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Abstract 
This paper presents GenericDiff, a general framework for model 
comparison. The main design challenge of GenericDiff lies in how 
to strike a balance between being domain independent yet aware 
of domain-specific model properties and syntax. GenericDiff 
tackles this challenge by separating the specification of domain-
specific inputs from the generic graph matching process and by 
making use of two data structures, i.e., typed attributed graph and 
pairup graph, to encode the domain-specific properties and syntax 
so that they can be uniformly exploited in the generic matching 
process. Comparing large models efficiently is another challenge. 
GenericDiff leverages two techniques, i.e., random walk on graph 
and bipartite graph matching, to efficiently compute a difference 
between models. To date, GenericDiff has been deployed in three 
applications to compare UML class models, Labeled Transition 
Systems, Program Dependence Graphs and Feature Models. These 
applications demonstrate that it is easy to adapt GenericDiff in a 
new application domain and GenericDiff is able to produce an 
accurate comparison report for diverse types of models.  

Categories and Subject Descriptors 
E.1 [Data Structures]: Graphs and networks; F2.2 [Analysis of 
Algorithms and Problem Complexity]: Nonnumerical 
Algorithm and Problems – Pattern Matching 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
Model differencing, Graph matching, Metamodel 

1. Introduction 
Comparing artifacts and detecting their differences is an 
ubiquitous operation, relevant in many application domains, such 
as software reuse and evolution [18,20,24,30,47], debugging and 
fault localization [33,35,39], malware detection [6], and service 
integration [5,52]. It can be present in diverse forms, such as 
detecting variants in a software product family, recognizing 
changes to a program, debugging evolving behaviors of formal 
specifications, identifying deviations of API usage in applications, 
and detecting inconsistencies between interacting services. As a 
software system is often abstracted in models, a large number of 
model comparison algorithms [18,20,24,30,31,33,41,47] have 
been proposed, tailored for a specific matching problem and 
model representation in different application domains. These 
algorithms are highly tuned with domain-specific heuristics, such 
as topological restrictions and domain-specific properties.  

For example, UMLDiff [47], designed for comparing UML class 
models, traverses the containment-spanning tree of two class 
models and identifies corresponding entities based on their name 
and structure (e.g. inheritance and usage dependency) similarity. 
As another example, Nejati et al. [30] propose a matching 
algorithm for statechart specifications that determines how close 
the behaviors of one state are to those of another based on the state 

and transition labels and the approximate bisimilarity of states. 
Such algorithms can be fairly accurate and efficient for a given 
application domain. However, due to the diversity of matching 
problems and model properties/syntax, the heuristics developed 
for one application domain cannot be reused in another. 
Differencing techniques for new application domains must usually 
be built from scratch, which requires significant amount of 
thought and effort.  

To avoid investing such effort for each new domain where a 
comparison algorithm is required, many exact and approximate 
graph matching algorithms have been proposed for the general 
problem of graph isomorphism and its variants [8]. For example, 
Bron and Kerbosh [4] use tree search approach to find the 
Maximum Common Subgraph (MCS) of two graphs in a suitably 
defined association graph. Shokoufandeh and Dickinson [40] 
utilize random walk on graph to obtain a discriminating index of 
graph structure. Riesen et al. [37] present an efficient suboptimal 
graph isomorphism algorithm based on bipartite graph matching. 
These algorithms can be applied to a wide class of models that can 
be represented as graphs. But they are usually less efficient, since 
the general problem of graph isomorphism is NP-complete [8]. 
Furthermore, due to the lack of the integration of domain-specific 
knowledge in the matching process, they often produce a matching 
report that does not correspond well to the domain intuition. 
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Figure 1 The architecture of GenericDiff 

In this paper, we present GenericDiff, a general framework for 
software model comparison. As shown in Figure 1, GenericDiff 
takes as input two models to be compared and the specifications of 
model properties and syntax in terms of domain-specific 
types/properties, pairup feasibility predicates and random walk 
tendency functions. It casts the problem of comparing two models 
as the problem of recognizing the MCS of two Typed Attributed 
Graphs (TAGs).  

Given two models to be compared, Ml and Mr, GenericDiff 
parses the input models into TAGs. It encodes the domain-specific 
properties in composite vector attributes to quantify the 
corresponding graph nodes and edges. GenericDiff then constructs 
a PairUpGraph [4], i.e., a product of two TAGs, to capture the 
graph structure of two input models. After that, it performs a 
random walk on PairUpGraph, which is a probabilistic iterative 
process that propagates the correspondence value from node pair 
to node pair based on graph structure. The random walk on 
PairUpGraph outputs a rank vector of graph node pairs, each of 



which is assigned a quantitative correspondence value, i.e., a 
measurement of the quality of the match it represents. GenericDiff 
builds a bipartite graph from this rank vector of node pairs and 
selects an optimal matching using bipartite matching algorithms 
[14,19]. GenericDiff outputs a symmetric difference between two 
input models, which serve as input for domain-specific analysis. 

We have implemented GenericDiff and deployed it in three 
applications to compare product feature models [23], program 
dependence graphs (PDGs) [11], labeled transition systems (LTSs) 
[7] and UML class models [54]. These models have distinct model 
properties and syntax. They are widely adopted for describing the 
requirements, structure and behavior of software systems. In this 
paper, we illustrate how GenericDiff has been adapted to: 1) 
compare UML class models for understanding the evolution of 
software design; 2) compare LTSs for debugging changing 
behaviors of a CSP# [42] specification; and 3) compare PDGs for 
characterizing the differences of software clones. These 
applications demonstrate that it is easy to deploy GenericDiff in a 
new application domain – it took only a few trials for a domain 
expert (who is not necessarily familiar with model and graph 
matching techniques) to develop the necessary domain-specific 
inputs, which is the only step required to apply GenericDiff to 
diverse types of models. Furthermore, GenericDiff effectively 
exploits these domain-specific inputs in its generic matching 
process and produces a comparably accurate comparison report to 
those of domain-specific differencing algorithms. 

The rest of the paper is organized as follows. Section 2 discusses 
related work. Section 3 presents our GenericDiff framework. 
Section 4 demonstrates the adaptation of GenericDiff for the 
comparison of UML class models and LTSs. Finally, we conclude 
and sketch possible future research directions. 

2. Related work 
The domain-specific model differencing techniques exploit the 
domain-specific topological restrictions and properties to traverse 
the mode graph and determine the corresponding entities. 
Researchers have presented techniques to compare class model 
[31,47], state machine [30,41], program dependency graph 
[18,20]. Only a few generic model comparison algorithms and 
tools have been proposed. One such algorithm is SiDiff [44]. 
Similar to GenericDiff, the data model of SiDiff is also typed 
attributed graph. However, SiDiff requires the presence of a 
primary structure (e.g., a containment tree) in the models to be 
compared; and it relies on the ad hoc matching weights assigned to 
node attributes to determine the similarity. The EMF Compare 
[53] is another generic matching engine. It compares Ecore 
models. EMF Compare is metamodel agnostic and its matching 
strategy is very close to UMLDiff [47], an algorithm for 
comparing UML class model.  

Our position paper [48] proposed GenericDiff. In this paper, we 
provide a full description of the GenericDiff framework. The 
generic matching process of GenericDiff does not assume any 
domain-specific properties and graph structure. Given a domain-
specific metamodel, GenericDiff can be easily adapted by 
developing the necessary specifications of model properties and 
syntax.  This is an easier task than determining ad hoc edit costs or 
matching weights, since the specification of these domain-specific 
inputs corresponds straightforwardly to the underlying metamodel. 
Furthermore, instead of selecting mappings based on absolute 
similarity metrics and an arbitrary cutoff threshold, GenericDiff 
uses bipartite matching algorithms [14,19] that requires only the 

relative ranking of candidate pairs to select an optimal subset of 
matched pairs from a list of ranked candidates. 

Our recent works [50] presented how we applied GenericDiff to 
compare product feature models [23] for analyzing feature 
variants in a family of similar software products. In this paper, we 
present three new applications of GenericDiff to the comparison of 
three types of more complicated models, i.e., UML class models, 
labeled transition systems and program dependence graphs. 

Exact and approximate graph matching has been studied for 
decades [8]. Recently, graph-based techniques have been receiving 
a growing attention from the scientific community, due to the fact 
that the computational cost of the graph-based algorithms, 
although still high, is now becoming compatible with the 
computational power of new computer generations [8]. 
GenericDiff exploits many concepts and techniques developed in 
general graph matching, such as the modular product of two 
graphs for solving maximum common subgraph problem [4], the 
first-order feasibility rules to capture the matching constraints [9], 
the reformulation of graph matching into a considerably simpler 
bipartite matching problem [37], the application of random walk 
to encode graph topology [15,40], and the propagation of local 
constraints to neighboring nodes by an iterative process [46]. 

Most model comparison algorithms, including GenericDiff, 
examine not only the local properties of two entities but also their 
structural context. The underlying intuition is that, similar entities 
are related to other similar entities. Unlike previous approaches 
[44,47,53] that examine only immediate common neighbors, 
GenericDiff, inspired by PageRank [32], employs a random walk 
on PairUpGraph to spread the correspondence value in the 
PairUpGraph. PageRank is an iterative link propagation and 
analysis algorithm based on random walk on graph [27]. Inspired 
by PageRank, several algorithms [21,28] in data mining domain 
have also been proposed for measuring the similarity between 
elements based on random walk on graph. However, these 
algorithms examine only graph structure. They do not provide 
systematic ways to encode domain-specific properties. 

