
PAT 3: An Extensible Architecture for Building
Multi-domain Model Checkers

Yang Liu
National University of

Singapore
liuyang@comp.nus.edu.sg

Jun Sun
Singapore University of
Technology and Design
sunjun@sutd.edu.sg

Jin Song Dong
National University of

Singapore
dongjs@comp.nus.edu.sg

ABSTRACT
Model checking is emerging as an effective software verifica-
tion method. Although it is desirable to have a dedicated
model checker for each application domain, implementing
one is rather challenging. In this work, we develop an ex-
tensible and integrated architecture in PAT3 (PAT version
3.*) to support the development of model checkers for wide
range application domains. PAT3 adopts a layered design
with an intermediate representation layer (IRL), which sep-
arates modeling languages from model checking algorithms
so that the algorithms can be shared by different languages.
IRL contains several common semantic models to support
wide application domains, and builds both explicit mod-
el checking and symbolic model checking under one roof.
PAT3 architecture provides extensibility in many possible
aspects: modeling languages, model checking algorithms, re-
duction techniques and even IRLs. Various model checkers
have been developed under this new architecture in recent
months. This paper discusses the structure and extensibility
of this new architecture.

1. INTRODUCTION
Software development has entered a mass production er-

a. To ensure quality, software verification is becoming a
compulsory step in the software development life cycle, es-
pecially for safety and critical systems. Among the princi-
pal validation/verification methods (e.g., simulation, testing
and theorem proving), model checking [12] has emerged as
a promising and powerful approach to automatically verify
software systems. Model checking has been successfully used
in practice to verify complex circuit design, communication
protocols, driver software, software process models, software
requirement models, architectural frameworks, design mod-
els, product lines and system implementations.
Model checking is the application of an automatic pro-

cess to formally verify whether a model satisfies a proper-
ty by exhaustively exploring the state space of the model.
Till now, model checking has become a wide area includ-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ing many different approaches (e.g., explicit model checking
and symbolic model checking) catering for different proper-
ties (e.g., temporal logics, refinement relationship, etc.) and
state space reduction techniques (e.g., partial order reduc-
tion, symmetry reduction, etc.). Applying model checking in
a new application domain requires in-depth understanding
of model checking techniques. Unfortunately, the complexi-
ty prevents many domain experts, who may not be experts
in the area of model checking, from successfully applying
model checking to their domains. In the following, we ex-
amine the challenges of adopting model checking techniques.

Using existing model checkers
The most commonly used approach is to use existing mod-
el checkers (e.g. NuSMV [10], SPIN [18] and FDR [27]).
The difficulty of this approach is explained below. First,
the learning curve is steep. To precisely understand the se-
mantics of the language and various verification options is
highly non-trivial. Second, existing model checkers may be
inefficient or insufficient to model domain specific applica-
tions, due to lack of language features or data structures.
For example, multi-party barrier synchronization is difficult
to achieve in SPIN model checker. Translating a domain-
specific model and properties into the input language of a
general purpose model checker may often be ad hoc.

Extending existing model checkers
To support a new application domain, users often need to
customize the existing model checkers for language exten-
sion, different state encoding, new verification algorithms or
reduction techniques. Existing tools are generally compli-
cated and highly coupled in order to support efficient veri-
fication. For example, SPIN generates a verifier program in
C by combining code fragments (in string format) and user
input model rather than direct verification. The source code
of PRISM [16] is mixed with Java and C++. To understand
the source code is generally difficult or infeasible.

Developing a new model checker Developing a model
checker from scratch is even more challenging. The basic
functionalities of a model checker include language parsing,
system simulation, verification algorithms, state reduction
techniques and counterexample generation and display. To
finish all with a sound system requires years of efforts. All
established model checkers (e.g., SPIN, NuSMV, Uppaal [4]
and PRISM) have 10 to 20 years history.

To tackle the above challenges, we propose an extensible

framework called PAT3 (Process Analysis Toolkit version
3) [1], which facilitates effective incorporation of domain
knowledge with model checking techniques. Starting from a
simple model checker, PAT1 (version 1) [31] supported the
model and verification of concurrent state-rich systems with
various fairness conditions. PAT2 (version 2) [23] focused
on reusing the core model checking algorithms in the con-
current module of PAT1, e.g. web service reasoning module.
PAT3 (this work) does a complete architecture redesign that
aims to support systematic construction of verification sys-
tems for wider application domains and extensions in various
aspects. The contribution of this work is three-fold.
Firstly, we propose a novel framework with layered ar-

