure the behavioral
similarity of two states. When comparing the LTSs of two
versions of a CSP# program, the process definitions may change
as the program evolves. In this case, we rely on the matching
results of comparing the corresponding configuration graphs to
determine the correspondences between active processes.

The transition label (i.e., engaged event) is a discriminating
property of the edges of the LTS graph. We encode the name of
engaged event in a char sequence and use LCS [45] to measure the
similarity between two event names. Furthermore, we encode the
valuation of parameter expressions (if any) of engaged event in a
numeric vector and use Manhattan distance to measure the
similarity between the parameter expressions of two events.

We define one pairup feasibility predicate for the comparison of
LTSs. We do not want two very different states to be paired-up.
Thus, we define that 𝑑(𝑛𝑙 ,𝑛𝑟) < 𝑚𝑖𝑛�𝑑(𝑛𝑙 ,𝑛𝑢𝑙𝑙),𝑑(𝑛𝑢𝑙𝑙,𝑛𝑟)� ,
i.e., two state nodes nl and nr (or transition edges) can be paired-up
iff the distance between the two nodes (or edges) is less than the
minimum distance value of the node (or edge) to null.

Our formulation of the LTS similarity is a quantitative analogue
of exact bisimilarity [29] in that similar states are linked to other
similar states by similar transitions. Thus, we use the default
random walk tendency function of GenericDiff framework, which
are defined as linear functions of the distance value of relevant
state and transition pair. Finally, we instruct GenericDiff to select
a one-to-one matching between states and transitions.
4.2.4 Results

We applied GenericDiff to compare the LTSs of a correct and a
faulty version of a concurrent stack program written in CSP#. The
faulty version violates the linearizibility [17] of the concurrent
stack due to the decrease of atomicity level of two conditional
choices. The two LTSs contain 438 states and 1120 transitions and
1102 states and 2642 transitions, respectively. The precision and
recall of GenericDiff in comparing these two LTSs is 95% and
95%. Inspecting the differences between the two LTSs identifies
four types of incorrect interactions between two processes that
result in the violation of the linearizibility of concurrent stack.

The process counter abstraction and the cutoff number is a
common state abstraction technique for analyzing parameterized
systems [7]. We applied GenericDiff to compare the 20 LTSs (ltsi
and ltsi+1, obtained by setting the cutoff number to 1..20) of a
parameterized readers-writer-lock CSP# program. We also applied
GenericDiff to compare the 9 LTSs of a parameterized Java meta-
lock CSP# program. In both studies, the precision and recall of
GenericDiff in comparing these LTSs is 100% and 100%. The
differences reported by GenericDiff reveal the behavioral change
patterns of parameterized systems as the cutoff number increases.

Partial order reduction [7] exploits the commutativity of
concurrently executed transitions to reduce the state space to be
explored by a model checking algorithm. We applied GenericDiff
to compare the two LTSs of a dining philosophers CSP# program,
explored with and without partial order reduction. GenericDiff
perfectly (100% precision and 100% recall) isolates the states and
transitions that have not been explored when the partial order
reduction is in place. This helps the developers better understand
the impact of partial order reduction technique.

There have been two domain-specific algorithms [30,41] for
comparing state-machine-like models. Sokolsky et al. [41]
compute the overall similarity of the LTSs of viruses to classify
them into families. Nejati et al. [30] find and merge the differences
between StateCharts requirement specifications. The random walk
process of GenericDiff is analogue to the Markov decision process
used in these two algorithms. But, as the objective and the output
of our work and theirs are different, three approaches are not
directly comparable. In terms of precisions and recalls,
GenericDiff performs as well as these two domain-specific
algorithms.

4.3 Semantic differencing of software clones
Clone detection [1,3,13,25] provides a scalable and efficient way
to detect similar code fragments. But it offers little explanation
about the characteristics of clones, such as how clones are
different if they are not identical. Understanding these
characteristics is crucial during post-detection clone analysis and
program maintenance that affect clones. In this application, we
complement clone detection with program differencing for the
purpose of characterizing the differences of clones. We capture
semantic information of clones from Program Dependence Graphs
(PDGs) that encode data and control dependencies between
program statements. We then adapt GenericDiff to compute the
semantic differences of clones in terms of the structural
differences and differential properties between their PDGs.