Graph-based techniques often seek a reduced representation for 
efficient indexing and matching. For example, in [15,40], the 
eigenvectors of a graph’s adjacency matrix have been used to 
encode important structural properties of the graph. The clone 
miner ModelCD [34] uses a numeric vector representation to 
approximate graph paths. gSpan, a subgraph pattern miner [51] 
encodes graph structures in depth-first search subscripts. SiDiff 
[44] represents an element in a collection of numeric metrics. 
GenericDiff encodes the domain-specific properties of model 
elements and relations in composite vector attributes associated 
with the corresponding nodes and edges of model graphs.  

3. GenericDiff Framework 
In this section, we first justify the rationale behind the design of 
GenericDiff from the perspective of metamodeling (Section 3.2). 
We then present two data structures, i.e., Typed Attributed Graph 
(Section 3.3) and PairUpGraph (Section 3.4), that allows 
GenericDiff to effectively encode domain-specific model 
properties and syntax in a systematic, domain-independent way. In 
Section 3.5, we discuss the random walk on PairUpGraph that 
propagates the correspondence value from node pairs to 
neighboring node pairs by an iterative process. In Section 3.6, we 
discuss how GenericDiff reformulate the maximum common 
subgraph problem to a considerably simpler bipartite matching 
problem for which polynomial algorithms exist. We also discuss 
how GenericDiff reduces the loss of graph-structure information in 



this problem reformulation. Finally, we discuss the output of 
GenericDiff and its time complexity.  

3.1 A running example 
We demonstrate the key components of GenericDiff with the 
running example shown in Figure 2. The Auctioneer and Bidder 
are two interacting protocols that are supposed to coordinate to 
complete the bidding process. Clearly, the two protocols are 
incompatible. In addition to incompatible messages, there exist 
two more complicated behavior inconsistencies. The auctioneer 
starts a bid by sending out newItem message and then waits for 
new bids or requests for update. The bidder, after receiving 
auctionBegin message, initiates a request for permission to join 
the bid. But the Auctioneer does not response to this request. 
Furthermore, the auctioneer sends out bid update on demand, but 
the bidder assumes that the auctioneer sends out update without 
explicit request. To detect these inconsistencies, we apply 
GenericDiff to compare the state models of the incompatible 
Auctioneer and Bidder protocols.  

 

 
Figure 2 The state models of Auctioneer and Bidder 
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Figure 3 The metamodel for interacting state models 

3.2 The metamodel 
GenericDiff separates the specification of domain-specific model 
properties and syntax from the generic graph matching process. 
The rationale behind this design lies in the metamodeling 
capability of separating generic metadata from domain-specific 
metamodel. A domain-independent metamodel, such as the Meta 
Object Facility (MOF) 2 [54] or Eclipse Ecore [53], is used to 
model other metamodels and models. Four key modeling concepts 
are Class, DataType, Association, and Property. These modeling 
concepts provide a generic data management framework when 
they are used in two-level modeling, in which they define generic 
models. The generic models consist of fixed types of model 
elements and relations. For example, the state models of 
Auctioneer and Bidder, represented as generic models, consist of 

model elements and relations that are the instances of metaclass 
Class and Association. 

Often, the specific types and properties of model elements and 
relations and the syntactic (i.e., structural) information of models 
are prescribed by a domain-specific metamodel in multi-level 
modeling. Figure 3 shows the metamodel for the state models in 
our running example. This metamodel defines that a state model 
consists of states and transitions, i.e., instances of metaclasses 
State and Transition. A state represents a situation during which 
the system waits for some external events to occur. A state owns a 
property of the enumeration type StateKind, which can be of literal 
values initial or regular. A state also has a collection of incoming 
transitions and a collection of outgoing transitions. A transition is 
a directed relation from a source state to a target state. There are 
two types of transitions, Send and Receive, which are marked with 
+ and – signs in the Auctioneer and Bidder models, respectively. 
A transition has a message property that represents the message 
being sent or received. In the Auctioneer model, the initial state A 
(the state name/index is only for illustration purpose) transits to 
the regular state B by sending the message newItem. The transition 
newItem is an outgoing transition from the source state A and an 
incoming transition to the target state B. 

3.3 Typed attributed graph 
GenericDiff considers the input model as a generic model and thus 
internally represents it as a Typed Attributed Graph (TAG). The 
TAG is a generic representation of the input model, which makes 
the kernel of GenericDiff independent of specific types of models. 
A graph node (i.e., an instance of Class) of TAG represents a 
model element. A graph edge (i.e., an instance of Association) 
represents a relation between model elements. When parsing the 
input model into a TAG, GenericDiff encodes the specific type of 
model elements and relations (i.e., their metaclass defined in the 
domain-specific metamodel) in a type attribute of the 
corresponding graph nodes and edges. Furthermore, given a 
domain-specific metamodel, one needs to specify a set of 
metaproperties for each type of model elements and relations that 
characterize its instances. During the parsing process, GenericDiff 
collects the data from the selected properties of model elements 
and relations and represent them in a composite vector attribute of 
the corresponding graph nodes and edges. 

GenericDiff defines a set of atomic vector representations, 
associated with standard distance calculators, for four basic data 
types, i.e., enumeration, numeric, string and collection (See 
Appendix 1). The atomic vectors can then be composed into 
composite vectors recursively, representing the domain-specific 
properties of structured datatypes. This composite vector attribute 
is a compact and uniform representation of the properties of model 
elements and relations for efficient graph indexing and matching. 

Let vl, vr be two atomic vectors, we denote their distance as 
d(vl,vr), d is the corresponding distance calculator defined in 
GenericDiff. Let Vl, Vr be two composite vectors, we denote their 
distance as d(Vl, Vr)=�∑ 𝑑(𝑉𝑙[𝑖],𝑉𝑟[𝑖])2𝑛

𝑖=1 , i.e., the Euclidean 
length of the distance vector [𝑑(𝑉𝑙[𝑖],𝑉𝑟[𝑖])]𝑖=1..𝑛, where Vl[i] and 
Vr[i] are the ith vector element of Vl and Vr. Vl, or Vr can be a null 
vector. When defining the vector attributes for selected 
metaproperties, one needs to specify the corresponding null atomic 
vectors, which can then be composed into composite null vectors. 
The null vectors represent the initial, undefined, or simplest state 
of a property. They can be (but not necessarily) an empty set, a 
zero-length sequence or a zero numeric vector. 

Auctioneer 

Bidder 



In our running example, the TAG of the state model consists of 
graph nodes whose type attribute is State and graph edges whose 
type attribute is Send or Receive. We specify kind, incoming and 
outgoing as three characteristic properties of state. We define the 
composite vector representation for the three characteristic 
properties of state as [[kind], [|incoming|, |outgoing|]]. Thus, the 
composite vector attribute of a graph node consists of two atomic 
vectors. One is a literal index vector for the enumeration property 
kind. Since we are only interested in whether two literal values are 
different, hamming distance is selected to measure the similarity 
of two literal index vectors. Given two literal index vector vl, and 
vr, their hamming distance is |{𝑖|𝑣𝑙[𝑖] ≠ 𝑣𝑟[𝑖]}|, i.e., the number of 
vector elements that are different. The other atomic vector is a 
numeric vector summarizing the size of the collection properties 
incoming and outgoing. We select Manhattan distance to measure 
the size differences between two collections. Given two numeric 
vector vl, and vr, their Manhattan distance is ∑|𝑣𝑙[𝑖] − 𝑣𝑟[𝑖]|, i.e., 
the sum of the value differences of corresponding vector elements. 
We define the composite null vector of state as [[undefined],[0,0]]. 

According to the above specification of domain-specific 
properties, the vector attribute of state 2 is [[regular],[1,1]] since it 
is a regular state and has one incoming and one outgoing 
transition. The vector attribute of state B is [[regular],[3,3]]. The 
hamming distance of the first literal index vector of these two 
states is 0; the Manhattan distance of the second numeric vector is 
4. The distance between the composite vector attribute of these 
two states is the Euclidean length of the distance vector [0,4], i.e. 
√02 + 42 = 4. The distance of state 2 to null is the Euclidean 
length of the distance vector [1,2]. 

We specify message as the characteristic property of transition 
and select word set to encode the message property. The message 
string is split into a set of words based on case switching. For 
example, the message newItem is represented as [new, item]. We 
select Jaccard coefficient, a commonly used metric for measuring 
the similarity between sets of elements. Given two word sets vl, 
and vr, their Jaccard coefficient is |𝑣𝑙 ∩ 𝑣𝑟| |𝑣𝑙 ∪ 𝑣𝑟|⁄ , i.e., the size 
of the intersection of two sets divided by the size of their union. 
The Jaccard coefficient between the messages newItem and 
auctionBegin is 0 since the two messages have no common words. 

3.4 PairUpGraph 
The composite vector attributes cannot always distinguish the 
instances of model elements. For example, one cannot tell whether 
state D of the Auctioneer model corresponds to state 3 or 6 of the 
Bidder model, since they all have the same composite vector 
attributes, [[regular],[1,2]]. The graph topology, i.e., structural 
context in which two elements appear can serve as another 
discriminating index that characterizes the model elements.  