chitecture (see Fig. 1 in page 3). Previous development
on model checkers focuses on effectiveness with a specif-
ic modeling language, e.g., SPIN, NuSMV, FDR, PRISM,
etc. Extensibility is never a concern in these tools. Lat-
er, the need for algorithm reuse and extensibility has been
addressed by frameworks like Bogor [14], Model-Checking
Kit [28], JPF [32], etc. These tools have the similar de-
sign as PAT2, hence extensions and customizations are lim-
ited (see Section 7 for details). Compared with these frame-
works, PAT3’s architecture design has the following advan-
tages. (1) The layered design reduces the coupling between
different components. Particularly, the intermediate layer
separates modeling languages from verification algorithm-
s completely. This design facilitates the reuse of existing
model checking techniques and easy extension of modeling
languages. PAT supports three intermediate representations
(i.e. Labeled Transition System, Timed Transition System
and Markov Decision Process), which allow PAT3 to sup-
port a wide range of modeling languages. To the best of our
knowledge, PAT3 is the only model checker supporting veri-
fication for a hierarchical modeling language for concurrent,
real-time (with dense-time semantics) and probabilistic sys-
tems1. (2) PAT3 has a modular design. Each application do-
main (or modeling language) is encapsulated into a plug-in
module, which is loaded dynamically at runtime. Currently,
11 modules for different application domains have been de-
veloped, which demonstrates the practicality and scalability
of our framework. (3) PAT3 integrates both explicit-state
model checking and symbolic model checking (based on BD-
D [8] or SAT solvers) under one roof, which allows users to
leverage the advantages of different verification approaches.
Especially, we develop a BDD library that is embedded in
PAT3 for encoding compositional operators (e.g., interleave
and choices operators). With it, users can generate BDD en-
coding for concurrent systems without knowing the Boolean
formulae.
Secondly, PAT3 framework is specially designed for ex-

tensibility, which provides the different interfaces (APIs) for
domain experts to create customized model checkers with
minimum efforts. These interfaces allow PAT3 to be ex-
tended in the following ways.

• Translate external models into existing languages in
PAT3 through module APIs.

• Extend the existing modeling languages with new syn-
tax, data types or libraries.

• Extend PAT3 with domain specific model checking
algorithms, state reduction techniques or abstraction

1Probabilistic Timed Automata have a flat structure.

techniques.

• Create completely new module in PAT3 to support a
new language with the help of module generator tool.

Lastly, our engineering efforts make PAT3 a self-contained
environment to support composing, simulating and reason-
ing of system models. It comes with cross-platform support,
user friendly GUI, featured model editors and an animat-
ed simulator. More importantly, PAT3 implements a rich
library of model checking techniques2 catering for checking
a variety of properties, e.g., deadlock-freeness, divergence-
freeness, reachability, linear temporal logic (LTL) (with dif-
ferent fairness assumptions), refinement checking, real-time
verification and probabilistic model checking, etc. Although
PAT3 is designed for flexibility, this flexibility does not com-
promise the performance. Advanced optimization techniques
are implemented in PAT3, e.g., partial order reduction, pro-
cess counter abstraction, bounded model checking, and par-
allel model checking. We have used PAT3 to model and
verify a variety of systems, ranging from recently proposed
distributed algorithms, security protocols to real-world sys-
tems like the pacemaker system. Previously unknown bugs
have been discovered. The experiment results (see Section 6)
show that PAT3 is capable of verifying systems with large
number of states and outperforms the state-of-the-art model
checkers in many cases.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces model checking techniques. Sec-
tion 3 presents the conceptual architecture of PAT3. Sec-
tion 4 describes PAT3’s design and implementation details.
Section 5 explains all the possible ways to extend PAT3.
Section 6 presents experimental results to demonstrate the
effectiveness of PAT3. Section 7 reviews related work. Sec-
tion 8 concludes the work with future works.

2. PRELIMINARY
Model checking [12] has been conceived as an automatic

verification technique for finite state systems. It performs an
exhaustive search of the state space of a model to determine
if some property is true or not. If the result is negative,
the user is often provided with a counterexample. The most
serious disadvantage of model checking is the state explosion
problem. The size of the global state graph can be (at least)
exponential in the size of the program text.

2.1 Model Specification
Systemmodels can be specified in numerous different ways.

In theory any means of formally specifying a model could be
used for the purpose of model checking. For different mod-
eling languages, though the syntax may vary dramatically,
as long as they have the same semantic model, they can be
verified using the same set of model checking algorithms.
This is the foundation of our approach, i.e., to compile d-
ifferent modeling languages into a set of common semantic
models. Three commonly used semantic models for concur-
rent system, real-time system and probabilistic system are
explained below.

LTS is arguably one of the most general semantic models
for un-timed systems. For instance, it is the semantic model
of FSM, Process Algebra, Graph Transition System and so
on. A timed system often has a timed transition system as

2Techniques developed in PAT3 can be found in [1].

its semantic model. TTS is the common semantic model of
Timed Automata and timed process algebras. If probabilis-
tic system behaviors are relevant, a probabilistic semantic
model is necessary. In this paper, we focus on Markov deci-
sion processes (MDP), which is expressive enough to capture
probabilistic choices as well as concurrency.