4.3.1 Clone detection
In this application, we assume there is a clone detection method
that can detect similar methods m1 and m2 (i.e., cloned methods)
that contain one or more similar code fragments according to
certain similarity measurement. We use CloneMiner [2] for the
detection of code clones. CloneMiner finds simple clones (i.e.,
similar fragments of contiguous codes) first, using Repeated
Tokens Finder, a token-based simple clone detection technique
[1]. Then, it mines simple clones with frequent itemset mining
[16] to detect structural clones across large program units, such as
cloned methods that contain one or more simple clones.

4.3.2 Program dependence graph
We adopt intra-method PDG [11] to capture semantic information
of clones. A PDG is an intermediate program model that encodes
both the data and control dependences between program
statements. Given a cloned method m, we use Wala [55], a static
analysis library for Java bytecode, to generate the PDG of the
method m. Wala represents program statements in a SSA-based
register transfer language.

The nodes of a Wala-PDG consist of the SSA statements
constructed from the source code. Wala supports 23 types of SSA
statements. We categorize them into three groups: operation
statements, branch statements, and parameter/constant statements.
A SSA statement has the following properties: a collection of
symbols that it uses, at most one result symbol that it defines, a
collection of incoming dependences and/or a collection of
outgoing dependences. A symbol is a unique id representing a
variable or value. Different concrete types of SSA statements can
have different sets of additional properties.

The edges of a PDG represent the control and data dependences
between SSA statements. Given two SSA statements, s1 and s2, the
data dependence from s1 to s2 means that the value produced at s1
may be used at s2. A control dependence from s1 to s2 means that
the choices of executing s2 depends on the test the evaluation of s1.
A control dependence may have an optional label, representing the
corresponding choice.
4.3.3 Computing semantic differences of clones
GenericDiff parses an input PDG into a TAG, consisting of graph
nodes whose type attribute represents the type of the
corresponding SSA statements [10], and consisting of graph edges
whose type attribute represents either control or data dependence.

We specify the following properties of SSA statements and
dependences for discriminating graph nodes and edges. First, we
ignore the result and uses symbols of program statements, since
they are not stable across PDGs. Second, we encode enumeration
properties of an SSA statement or dependence in an enumeration-

literal vector associated with the corresponding graph nodes and
edges. Such enumeration properties include: the label of control
dependences, the operator code of unary operation (negate),
binary operation (e.g., add, minus, multiply), and compare and
branch (e.g., >, <, !=) statements, and the isEnter of
synchronization statements. We also encode the constant value of
constant statements in a literal vector. Since we are interested in
whether two enumeration or constant values are different,
hamming distance is used to measure the similarity between two
literal vectors.

Third, we ignore the signature of methods being invoked in
INVOKE statements and the signature of fields being accessed in
FGET (field read) and FPUT (field write) statements, since they
can be different across cloned methods. However, we specify the
return type of methods being invoked and the type of field being
accessed as a characteristic property of INVOKE and FGET/FPUT
statements. The underlying intuition is that the methods and fields
that have different types may play different roles in cloned
methods. We encode the return type of methods being invoked and
the type of fields being accessed in a typename-literal vector. We
also encode the relevant type properties of other kinds of SSA
statements to discriminate the corresponding graph nodes, such as
the element type of ARRAYLOAD and ARRAYSTORE statements,
the type being checked in INSTANCEOF statements, and the type
being instantiated in NEW statements. Similar to the comparison
of enumeration-literal vectors, we use hamming distance to
measure the similarity between two typename-literal vectors.

Forth, we specify a numeric vector of two elements to
summarize the number of incoming and outgoing dependences of
a SSA statement. We also specify a numeric vector to encode the
number of branches of SWITCH statements, the array dimension
of NEW statements, and the number of assignments of PHI
statements. As these numeric vectors represent the size of a
collection, we use Manhattan distance to measure their similarity.