Given two TAGs Gl(Vl,El) and Gr(Vr,Er), corresponding to two 
models to be compared, GenericDiff constructs a PairUpGraph 
PUG(Vpu,Epu) as follows:  

([𝑛𝑙 ,𝑛𝑟], [𝑛𝑙′ ,𝑛𝑟′ ] ∈ 𝑉𝑝𝑢)^([𝑒𝑙 , 𝑒𝑟][𝑛𝑙,𝑛𝑟]→�𝑛𝑙
′,𝑛𝑟′ �  ∈  𝐸𝑝𝑢) 

↔ (𝑛𝑙 ,𝑛𝑙′ ∈ 𝑉𝑙)^(𝑒𝑙
𝑛𝑙→𝑛𝑙

′
∈ 𝐸𝑙) ^(𝑛𝑟 ,𝑛𝑟′ ∈ 𝑉𝑟)^(𝑒𝑟

𝑛𝑟→𝑛𝑟′ ∈ 𝐸𝑟) 
^𝑓(𝑛𝑙 ,𝑛𝑟)^𝑓(𝑛𝑙′,𝑛𝑟′ )^𝑓 �𝑒𝑙

𝑛𝑙→𝑛𝑟′ , 𝑒𝑟
𝑛𝑙→𝑛𝑟′ � 

A PairupGraph is a product of two input TAGs Gl and Gr, i.e., 
Vpu⊆VlVr and Epu⊆ElEr It captures the graph structure of two 
models. A node (edge) p of PairUpGraph represents a pair of 
nodes (edges) (pl, pr) of two input TAGs. We define the initial 
distance value of p as 𝑑(𝑝) = 𝑑(𝑝𝑙 ,𝑝𝑟) = 𝑑(𝑉𝑙 ,𝑉𝑟), where Vl, and 
Vr are the composite vector attributes of pl and pr respectively.  

As shown for the state, the selected characteristic properties can 
be of different data types and of different representations. Thus, 
the elements of the composite vectors may differ in their scales. 
They have to be normalized before the distance computation of 
two composite vectors. Given a set of distance vectors DV of a 
type of node (edge) pairs, let dvi be the ith dimension of a distance 
vector 𝑑𝑣 ∈ 𝐷𝑉, the normalized value is given by subtracting the 
mean (mean-shifting) and then dividing the mean-shifted value by 
the standard deviation (auto-scaling): 

𝑑𝑣𝑖 =
𝑑𝑣𝑖 − 𝑚𝑒𝑎𝑛({𝑥𝑖|𝑥 ∈ 𝐷𝑉})
𝑠𝑡𝑑𝑑𝑒𝑣({𝑥𝑖|𝑥 ∈ 𝐷𝑉})    (1) 

After mean-shifting and auto-scaling, all the dimensions of 
𝑑𝑣 ∈ 𝐷𝑉 have the same mean value and standard deviation. To 
avoid negative dvi, it will be adjusted by subtracting the minimum 
dvi of all types of node (edge) pairs. Equation (1) cannot be 
evaluated if the standard deviation is 0, which indicates that the dvi 
of all the distance vectors 𝑑𝑣 ∈ 𝐷𝑉  are the same, This actually 
indicates a bad choice of characteristic property, vector 
representation or distance calculator, since this dimension cannot 
help to distinguish the model elements (relations). GenericDiff 
ignores such dimensions when computing the distance between 
two composite vectors. 
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Figure 4 The partial PairUpGraph of two state models 

Figure 4 presents a partial PairUpGraph of the TAGs of the 
Auctioneer and Bidder models. The initial distance value of state 
pairs (i.e., PairUpGraph nodes) is shown in the square bracket. We 
do not use normalized distance values here for the reason of 
clarity. The metrics on transition pairs (i.e., PairUpGraph edges) 
will be explained shortly in Section 3.5.  

The construction of PairUpGraph is guided by a set of user-
defined pairup feasibility predicates. There are two kinds of pairup 
feasibility predicates, respectively regarding the domain-specific 
types/properties and syntax of the models to be compared. The 
feasibility predicates define (but not limited to) the type 
compatibilities, minimum property similarities and topological 
constraints that a pair of graph nodes (edges) must satisfy so that 
they can be paired-up as matching candidates. These predicates 
are evaluated against a fact base (e.g., a relational database in 
current implementation of GenericDiff) of input model graphs 
Gl(Vl,El) and Gr(Vr,Er) and PairUpGraph PUG(Vpu,Epu). 

In our running example, we specify three type/property-based 
feasibility predicates as follows: 

𝑓(𝑒𝑙 , 𝑒𝑟) = (𝑒𝑙 𝑖𝑠 𝑆 & 𝑒𝑟  𝑖𝑠 𝑅) | (𝑒𝑙 𝑖𝑠 𝑅 & 𝑒𝑟  𝑖𝑠 𝑆) 
𝑓(𝑛𝑙 ,𝑛𝑟) = 𝑓1(𝑛𝑙 ,𝑛𝑟)^𝑓2(𝑛𝑙 ,𝑛𝑟) 

𝑓1(𝑛𝑙 ,𝑛𝑟) = (𝑛𝑙 . 𝑘𝑖𝑛𝑑 == 𝑛𝑟 .𝑘𝑖𝑛𝑑) 
𝑓2(𝑛𝑙 ,𝑛𝑟) = 𝑑(𝑛𝑙 ,𝑛𝑟) < 𝑚𝑖𝑛�𝑑(𝑛𝑙 ,𝑛𝑢𝑙𝑙),𝑑(𝑛𝑢𝑙𝑙,𝑛𝑟)� 

The first predicate 𝑓(𝑒𝑙 , 𝑒𝑟)  defines the type compatibility of 
transitions. Since we compare two interacting state models, a Send 
(Receive) transition in one model can only be paired-up with a 
Receive (Send) transition in the other model. The second predicate 
𝑓1(𝑛𝑙 ,𝑛𝑟) defines that only the same kind of states can be paired-



up. The third predicate 𝑓2(𝑛𝑙 ,𝑛𝑟) defines that two states can be 
paired-up iff their distance value is less than the minimum 
distance value of the relevant states to null. For example, the state 
2 of the Bidder model and the state B of Auctioneer model will not 
be paired-up, since the number of their incoming and outgoing 
transitions is “too” different. In Section 4.1.2, we will present 
some examples of syntax-based feasibility predicates (e.g., 
constraints on containment hierarchy) for comparing class models. 

Given the initial PairUpGraph, GenericDiff can optionally create 
and append null node (edge) pairs to the PairUpGraph as defined 
in the following equation: 

[𝑛𝑙′ ,𝑛𝑢𝑙𝑙] ∈ 𝑉𝑝𝑢^[𝑒𝑙 ,𝑛𝑢𝑙𝑙][𝑛𝑙,𝑛𝑟]→�𝑛𝑙
′,𝑛𝑢𝑙𝑙�  ∈  𝐸𝑝𝑢 

↔ [𝑛𝑙 ,𝑛𝑟] ∈ 𝑉𝑝𝑢 ^ 𝑒𝑙
𝑛𝑙→𝑛𝑙

′
∈ 𝐸𝑙 ^ ∀𝑒𝑟

𝑛𝑟→𝑛𝑟′ ∈ 𝐸𝑟   
^ ∄�[𝑛𝑙′,𝑛𝑟′ ] ∈ 𝑉𝑝𝑢^[𝑒𝑙 , 𝑒𝑟][𝑛𝑙,𝑛𝑟]→�𝑛𝑙

′,𝑛𝑟′ �  ∈  𝐸𝑝𝑢� 
Let el be an edge in Gl and let the source nl of el be paired-up 

with a node nr in Gr, if el has not been paired-up with any edge er 
originating from nr, then a null edge pair (el,null) to a null node 
pair (nl’,null) will be created and appended to the node pair (nl,nr). 
Similarly, the null node (edge) pair can be created for the target 
node of el and for the edges in Gr. The null node (edge) pairs 
capture the discrepancies of the structural context of a pair of 
nodes. Take the state pair (3,D) as an example. The edge 
cannotBid from the state 3 to state 1 in the Bidder model has not 
been paired-up with any edges originating from the state D in the 
Auctioneer model, since state 1 cannot be paired-up with the state 
B and E (they are different kinds of states). Consequently, a null 
edge pair to a null node pair have been appended to the state pair 
(3,D). In contrast, the state pair (6,D) does not link to any null 
node (edge) pairs, since all the edges from (to) the state 6 have 
been paired-up with some edges from (to) the state D. 

3.5 Distance propagation by random walk 
Given a PairUpGraph PUG, GenericDiff performs a random walk 
[27] on PUG, which is an iterative process that propagates the 
distance value from node pairs to node pairs based on graph 
structure. Each iteration propagates the distance values one step 
forward along the edges, until the random walk stabilizes. Due to 
the presence of cycles in PairUpGraph, the distance values can 
thus be mutually reinforced. 

A random walk on graph can be described by a probabilistic 
model that allows us to compute the probability 𝑟𝑛(𝑡) of being 
located in each node n at step t. The probability distribution on all 
the nodes is represented by a vector 𝑟(𝑡) = [𝑟1(𝑡), … , 𝑟𝑁(𝑡)], N 
being the number of nodes in the graph. Each position in 𝑟(𝑡) is 
indexed for a graph node. The probabilities 𝑟𝑛(𝑡) are updated at 
each step as follows: 

𝑟𝑛(𝑡 + 1) = �𝑗𝑢𝑚𝑝(𝑠,𝑛) × 𝑗𝑢𝑚𝑝(𝑠) × 𝑟𝑠(𝑡)                  (2)  
𝑠∈𝐺

 

+ � 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) × 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) × 𝑟𝑠(𝑡)
𝑠∈𝑠𝑟𝑐(𝑛)

 

where 𝑗𝑢𝑚𝑝(𝑠,𝑛)  and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛)  are the probabilities of 
moving from node s to node n by jumping or by following an 
edge, respectively, and 𝑗𝑢𝑚𝑝(𝑠) and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) represent the bias 
between these two possible actions. These parameters describe the 
behavior of random walk. Since they represent probabilities, their 
values must be normalized such that 𝑗𝑢𝑚𝑝(𝑠) + 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) = 1, 
∑ 𝑗𝑢𝑚𝑝(𝑠,𝑛) = 1𝑠∈𝐺 , and ∑ 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) = 1𝑠∈𝑠𝑟𝑐(𝑛) .  