2.2 Property Specification
System properties can be specified in different forms. A

property can be specified in a dedicated language like tem-
poral logics or in the same language which is used to spec-
ify the system model. The former is verified by dedicated
temporal-logic based model checking, whereas the latter is
verified by refinement checking. In the following, we show a
‘semantic’ classification, i.e., properties are divided into two
categories: safety properties and liveness properties [3, 29].

Safety
Informally speaking, safety properties stipulate that “bad
things” do not happen during system execution. A finite
execution is sufficient evidence to the violation of a safety
property. Hence, safety properties are often verified based
on finite execution/trace semantics. Common safety prop-
erties include deadlock-freeness, reachability, invariance, or
properties expressed in the form of finite state automata.
Common refinement relationships like trace-refinement can
also be categorized as safety properties.

Liveness
There have been different definitions of liveness [3, 29]. In
this paper, we define liveness properties as those which are
not safety properties. Informally speaking, liveness prop-
erties stipulate that “good things” do happen eventually.
A counterexample to a liveness property is often3 an infi-
nite system execution, which forms a loop if the system has
finitely many states. Therefore, liveness properties are often
verified using loop-searching algorithms. Liveness properties
are often specified using temporal logics, e.g. Computation
Tree Logic (CTL), LTL and CTL*. In theory, they can also
be specified by finite state automata with fairness condition,
e.g., Büchi automata, Streett automata, etc.

2.3 Model Checking Approaches
Different models or properties often lead to different ded-

icated model checking approaches, in the name of efficiency.
Distinguished by how states are stored and manipulated,
there are two main paradigms for model checking: explicit
state model checking and symbolic model checking.
The first proposal of model checking relies on exhaustive

search through explicit representations of reachable system
states [12], which is known as explicit model checking. This
approach is adopted by SPIN. However, it suffers from the
state space explosion problem due to the exponential increas-
ing of the explicit states.
Symbolic model checking is introduced later to solve this

problem by enumerating states symbolically (typically based
on the notion of Binary Decision Diagrams (BDDs) [8, 9]),
which avoids building the state space directly. This ap-
proach is adopted by the tool NuSMV. It has been shown
that indeed BDDs can serve as an efficient representation
of finite state machines and allow symbolic model checking
to handle rather complex systems [5]. However, the worst

3Not always with our definition of liveness.

Figure 1: PAT3 System Architecture

case boundaries of the size of BDDs (which depends on the
variable ordering) are catastrophic [8].

Bounded model checking [11] has been proposed as an al-
ternative symbolic model checking approach. The idea is to
encode finite state machines (and the property to be ver-
ified) as a Boolean formula. The property is satisfiable if
and only if the underlying state machine can realize a finite
sequence of transitions that reaches states of interest, and
then SAT solvers [2] can be used to produce counterexam-
ples efficiently. If such a path segment cannot be found at a
given length k , the search is continued for larger k .

In addition, many state reduction techniques have been
proposed and realized in many existing model checkers, such
as partial order reduction, symmetry reduction, predicate
abstraction, etc. One of the drawbacks of symbolic model
checking is that reduction techniques developed for explicit
model checking cannot be directly applied.

3. CONCEPTUAL ARCHITECTURE
During the development of PAT1 and PAT2, extensibil-

ity becomes critical as we want to quickly apply existing
model checking techniques to other application domains or
implement new verification techniques. Code reusing can
both speedup the development and reduce maintenance ef-
forts. To achieve this goal, we need a common interface
to separate the verification algorithms and domain specific
modeling languages. Naturally, a prototype of a 3-layered
design was adopted. To further articulate the architecture,
we refined the design to 4 layers according to the three step-
s of model checking process (i.e., compilation, abstraction
and verification). To integrate symbolic model checking in-
to the system, a separate interface and related verification
supports need to be developed. With several attempts, we
arrived at an architecture design as shown in Figure 1. This
goal of this design is to reduce the coupling between different
components (hence increases the reusability of lower layers
and the extensibility of upper layers) and integrate explicit
and symbolic model checking under one roof.

3.1 Modeling Layer
The top level of the architecture is the supported appli-

cation domains (e.g., distributed system, service oriented
computing, security protocols and so on). For each appli-
cation domain, modeling layer identifies the domain specif-
ic language syntax, well-formedness rules as well as formal

operational semantics, which are all encapsulated in a sep-
arate module. The main components in modeling layer are
the language parser and model components (including syn-
tax classes, variables, channels, etc.). Given an input model
(in textual or graphic format), a parser checks the correct-
ness of the syntax and generates model components. The
(operational) semantics of the language shall be implement-
ed in the syntax classes of the language constructs, which
can be either explicit state representation or symbolic rep-
resentation using Boolean formulae (details are explained in
Section 4.2). For better encapsulation, all domain specific
functions and components should be included in the model-
ing layer.