We define one pairup feasibility predicate for the comparison of
PDGs. Since different types of program statements (dependences)
define distinct semantics [36], we define that two nodes (edges)
can be paired-up as matching candidates iff their type attributes
are the same.

We assume that similar SSA statements are related to other
similar statements in two PDGs. Thus, we use the default random
walk tendency functions provided by GenericDiff framework.
Finally, we specify GenericDiff to select a one-to-one matching
between program statements (dependences).
4.3.4 Results
Given two PDGs of a pair of cloned methods (m1,m2) and the
matching results by GenericDiff, we identify the following five
types of characteristic differences of cloned methods by searching
for certain patterns in the two PDGs and their differences:
1. Differential properties summarize all the pairs of matched

program statements that have different properties.
2. Additional branches are the unmatched branch statements

before or after a pair of matched operation statements.
3. Partially matched branches are the unmatched branch

statements before or after a pair of matched branch
statements.

4. Additional operations are the unmatched operation
statements before or after a pair of matched statements.

5. Unmatched operation pairs are the pairs of unmatched same-
type operation statements before or after a pair of matched
statements.

We have implemented a tool Clone Differentiator that supports
the PDG differencing of code clones with GenericDiff. We have
evaluated Clone Differentiator on three Java systems, Java IO
library, Berkeley Database and Eclipse Plugins.

By focusing on areas that are known to be highly similar, the
accuracy of GenericDiff in comparing the PDGs of clones is good.
We manually inspected the PDG comparison results of randomly-
selected 10% of all the analyzed clone pairs. The precision (i.e.,
the percentage of the correctly reported matches) and the recall
(i.e., the percentage of matched reported) of GenericDiff is around
94% and 96%, respectively.

Furthermore, these evaluations found PDG differencing of
clones useful in the following three scenarios:

Suggesting appropriate refactoring actions. Code cloning can
result in unused, dead code in the system that hinders program
comprehension and maintainability [12]. Detecting such code
fragments and analyzing how different they are help developers to
decide what action to take. For example, in our case studies, Clone
Differentiator can assist in distinguishing identical dead code,
methods that are “part of” another, parallel inheritance hierarchies,
and deviations of design patterns.

Consistent management of clones. Clones pose additional
problems if they do not evolve synchronously [22,26]. Detecting
the differences of clones raises the awareness of their
inconsistencies so that they can be graceful handled. For example,
in Java IO library, Clone Differentiator revealed three inconsistent
programming styles of validating the input parameters, handling
null exceptions and using synchronization. We also found the
inconsistencies of clones be indicative of potential bugs.

Identifying variations of a common solution. Reusing and
adapting a common solution in different contexts can prevent
errors by reusing trusted solutions. This often results in code
clones with variations, depending on the context. In our case, we
found that analyzing the PDG differences of clones helps
developers better understand the commonalities and variations of
similar solutions in different contexts.

5. Conclusion and future work
In this paper, we presented GenericDiff, a general framework for
software model comparison. It exhibits several advantages over
the current state of the art. Because it separates the specification of
domain-specific inputs from the generic matching process, it is
easy to adapt GenericDiff in a new application domain. Because it
encodes domain-specific properties and syntax in two generic data
structures (i.e., TAG and PairUpGraph), the domain-specific
properties and syntax can be uniformly explored in the generic
matching process. Because it leverages the useful techniques (i.e.,
random walk on graph and bipartite matching) developed in
pattern mining and graph matching, it is capable of producing an
accurate comparison report for diverse types of models.

We have implemented GenericDiff and adapted it in three
applications for comparing UML class models, labeled transition
systems, program dependence graphs and product feature models.
To the best of our knowledge, there has been no other algorithm
that has such broad coverage and can still produce accurate and
useful comparison report.

Our plans for future work include applying GenericDiff to
compare heterogeneous models, i.e., a mixture of different types
of models. We also plan to extend GenericDiff to other application
areas, such as the protocol adaptation for service integration and
debugging programs with evolving requirements.