By default, GenericDiff assumes a random walk on PairupGraph 
for which the action bias 𝑗𝑢𝑚𝑝(𝑠) and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) are independent 

of the node pair s. Thus, GenericDiff takes as input a 
parameter𝑑𝑓 ∈ (0,1) (0.85 by default) such that 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠) = 𝑑𝑓 
and 𝑗𝑢𝑚𝑝(𝑠) = 1 − 𝑑𝑓 . 𝑑𝑓  defines the extent to which the 
random walk depends on the local attributes and on the graph 
topology. We define 𝑗𝑢𝑚𝑝(𝑠,𝑛) and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) as follows: 

𝑗𝑢𝑚𝑝(𝑠,𝑛) =
𝐹𝑗(𝑠,𝑛)

∑ 𝐹𝑗(𝑠, 𝑧)𝑧∈𝐺
 

𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) =
𝐹𝑓(𝑒𝑠→𝑛)

∑ 𝐹𝑗(𝑒𝑠→𝑧)𝑧∈𝑡𝑟𝑔(𝑠)
 

where 𝐹𝑗(𝑠,𝑛) and 𝐹𝑓(𝑒𝑠→𝑛) represent the tendency functions of 
jumping from the node pair s to the node pair n or following an 
edge pair 𝑒𝑠→𝑛 from s to n. Using this definition, both 𝑗𝑢𝑚𝑝(𝑠,𝑛) 
and 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠,𝑛) meet the normalization constraints required by 
the random walk model except for the nodes without outgoing 
edges (i.e., sink nodes). For these nodes, we set 𝑓𝑜𝑙𝑙𝑜𝑤(𝑠𝑠𝑖𝑛𝑘) =
0 and 𝑗𝑢𝑚𝑝(𝑠𝑠𝑖𝑛𝑘) = 1.  

The tendency function 𝐹𝑗(𝑠,𝑛) and 𝐹𝑓(𝑒𝑠→𝑛) are usually defined 
according to domain-specific properties. By default, GenericDiff 
defines 𝐹𝑗(𝑠,𝑛) = 𝑑(𝑛) and 𝐹𝑓(𝑒𝑠→𝑛)  = 𝑑(𝑒𝑠→𝑛) + 𝑑(𝑛), i.e., as 
a linear function of the distance value of relevant node and edge 
pairs. In this definition, the random walk will be more likely to 
jump to node pairs or to follow edges which link nodes having 
similar properties. We adopt this default definition of tendency 
functions in our running example. Figure 4 show the resulting 
𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) probabilities on the PairUpGraph edges (transition 
pairs). The two numbers are the forward and reverse (see below) 
𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛)  probabilities respectively. Note that 𝐹𝑗(𝑠,𝑛)  and 
𝐹𝑓(𝑒𝑠→𝑛)  become constants if the model elements and relations 
do not have any characteristic properties. This results in 
𝑗𝑢𝑚𝑝(𝑠,𝑛) = 1/𝑁, i.e., the target of a jump is selected using a 
uniform probability distribution over all the N node pairs in the 
PairUpGraph. Similarly, all the edges from node pair s have the 
same probability to be followed, i.e., 𝑓𝑜𝑙𝑙𝑜𝑤(𝑒𝑠→𝑛) = 1/
|𝑡𝑟𝑔(𝑠)|, where |𝑡𝑟𝑔(𝑠)| is the number of outgoing edges of s.  

Equation (2) is recursive. A solution to the Equation (2) for a 
PairupGraph can be reached by power iteration method [32] to a 
fix point. We define the initial vector 𝑟(0) = [𝑑(1), … ,𝑑(𝑁)] , 
i.e., the initial distance value of all N nodes in PairUpGraph. 
GenericDiff keeps computing 𝑟(𝑡 + 1)  until the Euclidean 
distance between 𝑟(𝑡 + 1) and 𝑟(𝑡) becomes less than a parameter 
𝜖 > 0, or it stops the computation after a user-defined maximum 
number of iterations. After the power iteration method terminates, 
the vector 𝑟is normalized by mean-shifting and auto-scaling. 

Table 1 The rank vector of state pairs 
Rank Pair Rank Pair Rank Pair 
1 1,A 5 6,F 10 7,D 
2 7,E 6 4,B … … 
3 5,C … … 15 3,F 
4 6,D 9 3,D … … 

Given a PairUpGraph PUG, GenericDiff performs two random 
walks: one is on the PUG and the other on the PUGreverse obtained 
by reversing the edges of the original PUG. Let 𝑟 = [𝑟𝑖]𝑖=1..𝑁 and 
𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = �𝑟𝑖_𝑟𝑒𝑣𝑒𝑟𝑠𝑒�𝑖=1..𝑁  be the stable probability vectors 
obtained from the two random walks respectively. It was shown 
[21] that ri and ri_reverse, i.e., the probability of being at the ith node 
pair after lots of exploration of PairUpGraph exactly models the 
correspondence of that pair of nodes. That is, a pair of nodes with 



high probability of being visited can be thought of as being 
“similar” to each other. GenericDiff computes a rank vector  

𝑅 = ��𝑟𝑖2 + 𝑟𝑖_𝑟𝑒𝑣𝑒𝑟𝑠𝑒2 �
𝑖=1..𝑁

 

where ri and ri_reverse are the ith element of r and rreverse 
repsectively. Table 1 shows the rank vector R (partial) for the 
running example. After the distance propagation, it becomes clear 
now that state pair (6,D) are more similar than state pair (3,D)  

3.6 Bipartite matching 
GenericDiff reduces the problem of Maximum Common Subgraph 
(MCS) into a bipartite graph matching, for which polynomial 
algorithms exist. Given two TAGs Gl(Vl,El) and Gr(Vr,Er), the 
PairUpGraph PUG(Vpu,Epu) and the rank vector R, GenericDiff 
constructs a bipartite graph BG(S,T,E,W) as follows: 
𝑆 = �𝑛𝑙|𝑛𝑙 ∈ 𝑉𝑙^[𝑛𝑙 , ? ] ∈ 𝑉𝑝𝑢�,𝑇 = �𝑛𝑟|𝑛𝑟 ∈ 𝑉𝑟^[? ,𝑛𝑟] ∈ 𝑉𝑝𝑢� 

 𝐸 = �𝑒𝑛𝑙→𝑛𝑟�[𝑛𝑙 ,𝑛𝑟] ∈ 𝑉𝑝𝑢�,𝑊:𝐸 → 𝑅 
where S and T  are two disjoint sets that consist of nodes of one 

of the two TAGs that have been paired-up with some nodes of the 
other TAG, E contains edges that connect a node in S to one in T 
iff two nodes have been paired-up, W is a weight function that 
maps an edge in E to the correspondence measure of the 
corresponding node pair. GenericDiff solves the bipartite matching 
using two algorithms, i.e., Gale-Shapley (GS) algorithm [14] for 
finding 1-to-1 stable matching and Hospital Resident (HR) 
algorithm [19] for many-to-1 stable matching. Given the 
preference lists of 𝑛𝑙 ∈ 𝑆 and 𝑛𝑟 ∈ 𝑇, a bipartite matching is stable 
iff there are no two nodes nl and nr who prefer each other to their 
current partners. Note that both algorithms analyze the relative 
preferences of node pairs instead of their absolute correspondence 
measures to find an optimal matching.  

At first glance, the formulation of MCS problem as bipartite 
matching seems like a bad idea, since it throws away all the 
important graph structure, until one recalls that the graph structure 
is really encoded in the correspondence measures of node pairs 
during the distance propagation process. However, due to the fact 
that the selection of each node pair is considered individually, 
there is nothing in bipartite matching formulation that ensures that 
the global structure among corresponding node pairs are obeyed. 
For example, GS algorithm reports that state pair (3,F) as a match. 
Unfortunately, state 3 and state F should not be paired-up at all if 
one knows that state pair (4,B) is a match, since the selection of 
(4,B) rules out the possibility of the candidate (4,C) being a match 
and (3,F) cannot be paired-up if (4,C) were not paired-up.  

To address this issue, GenericDiff combines the above bipartite 
matching with a greedy, best-first search to eliminate the 
candidate pairs that violate the global structure of already selected 
pairs. Let (nl,nr) be a selected node pair. Let (ni,nj) be a candidate 
pair in the initial collection of impossible pairs {(nl,?)}U{(?,nr)}, 
i.e., all other node pairs with nl or nr. GenericDiff detaches (ni,nj) 
from its neighboring node pairs. For an affected neighboring node 
pair, if it has not yet been selected as a match and it becomes 
isolated after detachment, i.e., not incident to any edges, then this 
neighboring node pair is appended to the collection of impossible 
pairs. This process continues until the collection of impossible 
pairs is empty. And then, GenericDiff returns to the bipartite 
matching to select another node pair as a match. Using this 
strategy, state pair (3,F) will be marked as an impossible pair after 
the selection of state pair (4,B), which prevents it from being 
selected by GenericDiff.  

The bipartite matching has also been used to determine the 
correspondence of the edges of matched node pairs. Given two 
matched node pairs s(sl,sr) and n(nl,nr), i.e., s(sl,sr) and n(nl,nr) in 
the stable matching, GenericDiff constructs a bipartite graph 
BG(S,T,E,W) based on the edge pairs e(el,er) from the node pair s 
to node pair n, where 𝑆 = {𝑒𝑙}, 𝑇 = {𝑒𝑟}, 𝐸 = �𝑒𝑒𝑙→𝑒𝑟|[𝑒𝑙 , 𝑒𝑟] ∈
𝐸𝑝𝑢}  and 𝑊: 𝑒𝑒𝑙→𝑒𝑟 → 𝑑(𝑒𝑙 , 𝑒𝑟) , and then use GS algorithm to 
determine edge correspondences.  