References
1 H.A. Basit, S. Puglisi, W. Smyth, A. Turpin and S. Jarzabek.

Efficient token-based clone detection with flexible
tokenization. ESEC/FSE 2007, pp. 513-516.

2 H.A. Basit and S. Jarzabek. A data mining approach for
detecting higher-level clones. TSE, 35(4): 497-514, 2009.

3 I.D. Baxter, A. Yahin, L. Marcelo, M. Sant'Anna and L.
Bier.: Clone detection using abstract syntax trees. ICSM
1998, pp. 368-377.

4 C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques
of an undirected graph. Commun. ACM 16:575-577, 1973.

5 C. Canal, P. Poizat and G. Salaun. Model-based adaptation of
behavioral mismatching components. TSE 34(4), pp. 546-
563, 2008.

6 M. Christodorescu, S. Jha and C. Kruegel. Mining
specifications of malicious behavior. FSE, pp. 5-14, 2007.

7 E.M. Clarke, O. Grumberg and D.A. Peled. Model Checking.
The MIT Press, 1999.

8 D. Conte, P. Foggia, C. Sansone and M. Vento. Thirty years
of graph matching in pattern recognition. Journal of Pattern
Recognition and Artificial Intelligence, pp. 265-298, 2004.

9 L.P. Cordella et al. Subgraph transformations for inexact
matching of attributed relational graphs. Computing Suppl,
12:43-52, 1998.

10 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman and F.K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program.
Lang. Syst. 13(4): 451-490.

11 J. Ferrante, K.J. Ottenstein and J.D. Warren. The Program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319-349, 1987.

12 M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

13 M. Gabel, L. Jiang and Z. Su. Scalable detection of semantic
clones. ICSE 2008, pp. 321-330.

14 D. Gale and L.S. Shapley. College admissions and the
stability of marriage. American Mathematical, 69:9-14, 1962.

15 M. Gori and M. Maggini. Exact and appropriate graph
matching using random walks.

16 G. Grahne and J. Zhu. Efficiently Using Prefix-trees in
Mining Frequent Itemsets. Proceeding of the First IEEE
ICDM Workshop on Frequent Itemset Mining
Implementations (FIMI'03), 2003.

17 M.P. Herlihy and J.M. Wing. Linearizibility: a correctness
condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12(3):463-492, 1990.

18 S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. PLDI,pp. 234-246, 1990.

19 R.W. Irving et al. The hospitals/residents problem with ties.
LNCS 1851, pp. 259-271, 2000.

20 D. Jackson and D.A. Ladd. Semantic diff: A tool for
summarizing the effect of modifications. ICSM, pp. 243-252,
1994.

21 G. Jeh and J. Widom. SimRank: A measure of structural-
context similarity. KDD, pp. 538-543, 2002.s

22 C. Kapser and M.W. Godfrey. “Cloning Considered
Harmful" Considered Harmful. WCRE 2006, pp. 19-28.

23 K.C. Kang, J. Lee and P. Donohoe. Feature-oriented product
line engineering. IEEE Software, 19(4):58-65, 2002.

24 M. Kim, D. Notkin and D. Grossman. Automatic inference of
structural changes for matching across program versions.
ICSE, pp. 333-343, 2007.

25 R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. SAS 2001, pp. 40-56.

26 J. Krinke. A Study of consistent and inconsistent changes to
code clones. WCRE 2007, pp. 170-178.

27 L. Lovasz. Random walks on graphs: A survey. 1993.
28 S. Melnik, H.C. Molina, E. Rahm, Similarity flooding: A

versatile graph matching algorithm and its application to
schema matching. ICDE, pp. 177, 2002.

29 R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

30 S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook and P.
Zave. Matching and merging startcharts specifications. ICSE,
pp. 54-64, 2007.

31 D. Ohst, M. Welle, U. Kelter. Difference tools for analysis
and design documents. ICSM, pp. 13-22, 2003.

32 L. Page et al. The PageRank citation ranking: Brining order
to the web. Technical Report, Stanford Info Lab, 1999.

33 S. Person, M.B. Dwuer and C.S. Pasareanu. Differential
symbolic execution. ESEC-FSE, pp. 226-237, 2008.

34 N.H. Pham, H.A. Nguyen, T.t. Nguyen, J.M. Kofahi and T.N.
Nguyen Complete and accurate clone detection in graph-
based models. ICSE, pp. 276-286, 2009.

35 D. Qi, A. Roychoudhury, Z. Liang and K. Vaswani. Darwin:
an approach for debugging evolving programs. ESEC-FSE,
pp. 33-42, 2009.

36 G. Ramalingam and T. Reps. Semantics of program
representation graphs, Technical Report, University of
Wisconsin Madison, 1989.

37 K. Riesen, S. Fankhauser, H. Bunke and P. Dickison.
Efficient suboptimal graph isomorphism. Graph-Based
Representations in Pattern Recognition, pp. 124-133, 2009.

38 G. Salton and M.J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1986.

39 R. Santelices, J.A. Jones, Y. Yu and M.J. Yarrold.
Lightweight fault-localization using multiple coverage types.
ICSE, pp. 56-66, 2009.

40 A. Shokoufandeh and S.J. Dickinson. A unified framework
for indexing and matching hierarchical shape structures. Int.
Workshop on Visual Form, pp. 67-84, 2001.

41 O. Sokolsky, S. Kannan and I. Lee. Simulation-based graph
similarity. TACAS, pp. 426-440, 2006.

42 J. Sun, Y. Liu, J.S. Dong and C.Q. Chen. Integrating
specifications and programs for system specification and
verification. TASE, pp. 127-135, 2009.

43 P.N. Tan, M. Steinbach and V. Kumar. Introduction to Data
Mining. Addison Wesley, 2005.

44 C. Treude, S. Berlik, S. Wenzel and U. Kelter. Difference
computation of large models. ESEC-FSE, pp. 295-304, 2007.

45 R. Wagner and M. Fischer. The string-to-string correction
problem. J. ACM, 21(1):168-173, 1974.

46 M.L. Williams, R.C. Wilson and R. Hancock. Structural
matching by discrete relaxation. IEEE Trans. Patt. Anal.
Mach. Intell. 19:634-648, 1997

47 Z. Xing and E. Stroulia. UMLDiff: An algorithm for object-
oriented design differencing. ASE, pp. 54-65, 2005.

48 Z. Xing. Model comparison with GenericDiff. ASE, 2010.
49 Z. Xing. GenericDiff: A general framework for model

comparison. Technical Report, NUS, 2010.
50 Y. Xue, Z. Xing and S. Jarzabek. Understanding feature

evolution in a family of product variants. WCRE, 2010.
51 X. Yan and J. Han. gSpan: Graph-based substructure pattern

mining. Int. Conf. on Data Mining, pp. 721, 2002.

52 D.M. Yellin and R.E. Strom. Protocol specifications and
component adaptors. ACM Transactions on Programming
Languages and Systems, pp. 292-333, 1997.

53 EMF: http://www.eclipse.org/emft, 2010.
54 OMG UML: http://www.uml.org, 2010.
55 WALA:

http://wala.sourceforge.net/wiki/index.php/Main_Page, 2010.

Appendix 1
Table 4 summarizes the basic data types and their corresponding
atomic vector attributes that GenericDiff supports. GenericDiff
uses a set of simple distance calculators to determine the similarity
of the properties of model elements and relations, encoded in
vector attributes.

Table 4 Atomic vectors and standard distance calculators
Dada type Representation Distance calculator
Enumeration Literal index vector Hamming
Numeric type Numeric vector Manhattan/Euclidean
String Literal index vector Hamming

Word set/bag/sequence Jaccard/LCS
TF/IDF vector Cosine similarity

Collection numeric vector Manhattan
Set/bag/Sequence Jaccard/LCS

A property of enumeration type or constant values can be
represented in a literal index vector. Each literal or constant is
mapped onto a vector position. The value at that position is set to
1 for a property of that literal value. Since we are only interested
in whether two literal or constant values are different, hamming
distance is used to measure the similarity of two literal index
vectors. Given two literal index vector vl, and vr, their hamming
distance is |{𝑖|𝑣𝑙[𝑖] ≠ 𝑣𝑟[𝑖]}|, i.e., the number of vector elements
that are different.