3.7 The output of GenericDiff 
GenericDiff reports a symmetric difference between two model 
graphs Gl(Vl,El) and Gr(Vr,Er), i.e., a set M of matched model 
elements and relations and two sets Il and Ir of unmatched model 
elements and relations. Each match in M represents a pair of 
model elements or relations, one from each model, which are 
reported by GenericDiff as matching. The sets Il and Ir consist of 
model elements and relations that are only present in Ml or Mr, i.e., 
𝐼𝑙 = ({𝑛𝑙|𝑛𝑙 ∈ 𝑉𝑙^∄[𝑛𝑙 , ? ] ∈ 𝑀}, {𝑒𝑙|𝑒𝑙 ∈ 𝐸𝑙^∄[𝑒𝑙 , ? ] ∈ 𝑀}  and 
𝐼𝑟 = ({𝑛𝑟|𝑛𝑟 ∈ 𝑉𝑟^∄[? ,𝑛𝑟] ∈ 𝑀}, {𝑒𝑟|𝑒𝑟 ∈ 𝐸𝑟^∄[? , 𝑒𝑟] ∈ 𝑀}).  

In our running example, the match set M contains five pairs of 
matched states [A,1], [B,4], [C,5], [D,6] and [E,7]; it also contains 
seven pairs of matched transitions, such as, 
[−𝑖𝑡𝑒𝑚𝑆𝑜𝑙𝑑𝐵→𝐴, +𝑔𝑎𝑣𝑒𝑙4→1]  and [+𝑏𝑖𝑑𝐵→𝐷 ,−𝑛𝑒𝑤𝐵𝑖𝑑4→6] . 
Further examining the messages of matched transitions reveals the 
incompatible messages between two interacting models. 
Furthermore, the unmatched set Il contains one unmatched state F 
and three unmatched transitions in the Auctioneer model 
(highlighted in red); Ir contains two unmatched states (state 2 and 
3) and five unmatched transitions from the Bidder model 
(highlighted in blue). These unmatched states and transitions 
reveal the behavior inconsistencies between the Auctioneer and 
Bidder protocols. 

3.8 The complexity of GenericDiff 
GenericDiff offers polynomial time complexity. The parsing of an 
input model into a typed attributed graph scans sequentially the 
model elements and relations and encode their properties, and thus 
its complexity is O(|V|+|E|) where |V| and |E| are the number of 
model elements and relations respectively. The construction of 
PairUpGraph examines the pairup feasibility of edges of two 
models to be compared and its worse case complexity is 
O(|El|×|Er|). The complexity of random walk on PairUpGraph is 
proportional to the number of edges in the PairupGraph, which is 
in turn proportional to the product of edge numbers of two models. 
Thus, the complexity of random walk is also O(|El|×|Er|). Finally, 
the complexity of stable marriage [14] and hospital resident 
algorithm [19] is O(|Vl|×|Vr|)|. 

4. Evaluation 
In this section, we present three applications of GenericDiff: 
compare UML class models of object-oriented software, compare 
the operational semantic models (LTSs) of CSP# specifications, 
and compare the PDGs of code clones. We focus on two research 
questions. First, can the domain-specific types/properties and 
syntax be effectively encoded in the specification of domain-
specific inputs to GenericDiff? Second, is GenericDiff comparably 
accurate to domain-specific differencing algorithms? 

4.1 Understanding software design evolution 
Recognizing the changes that a system has gone through its 
lifecycle is essential to understanding how and why a system has 
reached its current state. We have applied GenericDiff to identify 
the renamings and moves of program entities as object-oriented 



software evolves. Renaming and move are two types of 
elementary changes in the evolution of object-oriented software. 
Recognizing them is the goal of several domain-specific 
differencing algorithms, such as UMLDiff [47] for comparing 
UML class models, since it constitutes an essential prerequisite for 
the accurate analysis of software design and its evolution 
[24,31,47]. In this application, we applied GenericDiff to the 
empirical data used in [47] to evaluate UMLDiff. The data set 
consists of the reverse-engineered UML class models of 11 
releases of HtmlUnit, a unit testing framework for web 
applications, and of 31 releases of JFreeChart, a Java library for 
drawing charts. This allows us to comparatively evaluate the 
accuracy of GenericDiff and UMLDiff in recognizing renamed and 
moved program entities. 
4.1.1 Domain-specific types and properties 
Table 2 summarizes the metaclasses and metarelations for the 
reverse-engineered class models of Java systems that UMLDiff 
compares [47]. According to this metamodel, when parsing the 
reverse-engineered class model, GenericDiff builds a TAG, 
consisting of graph nodes whose type attribute corresponds to one 
of the nine metaclasses of model elements, and consisting of graph 
edges whose type attribute corresponds to one of the 13 
metarelations and metaassociations of relations between model 
elements. Note that we consider stereotypes as distinct types in the 
specification of domain-specific types for GenericDiff, since 
different stereotypes represent distinct semantics of model 
elements and relations. For example, Usage<<call>> represents the 
invocation relation between two operations, while Usage<<read>> 
represents that an operation accesses the content of a property. 

Table 2 The metamodel for reverse-engineered class models 
Metaclass Subsystem (Subsys), Package (Pkg), Class, 

Interface, DataType, Property, Operation, 
Operation<<constructor>>, Parameter 

Metarelation Generalization, Abstraction<<realize>>, 
Usage<<call>>/<<instantiate>>/<<read>>/<<write>>/<<throw>> 

Metaassociation ElementOwnership, DeclaredParameter, 
FeatureType, ParameterType, 
DeclaredException, CatchException 

Table 3 The composite vector attribute of model elements 
Subsys/Pkg [|𝑜𝑤𝑛𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡|] 
Class/Inteface [|𝑜𝑤𝑛𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡|], [|𝐼𝑛𝑈𝑠𝑎𝑔𝑒|, |𝑂𝑢𝑡𝑈𝑠𝑎𝑔𝑒|] 
Property [|𝑈≪𝑟𝑒𝑎𝑑≫|, |𝑈≪𝑤𝑟𝑖𝑡𝑒≫|] 
Operation [|𝐷𝑒𝑐𝑙𝑎𝑟𝑒𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟|], [|𝑈≪𝑐𝑎𝑙𝑙≫|] 

[|𝑈≪𝑟𝑒𝑎𝑑≫|, |𝑈≪𝑤𝑟𝑖𝑡𝑒≫|, |𝑈≪𝑐𝑎𝑙𝑙≫|, |𝑈≪𝑡ℎ𝑟𝑜𝑤≫|] 

UMLDiff compares the name property and neighborhood (i.e., 
related elements) of two elements; it computes two similarity 
metrics, i.e., lexical and structure similarity for identifying 
corresponding elements in the two versions of the class model. 
The lexical similarity refers to the string similarity between the 
names of two model elements. UMLDiff splits names into a 
sequence of words, using dots, dashes, underscores and case 
switching as delimiters and computes the longest common 
subsequence (LCS) [45] for measuring the similarity between two 
names. Accordingly, to adapt GenericDiff, we specify the name as 
a domain-specific property of model element. We use word 
sequence as the representation of names and select the longest 
common subsequence to measure the similarity between names. 

The structure similarity of two elements measures the overlap 
between the set of elements to which the two elements are related, 
according to a given relation type. For example, the structure 
similarity of two operations is determined by the parameters they 
declare, their incoming usage dependencies (the operations that 
call them), and their outgoing usage dependencies (the properties 
they read and write, the operation they call, the classes/interfaces 
they instantiate and the exceptions they throw). Accordingly, we 
define a composite numeric vector for approximating the 
neighborhood of different types of elements (see Table 3). The 
numeric vector summarizes the number of the related elements of 
a given relation type. We select Manhattan distance to measure the 
differences between the neighborhoods of two elements. 
4.1.2 Pairup feasibility predicates 
The UML specification [54] guarantees that all model elements 
can be visited by traversing the containment hierarchy (i.e., the 
spanning tree induced by ElementOwnership relations) of a class 
model and the children of their containing parent are unique in 
terms of their names. UMLDiff exploits this domain-specific 
heuristics to prune matching candidates: (H1) it considers as 
matches the elements with the same Fully-Qualified Names 
(FQNs); (H2) it considers as matches the same-name elements 
contained in a pair of renamed or moved elements; (H3) it 
considers as renaming candidates only the unmatched elements 
within the context of a pair of mapped containing elements; (H4) it 
considers as move candidates only the unmatched same-name 
elements. We define three pairup feasibility predicates for 
GenericDiff to prune the matching candidates accordingly: 

𝑓(𝑛𝑙 ,𝑛𝑟) = 𝑓1(𝑛𝑙 ,𝑛𝑟) & �𝑓2(𝑛𝑙 ,𝑛𝑟) | 𝑓3(𝑛𝑙 ,𝑛𝑟)� 
𝑓1(𝑛𝑙 ,𝑛𝑟) = 𝑠1(𝑛𝑙 ,𝑛𝑟) |  𝑠2(𝑛𝑙 ,𝑛𝑟) 

𝑓2(𝑛𝑙 ,𝑛𝑟) = 𝑠3(𝑛𝑙 ,𝑛𝑟) & �𝑠4(𝑛𝑙 ,𝑛𝑟) | �𝑠5(𝑛𝑙 ,𝑛𝑟) & 𝑠6(𝑛𝑙 ,𝑛𝑟)�� 

 𝑓3(𝑛𝑙 ,𝑛𝑟) = ! 𝑠3(𝑛𝑙 ,𝑛𝑟) & �𝑠4(𝑛𝑙 ,𝑛𝑟) & 𝑠5(𝑛𝑙 ,𝑛𝑟) & 𝑠6(𝑛𝑙 ,𝑛𝑟)� 
𝑠1(𝑛𝑙 ,𝑛𝑟) = (𝑛𝑙 .𝐹𝑄𝑁 == 𝑛𝑟 .𝐹𝑄𝑁) 

𝑠2(𝑛𝑙 ,𝑛𝑟) = (∄𝑛𝑙′ ∈ 𝑉𝑙 ,𝑛𝑙′.𝐹𝑄𝑁 == 𝑛𝑟 .𝐹𝑄𝑁) &  
(∄𝑛𝑟′ ∈ 𝑉𝑟 ,𝑛𝑙 .𝐹𝑄𝑁 == 𝑛𝑟′ .𝐹𝑄𝑁) 

𝑠3(𝑛𝑙 ,𝑛𝑟) = [𝑛𝑙 . 𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑟 .𝑝𝑎𝑟𝑒𝑛𝑡] ∈ 𝑉𝑝𝑢 
𝑠4(𝑛𝑙 ,𝑛𝑟) = (𝑛𝑙 .𝑛𝑎𝑚𝑒 == 𝑛𝑟 .𝑛𝑎𝑚𝑒) 

𝑠5(𝑛𝑙 ,𝑛𝑟) = ∄𝑛𝑙′ ∈ 𝑉𝑙 , [𝑛𝑙′. 𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑟 .𝑝𝑎𝑟𝑒𝑛𝑡] ∈ 𝑉𝑝𝑢  
& 𝑛𝑙′.𝑛𝑎𝑚𝑒 == 𝑛𝑟 .𝑛𝑎𝑚𝑒 

𝑠6(𝑛𝑙 ,𝑛𝑟) = ∄𝑛𝑟′ ∈ 𝑉𝑟 , [𝑛𝑙 .𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑟′ . 𝑝𝑎𝑟𝑒𝑛𝑡] ∈ 𝑉𝑝𝑢  
& 𝑛𝑙 .𝑛𝑎𝑚𝑒 == 𝑛𝑟′ .𝑛𝑎𝑚𝑒 

The predicate f1 enacts the UMLDiff heuristics H1. An element 
in one model can only be paired-up with the element of the same 
fully-qualified name in the other model if there is such a 
counterpart. The predicate f2 enacts H2 and H3. Given two 
elements nl and nr, if their containing elements are paired-up (s3), 
the two elements can be paired-up if they have the same-name (s4) 
or if there are no other elements 𝑛𝑙′ (𝑛𝑟′ ) whose containing element 
(parent) is paired-up with the containing elements of nr (nl) and 
whose name is the same as that of nr (nl) (s5 and s6). The predicate 
f3 enacts H4. Given two elements nl and nr, if their containing 
elements are not paired-up (s3), the two elements can be paired-up 
if they have the same-name (s4) and if there are no other elements 
𝑛𝑙′ (𝑛𝑟′ ) whose containing element is paired-up with the containing 
elements of nr (nl) and whose name is the same as that of nr (nl). 

In addition to the above four heuristics, UMLDiff considers two 
elements as renaming or move candidates only if their similarity 



metric is above the user-specified renaming or move thresholds. 
Accordingly, we define another predicate as follows: 

𝑓4(𝑛𝑙 ,𝑛𝑟) = (|{𝑛𝑙′}| > 0 | |{𝑛𝑟′ }| > 0) & 
min(|{𝑛𝑙′′}|, |{𝑛𝑟′′}|)
�{𝑛𝑙′}� + |{𝑛𝑟′ }|

> 𝑇 

where 𝑛𝑙′ ∈ 𝑛𝑒𝑏(𝑛𝑙) , 𝑛𝑟′ ∈ 𝑛𝑒𝑏(𝑛𝑟) , [𝑛𝑙′′,𝑛𝑟′′] ∈ 𝑛𝑒𝑏([𝑛𝑙 ,𝑛𝑟]) 
represents the neighboring elements or element pairs of 𝑛𝑙, 𝑛𝑟 and 
[𝑛𝑙 ,𝑛𝑟]  in the input graphs Gl, Gr and PairUpGraph PUG, 
respectively, and T is a user-specified threshold. We set T at 0.3, 
which is the threshold used in [47] to evaluate UMLDiff. The 
predicate f4 defines that two elements can only be paired-up if 
there are “enough” related elements being paired-up. Note that 
according to f4, an element cannot be paired-up with an “isolated” 
element, i.e., the elements with no neighboring elements. 
4.1.3 Other domain-specific inputs 
UMLDiff shows that the similarity between two elements can be 
inferred by considering the similarity of their neighbors [47]. 
Thus, in the application of GenericDiff for comparing UML class 
models, we use the default GenericDiff random walk tendency 
functions 𝐹𝑗(𝑠,𝑛) = 𝑑(𝑛)  and 𝐹𝑓(𝑒𝑠→𝑛)  = 𝑑(𝑒𝑠→𝑛) + 𝑑(𝑛) , 
which defines 𝐹𝑗(𝑠,𝑛)  and 𝐹𝑓(𝑒𝑠→𝑛)  as linear functions of the 
distance value of relevant node pair and edge pair.  

In the evolution of object-oriented software, refactorings often 
results in many-to-1 correspondences between model elements. 
For example, extract superclass moves a few methods from 
subclasses to a new superclass. Thus, we configure GenericDiff to 
use HR algorithm [19] for finding many-to1 matching. 
4.1.4 Results 
The matching process of UMLDiff is hardcoded with the specific 
element/relation types, properties and heuristics that are effective 
for the comparison of UML class models. In this section, we 
defined these domain-specific types, properties and heuristics as 
the specification of domain-specific inputs to GenericDiff, 
separated from its generic matching process. Overall, GenericDiff 
achieves the comparable accuracy to UMLDiff. The GenericDiff’s 
precision and recall in recognizing renamed and moved program 
entities is 92% and 88% for JFreeChart and 97% and 98% for 
HtmlUnit. The precision and recall of UMLDiff is 91% and 93% 
for JFreeChart and 95% and 98% for HtmlUnit [47].  

The recall of GenericDiff in JFreeChart case study is slightly 
worse than that of UMLDiff. This is because the reverse-
engineered class models contain certain amount of elements with 
no related elements [47,48], such as the methods with no incoming 
and outgoing usage dependencies or the empty interfaces. The 
composite vector attributes of these elements are all zero vectors. 
Furthermore, such elements when paired-up become the isolated 
nodes in PairUpGraph; they cannot effectively participate in the 
distance propagation process. Thus, we exclude them from the 
PairUpGraph (see f4). Since these elements do not use or are used 
by other elements, ignoring them does not pose a significant threat 
to the quality of GenericDiff’s results. 

4.2 Debugging evolving system behaviors 
The Labeled Transition System (LTS) [7] provides a generic 
operational semantic model for analyzing and verifying the 
behavior of computer programs. Program behaviors (generated 
from the operational semantics) evolve as the program evolves. 
Even when a program remains unchanged, its LTS model explored 
by a model checker or analyzer may still change due to the 
application of different model optimization techniques [7]. 
Pinpointing the differences in the evolving LTSs of a program can 

lead to effective analysis of program faults and the behavioral 
change patterns of the program. In this application, we have 
applied GenericDiff to compare the evolving LTSs of CSP# [42] 
programs.  
4.2.1 Syntax and operational semantics of CSP# 
CSP# (Communication Sequential Program #) [42] is a 
specification language for modeling and verifying the behavior of 
concurrent programs.  A CSP# program consists of several process 
definitions, in the form of 𝑃(𝑥1, 𝑥2 … , 𝑥𝑛) = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑥𝑝, where 
P is the process name, 𝑥1, 𝑥2 … , 𝑥𝑛 is an optional list of process 
parameters and ProcessExp is a process expression. The process 
expression defines the computational logic of the process. Figure 5 
presents the partial BNF description of CSP# process expression. 
CSP# supports various types of process constructs, including 
primitives, event prefixing, channel communication, hiding, and 
various process compositions. The CSP# parser parses a CSP# 
program into a configuration graph CG(V,E), i.e., the internal 
syntactic model of a CSP# program. A CG(V,E) is a rooted 
directed graph, where the vertex set V contains the processes 
defined in the program and the edge set E contains the 
composition relations between the processes. 

P = Stop | Skip   (primitives) 
| e.x{prog} → P  (event prefixing) 
| ch!x → P | ch?x → P  (channel output/input) 
| P \ X   (hiding) 
| P[] Q    (choice operators) 
| if b {P} else {Q}  (conditional choice) 
| P; Q | P || Q | P||| Q | P ∆ Q (compositions) 
| ref(Q)   (process reference) 

Figure 5 The BNF description of CSP# process expression 
The structural operational semantics of CSP# language [42] 

defines the behavior of a CSP# program in terms of a set of 
transition rules. These rules translate the syntactic model of a 
CSP# program into an LTS. An LTS is a 3-tuple (S, init, →), 
which consists of a set S of global states, the initial states init∈S, 
and a set of labeled transition relations →. A state is composed of 
two components (V, P) where V is a valuation function mapping a 
variable name (or a channel name) to its value (or a sequence of 
items in the buffer) and P is the current process expression. A 
transition is a labeled directed relation from a source state to a 
target state. The transition label represents the engaged event, 
which has a name and an ordered list (possible empty) of 
parameter expressions. 
4.2.2 Comparing configuration graphs 

The process definitions may change as the CSP# program 
evolves. As they are a key factor to determine the state similarity 
in the corresponding LTSs, we first apply GenericDiff to compare 
the configuration graphs of two versions of a CSP# program in 
order to determine the corresponding process definitions in two 
versions of the program. GenericDiff parses a configuration graph 
into a TAG, consisting of graph nodes whose type attribute 
represents the type of the corresponding process defined in the 
program, and consisting of graph edges whose type attribute 
represents the composition relation between the processes. 