Several properties of numeric type can be represented in a vector
of numeric values. Depending on the metric space of numeric
values, either Manhattan or Euclidean distance can be used to
measure the similarity of two numeric vectors. Given two numeric
vector vl, and vr, their Manhattan distance is ∑ |𝑣𝑙[𝑖] − 𝑣𝑟[𝑖]|𝑛

𝑖=1 ,
i.e., the sum of the value differences of corresponding vector
elements; their Euclidean distance is the length of the line
segments 𝑣𝑙𝑣𝑟������, i.e., �∑ (𝑣𝑙[𝑖] − 𝑣𝑟[𝑖])2𝑛

𝑖=1 .
A property of String type can also be represented in a literal

index vector when the set of string values of this property is fixed.
Each position in the vector is indexed for a string value. In this
case, hamming distance is used to measure the similarity of two
vectors of string values.

For a property of String type, GenericDiff can exploit the
common convention to split a string value into a set or bag of
word. A set of words consist of unique word elements, while a bag
of words may contains duplicate words. The Jaccard coefficient
[43] is often used to measure the similarity of two sets or bags.
Given two word sets/bags vl, and vr, their Jaccard coefficient is
|𝑣𝑙 ∩ 𝑣𝑟| |𝑣𝑙 ∪ 𝑣𝑟|⁄ , i.e., the size of the intersection of two sets
divided by the size of their union. GenericDiff can also represent a
string value as a sequence of words. In this case, the longest
common subsequence (LCS) [45] is used to measure the similarity
of two sequences.

GenericDiff can further analyze the word sets to generate a
Term-Frequency/Inverse-Document-Frequency (TF-IDF) vector
[38] for each string value. It is a statistical measure used to
evaluate how important a word is to a document in a corpus. The
importance increases proportionally to the number of times a word
appears in the document but is offset by the frequency of the word
in the corpus. The cosine similarity is often used to determine the
distance between two TF/IDF vectors. Given two TF-IDF vectors
vl, and vr, their cosine similarity is

 ∑ 𝑣𝑙[𝑖]𝑣𝑟[𝑖]𝑛
𝑖=1 ��∑ 𝑣𝑙[𝑖]2𝑛

𝑖=1 �∑ 𝑣𝑟[𝑖]2𝑛
𝑖=1 �⁄

i.e., the dot product of two vectors divided by the product of the
Euclidean distance of two vectors.

Since property is multiplicity element [54], it may represent a
collection of values. A collection can be represented in an atomic
vector. For example, the size of a collection can be encoded in a
numeric vector. Alternatively, the values of a collection can be
represented in a set or bag, depending on whether the property is
unique. Or the collection can be represented in a sequence of
values, depending on whether the property is ordered. The
corresponding distance calculators can be used to measure the
similarity of two collections.

	Abstract
	3.1 A running example
	3.2 The metamodel
	3.3 Typed attributed graph
	3.4 PairUpGraph
	3.5 Distance propagation by random walk
	3.6 Bipartite matching
	3.7 The output of GenericDiff
	3.8 The complexity of GenericDiff
	4.1 Understanding software design evolution
	4.1.1 Domain-specific types and properties
	4.1.2 Pairup feasibility predicates
	4.1.3 Other domain-specific inputs
	4.1.4 Results

	4.2 Debugging evolving system behaviors
	4.2.1 Syntax and operational semantics of CSP#
	4.2.2 Comparing configuration graphs
	4.2.3 Comparing labeled transition systems
	4.2.4 Results

	4.3 Semantic differencing of software clones
	4.3.1 Clone detection
	4.3.2 Program dependence graph
	4.3.3 Computing semantic differences of clones
	4.3.4 Results

	Appendix 1