We specify several characteristic properties for discriminating 
processes. First, we encode the name of event prefixing (e) and 
channel output/input (ch) process in a char sequence and use LCS 
[45] to measure the similarity between two names. Second, we 
encode the valuation of parameter expression x of event prefixing 
and channel output/input process in a numeric vector and use 



Manhattan distance to measure the similarity between two 
parameter expressions. Third, we encode the boolean expression b 
of the conditional choice process and the sequential program prog 
attached to the event prefixing process in a char sequence and use 
LCS [45] to measure the similarity between two boolean 
expressions or sequential programs. Finally, we define a numeric 
vector for summarizing the number of composed processes of 
choice, parallel and interleave process. We use Manhattan distance 
to measure the similarity between the numbers of composed 
processes. 

We define two pairup feasibility predicates for the comparison 
of configuration graphs. First, each type of CSP# process 
construct defines a distinct system behavior. It makes no sense to 
pairup process constructs of different types. Thus, we define that, 
given the graph nodes nl and nr of two processes, they can be 
paired-up iff 𝑛𝑙 . 𝑡𝑦𝑝𝑒 == 𝑛𝑟 . 𝑡𝑦𝑝𝑒 , i.e., their type attributes are 
the same. Second, we do not want two very different processes to 
be paired-up. Thus, we define that two graph nodes can be paired-
up iff the distance between the two nodes is less than the 
minimum distance value of the node to null, i.e., 𝑑(𝑛𝑙 ,𝑛𝑟) <
𝑚𝑖𝑛�𝑑(𝑛𝑙 ,𝑛𝑢𝑙𝑙),𝑑(𝑛𝑢𝑙𝑙,𝑛𝑟)�. 

As the graph edges of configuration graph represent the 
composition relations between processes, the similar process tend 
to be composed of other similar processes. Thus, we use the 
default random walk tendency function of GenericDiff framework, 
which are defined as linear functions of the distance value of 
relevant node and edge pair. Finally, we instruct GenericDiff to 
select a one-to-one matching between processes. 
4.2.3 Comparing labeled transition systems 

GenericDiff parses an input LTS into a TAG, consisting of 
graph nodes whose type attribute is state and graph edges whose 
type attribute is transition.  

We specify two characteristic properties for discriminating state 
nodes. First, we encode the valuation V of global variables and 
channels at a state in a composite numeric vector, consisting of a 
numeric vector for the variables of primitive data types (integer 
and boolean) and a numeric vector for each variable of array or 
structured data type. Note that the definition of this composite 
numeric vector may be recursive, since the array and structure data 
type may contain other array and/or structured data types. Given 
the composite vector attributes of two state nodes, we use 
Manhattan distance to measure the similarity between the 
valuation of global variables and channels at two states. This 
distance computation may also be recursive. 

Second, the process expression P at a state is another 
discriminating property of state nodes. However, comparing the 
process expression literally cannot express the similarity of the 
behaviors of states. In this application, we approximate the process 
expression P at state S with a set of active processes, which 
consists of the event prefixing and channel output/input processes 
obtained from P according to the structural operational semantics 
of CSP#. These active processes define the behavior of the state S, 
i.e., performing these processes advances the LTS one step further 
from the state S. Give the sets of active processes of two state 
nodes, we use Jaccard coefficient, a commonly used metric for 
comparing two sets of elements to measure the behavioral 
similarity of two states. When comparing the LTSs of two 
versions of a CSP# program, the process definitions may change 
as the program evolves. In this case, we rely on the matching 
results of comparing the corresponding configuration graphs to 
determine the correspondences between active processes. 

The transition label (i.e., engaged event) is a discriminating 
property of the edges of the LTS graph. We encode the name of 
engaged event in a char sequence and use LCS [45] to measure the 
similarity between two event names. Furthermore, we encode the 
valuation of parameter expressions (if any) of engaged event in a 
numeric vector and use Manhattan distance to measure the 
similarity between the parameter expressions of two events.  

We define one pairup feasibility predicate for the comparison of 
LTSs. We do not want two very different states to be paired-up. 
Thus, we define that 𝑑(𝑛𝑙 ,𝑛𝑟) < 𝑚𝑖𝑛�𝑑(𝑛𝑙 ,𝑛𝑢𝑙𝑙),𝑑(𝑛𝑢𝑙𝑙,𝑛𝑟)� , 
i.e., two state nodes nl and nr (or transition edges) can be paired-up 
iff the distance between the two nodes (or edges) is less than the 
minimum distance value of the node (or edge) to null. 

Our formulation of the LTS similarity is a quantitative analogue 
of exact bisimilarity [29] in that similar states are linked to other 
similar states by similar transitions. Thus, we use the default 
random walk tendency function of GenericDiff framework, which 
are defined as linear functions of the distance value of relevant 
state and transition pair. Finally, we instruct GenericDiff to select 
a one-to-one matching between states and transitions. 
4.2.4 Results 

We applied GenericDiff to compare the LTSs of a correct and a 
faulty version of a concurrent stack program written in CSP#. The 
faulty version violates the linearizibility [17] of the concurrent 
stack due to the decrease of atomicity level of two conditional 
choices. The two LTSs contain 438 states and 1120 transitions and 
1102 states and 2642 transitions, respectively. The precision and 
recall of GenericDiff in comparing these two LTSs is 95% and 
95%. Inspecting the differences between the two LTSs identifies 
four types of incorrect interactions between two processes that 
result in the violation of the linearizibility of concurrent stack.  

The process counter abstraction and the cutoff number is a 
common state abstraction technique for analyzing parameterized 
systems [7]. We applied GenericDiff to compare the 20 LTSs (ltsi 
and ltsi+1, obtained by setting the cutoff number to 1..20) of a 
parameterized readers-writer-lock CSP# program. We also applied 
GenericDiff to compare the 9 LTSs of a parameterized Java meta-
lock CSP# program. In both studies, the precision and recall of 
GenericDiff in comparing these LTSs is 100% and 100%. The 
differences reported by GenericDiff reveal the behavioral change 
patterns of parameterized systems as the cutoff number increases. 

Partial order reduction [7] exploits the commutativity of 
concurrently executed transitions to reduce the state space to be 
explored by a model checking algorithm. We applied GenericDiff 
to compare the two LTSs of a dining philosophers CSP# program, 
explored with and without partial order reduction. GenericDiff 
perfectly (100% precision and 100% recall) isolates the states and 
transitions that have not been explored when the partial order 
reduction is in place. This helps the developers better understand 
the impact of partial order reduction technique. 

There have been two domain-specific algorithms [30,41] for 
comparing state-machine-like models. Sokolsky et al. [41] 
compute the overall similarity of the LTSs of viruses to classify 
them into families. Nejati et al. [30] find and merge the differences 
between StateCharts requirement specifications. The random walk 
process of GenericDiff is analogue to the Markov decision process 
used in these two algorithms. But, as the objective and the output 
of our work and theirs are different, three approaches are not 
directly comparable. In terms of precisions and recalls, 
GenericDiff performs as well as these two domain-specific 
algorithms. 



4.3 Semantic differencing of software clones 
Clone detection [1,3,13,25] provides a scalable and efficient way 
to detect similar code fragments. But it offers little explanation 
about the characteristics of clones, such as how clones are 
different if they are not identical. Understanding these 
characteristics is crucial during post-detection clone analysis and 
program maintenance that affect clones. In this application, we 
complement clone detection with program differencing for the 
purpose of characterizing the differences of clones. We capture 
semantic information of clones from Program Dependence Graphs 
(PDGs) that encode data and control dependencies between 
program statements. We then adapt GenericDiff to compute the 
semantic differences of clones in terms of the structural 
differences and differential properties between their PDGs. 

4.3.1 Clone detection 
In this application, we assume there is a clone detection method 
that can detect similar methods m1 and m2 (i.e., cloned methods) 
that contain one or more similar code fragments according to 
certain similarity measurement. We use CloneMiner [2] for the 
detection of code clones. CloneMiner finds simple clones (i.e., 
similar fragments of contiguous codes) first, using Repeated 
Tokens Finder, a token-based simple clone detection technique 
[1]. Then, it mines simple clones with frequent itemset mining 
[16] to detect structural clones across large program units, such as 
cloned methods that contain one or more simple clones. 

4.3.2 Program dependence graph 
We adopt intra-method PDG [11] to capture semantic information 
of clones. A PDG is an intermediate program model that encodes 
both the data and control dependences between program 
statements. Given a cloned method m, we use Wala [55], a static 
analysis library for Java bytecode, to generate the PDG of the 
method m. Wala represents program statements in a SSA-based 
register transfer language.  

The nodes of a Wala-PDG consist of the SSA statements 
constructed from the source code. Wala supports 23 types of SSA 
statements. We categorize them into three groups: operation 
statements, branch statements, and parameter/constant statements. 
A SSA statement has the following properties: a collection of 
symbols that it uses, at most one result symbol that it defines, a 
collection of incoming dependences and/or a collection of 
outgoing dependences. A symbol is a unique id representing a 
variable or value. Different concrete types of SSA statements can 
have different sets of additional properties.  

The edges of a PDG represent the control and data dependences 
between SSA statements. Given two SSA statements, s1 and s2, the 
data dependence from s1 to s2 means that the value produced at s1 
may be used at s2. A control dependence from s1 to s2 means that 
the choices of executing s2 depends on the test the evaluation of s1. 
A control dependence may have an optional label, representing the 
corresponding choice. 
4.3.3 Computing semantic differences of clones 
GenericDiff parses an input PDG into a TAG, consisting of graph 
nodes whose type attribute represents the type of the 
corresponding SSA statements [10], and consisting of graph edges 
whose type attribute represents either control or data dependence. 

We specify the following properties of SSA statements and 
dependences for discriminating graph nodes and edges. First, we 
ignore the result and uses symbols of program statements, since 
they are not stable across PDGs. Second, we encode enumeration 
properties of an SSA statement or dependence in an enumeration-

literal vector associated with the corresponding graph nodes and 
edges. Such enumeration properties include: the label of control 
dependences, the operator code of unary operation (negate), 
binary operation (e.g., add, minus, multiply), and compare and 
branch (e.g., >, <, !=) statements, and the isEnter of 
synchronization statements. We also encode the constant value of 
constant statements in a literal vector. Since we are interested in 
whether two enumeration or constant values are different, 
hamming distance is used to measure the similarity between two 
literal vectors. 

Third, we ignore the signature of methods being invoked in 
INVOKE statements and the signature of fields being accessed in 
FGET (field read) and FPUT (field write) statements, since they 
can be different across cloned methods. However, we specify the 
return type of methods being invoked and the type of field being 
accessed as a characteristic property of INVOKE and FGET/FPUT 
statements. The underlying intuition is that the methods and fields 
that have different types may play different roles in cloned 
methods. We encode the return type of methods being invoked and 
the type of fields being accessed in a typename-literal vector. We 
also encode the relevant type properties of other kinds of SSA 
statements to discriminate the corresponding graph nodes, such as 
the element type of ARRAYLOAD and ARRAYSTORE statements, 
the type being checked in INSTANCEOF statements, and the type 
being instantiated in NEW statements. Similar to the comparison 
of enumeration-literal vectors, we use hamming distance to 
measure the similarity between two typename-literal vectors. 

Forth, we specify a numeric vector of two elements to 
summarize the number of incoming and outgoing dependences of 
a SSA statement. We also specify a numeric vector to encode the 
number of branches of SWITCH statements, the array dimension 
of NEW statements, and the number of assignments of PHI 
statements. As these numeric vectors represent the size of a 
collection, we use Manhattan distance to measure their similarity. 

We define one pairup feasibility predicate for the comparison of 
PDGs. Since different types of program statements (dependences) 
define distinct semantics [36], we define that two nodes (edges) 
can be paired-up as matching candidates iff their type attributes 
are the same. 

We assume that similar SSA statements are related to other 
similar statements in two PDGs. Thus, we use the default random 
walk tendency functions provided by GenericDiff framework. 
Finally, we specify GenericDiff to select a one-to-one matching 
between program statements (dependences). 
4.3.4 Results 
Given two PDGs of a pair of cloned methods (m1,m2) and the 
matching results by GenericDiff, we identify the following five 
types of characteristic differences of cloned methods by searching 
for certain patterns in the two PDGs and their differences: 
1. Differential properties summarize all the pairs of matched 

program statements that have different properties. 
2. Additional branches are the unmatched branch statements 

before or after a pair of matched operation statements. 
3. Partially matched branches are the unmatched branch 

statements before or after a pair of matched branch 
statements. 

4. Additional operations are the unmatched operation 
statements before or after a pair of matched statements. 

5. Unmatched operation pairs are the pairs of unmatched same-
type operation statements before or after a pair of matched 
statements. 



We have implemented a tool Clone Differentiator that supports 
the PDG differencing of code clones with GenericDiff. We have 
evaluated Clone Differentiator on three Java systems, Java IO 
library, Berkeley Database and Eclipse Plugins.  

By focusing on areas that are known to be highly similar, the 
accuracy of GenericDiff in comparing the PDGs of clones is good. 
We manually inspected the PDG comparison results of randomly-
selected 10% of all the analyzed clone pairs. The precision (i.e., 
the percentage of the correctly reported matches) and the recall 
(i.e., the percentage of matched reported) of GenericDiff is around 
94% and 96%, respectively. 

Furthermore, these evaluations found PDG differencing of 
clones useful in the following three scenarios: 

Suggesting appropriate refactoring actions. Code cloning can 
result in unused, dead code in the system that hinders program 
comprehension and maintainability [12]. Detecting such code 
fragments and analyzing how different they are help developers to 
decide what action to take. For example, in our case studies, Clone 
Differentiator can assist in distinguishing identical dead code, 
methods that are “part of” another, parallel inheritance hierarchies, 
and deviations of design patterns. 

Consistent management of clones. Clones pose additional 
problems if they do not evolve synchronously [22,26]. Detecting 
the differences of clones raises the awareness of their 
inconsistencies so that they can be graceful handled. For example, 
in Java IO library, Clone Differentiator revealed three inconsistent 
programming styles of validating the input parameters, handling 
null exceptions and using synchronization. We also found the 
inconsistencies of clones be indicative of potential bugs. 

Identifying variations of a common solution. Reusing and 
adapting a common solution in different contexts can prevent 
errors by reusing trusted solutions. This often results in code 
clones with variations, depending on the context. In our case, we 
found that analyzing the PDG differences of clones helps 
developers better understand the commonalities and variations of 
similar solutions in different contexts. 

5. Conclusion and future work 
In this paper, we presented GenericDiff, a general framework for 
software model comparison. It exhibits several advantages over 
the current state of the art. Because it separates the specification of 
domain-specific inputs from the generic matching process, it is 
easy to adapt GenericDiff in a new application domain. Because it 
encodes domain-specific properties and syntax in two generic data 
structures (i.e., TAG and PairUpGraph), the domain-specific 
properties and syntax can be uniformly explored in the generic 
matching process. Because it leverages the useful techniques (i.e., 
random walk on graph and bipartite matching) developed in 
pattern mining and graph matching, it is capable of producing an 
accurate comparison report for diverse types of models.  

We have implemented GenericDiff and adapted it in three 
applications for comparing UML class models, labeled transition 
systems, program dependence graphs and product feature models. 
To the best of our knowledge, there has been no other algorithm 
that has such broad coverage and can still produce accurate and 
useful comparison report. 

Our plans for future work include applying GenericDiff to 
compare heterogeneous models, i.e., a mixture of different types 
of models. We also plan to extend GenericDiff to other application 
areas, such as the protocol adaptation for service integration and 
debugging programs with evolving requirements. 
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Appendix 1 
Table 4 summarizes the basic data types and their corresponding 
atomic vector attributes that GenericDiff supports. GenericDiff 
uses a set of simple distance calculators to determine the similarity 
of the properties of model elements and relations, encoded in 
vector attributes. 

Table 4 Atomic vectors and standard distance calculators 
Dada type Representation Distance calculator 
Enumeration Literal index vector Hamming 
Numeric type Numeric vector Manhattan/Euclidean 
String Literal index vector Hamming 

Word set/bag/sequence Jaccard/LCS 
TF/IDF vector Cosine similarity 

Collection numeric vector Manhattan 
Set/bag/Sequence Jaccard/LCS 

A property of enumeration type or constant values can be 
represented in a literal index vector. Each literal or constant is 
mapped onto a vector position. The value at that position is set to 
1 for a property of that literal value. Since we are only interested 
in whether two literal or constant values are different, hamming 
distance is used to measure the similarity of two literal index 
vectors. Given two literal index vector vl, and vr, their hamming 
distance is |{𝑖|𝑣𝑙[𝑖] ≠ 𝑣𝑟[𝑖]}|, i.e., the number of vector elements 
that are different. 

Several properties of numeric type can be represented in a vector 
of numeric values. Depending on the metric space of numeric 
values, either Manhattan or Euclidean distance can be used to 
measure the similarity of two numeric vectors. Given two numeric 
vector vl, and vr, their Manhattan distance is ∑ |𝑣𝑙[𝑖] − 𝑣𝑟[𝑖]|𝑛

𝑖=1 , 
i.e., the sum of the value differences of corresponding vector 
elements; their Euclidean distance is the length of the line 
segments 𝑣𝑙𝑣𝑟������, i.e., �∑ (𝑣𝑙[𝑖] − 𝑣𝑟[𝑖])2𝑛

𝑖=1 . 
A property of String type can also be represented in a literal 

index vector when the set of string values of this property is fixed.  
Each position in the vector is indexed for a string value. In this 
case, hamming distance is used to measure the similarity of two 
vectors of string values.  

For a property of String type, GenericDiff can exploit the 
common convention to split a string value into a set or bag of 
word. A set of words consist of unique word elements, while a bag 
of words may contains duplicate words. The Jaccard coefficient 
[43] is often used to measure the similarity of two sets or bags. 
Given two word sets/bags vl, and vr, their Jaccard coefficient is 
|𝑣𝑙 ∩ 𝑣𝑟| |𝑣𝑙 ∪ 𝑣𝑟|⁄ , i.e., the size of the intersection of two sets 
divided by the size of their union. GenericDiff can also represent a 
string value as a sequence of words. In this case, the longest 
common subsequence (LCS) [45] is used to measure the similarity 
of two sequences. 



GenericDiff can further analyze the word sets to generate a 
Term-Frequency/Inverse-Document-Frequency (TF-IDF) vector 
[38] for each string value. It is a statistical measure used to 
evaluate how important a word is to a document in a corpus. The 
importance increases proportionally to the number of times a word 
appears in the document but is offset by the frequency of the word 
in the corpus. The cosine similarity is often used to determine the 
distance between two TF/IDF vectors. Given two TF-IDF vectors 
vl, and vr, their cosine similarity is 

 ∑ 𝑣𝑙[𝑖]𝑣𝑟[𝑖]𝑛
𝑖=1 ��∑ 𝑣𝑙[𝑖]2𝑛

𝑖=1 �∑ 𝑣𝑟[𝑖]2𝑛
𝑖=1 �⁄  

i.e., the dot product of two vectors divided by the product of the 
Euclidean distance of two vectors. 

Since property is multiplicity element [54], it may represent a 
collection of values. A collection can be represented in an atomic 
vector. For example, the size of a collection can be encoded in a 
numeric vector. Alternatively, the values of a collection can be 
represented in a set or bag, depending on whether the property is 
unique. Or the collection can be represented in a sequence of 
values, depending on whether the property is ordered. The 
corresponding distance calculators can be used to measure the 
similarity of two collections.  
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