3.2 Abstraction Layer
Model checking techniques generally only work with finite

state systems. When a system has infinitely many states
according to its concrete operational semantics, (automat-
ed) state abstraction is essential. For example, a real-time
system always has infinitely many states since there is an ar-
bitrary small interval between any two time points. Hence
abstraction techniques like zone abstraction [22] can be used
to generate finite systems. Even when the state space is fi-
nite, effective abstraction/reduction techniques may reduce
the state space significantly. For example, process counter
abstraction [26] can group identical processes using process
counter variables and ignore process identifiers (if they are
irrelevant). In PAT3, the abstraction layer implements ab-
straction techniques as independent functions, which map
a concrete state to an abstract state. These functions are
invoked during the state space exploration to generate ab-
stract states. Abstraction/reduction techniques, like partial
order reduction, are language or algorithm dependent, which
are then treated differently (see Section 5.5 for details).

3.3 Intermediate Representation Layer (IRL)
IRL contains different semantic models supported in PAT3.

Each semantic model defines a state interface class with
methods to drive the state space exploration. After compila-
tion, the input model is converted to an initial state interface
class. Then the state space can be generated on-the-fly s-
tarting from the initial state by following the operational
semantics (and applying abstraction/reduction techniques).
PAT3 supports all three semantic models mentioned in Sec-
tion 2.1.
For explicit model checking, the state interface class has

a number of operations, which allow the underlying model
checking algorithms to drive the execution of the system and
collect information from system states. The most importan-
t operation is the MoveOneStep method, which returns a
set of transitions from the current system state. By repeat-
edly invoking this method, the model checking algorithms
explore the whole state space. In model checkers like K-
it [28], the complete semantic model (i.e., Petri nets in Kit)
needs to be constructed first before the verification. How-
ever in PAT3, the verification algorithms use MoveOneStep
method to explore the state space on-the-fly, i.e., only par-
tial state space needs to be explored if a counterexample
exists. Note that MoveOneStep method is implemented at
modeling layer so as to capture the operational semantics
of a language. Another important operation is the GetID
method, which returns a unique (compact) identifier for any
system state. The idea is that the identifier abstracts over

the system state information (e.g., variable values, channel
buffers, program counter and so on) using primitive values
(e.g., int or string). The state interface can also be used by
the simulator to show the system state space graphically.

For symbolic model checking, different operations are de-
fined so that a symbolic representation is generated to cap-
ture the language semantics, usually in the form of Boolean
formulae. For instance, for BDD-based symbolic model check-
ing, a method EncodeProcess is defined for each language
construct. The Boolean formulae are usually stored in the
form of Binary Decision Diagram (BDD) for symbolic model
checking or Conjunctive Normal Form (CNF) for bounded
model checking.

3.4 Analysis Layer
This layer mainly contains reusable model checking algo-

rithms. In the explicit model checking approach, a set of
verification algorithms have been developed for each seman-
tic model in IRL. For example, deadlock checking, reacha-
bility checking, LTL verification with fairness assumptions,
refinement checking have been developed for LTS. The veri-
fication algorithms only invoke state interface to explore the
state space. Therefore, the modeling language is separated
from the verification algorithms completely. If the verifi-
cation result is false, a counterexample is produced, which
can be visualized via the simulator. For the symbolic mod-
el checking approach, symbolic verification algorithms are
developed for the generated BDD encoding of the system.
Alternatively, SAT solvers can be used for solving CNF e-
quations for bounded model checking.

Remark.
This layered framework separates the model checking pro-

cess into independent steps, which reduces the coupling sig-
nificantly. In additional, other analysis techniques than mod-
el checking can also be integrated in analysis layer. For
example, model-based testing can be applied based on the
state interfaces, especially the internal representations for
explicit model checking (i.e., LTS, TTS, MDP).

4. DESIGN AND IMPLEMENTATION
Model checking involves functions like state-space explo-

ration, process scheduling, and state management. In the
actual implementation, these functions are highly tangled to
achieve optimal performance. Inspired by Bogor project [14]4,
we apply Design Patterns [15] to encapsulate these func-
tions. Hence, the coupling between the components is re-
duced and then extensibility can be achieved. Different from
Bogor, we further apply this design strategy to module in-
terface design. The dependency between common library
and individual modules is minimized. We choose C# as the
implementation language for the benefits of Object-Oriented
design and competitive performance.

PAT3’s design is hierarchical, as reflected in the class dia-
gram in Figure 2. The system consists of two basic packages,
namely PAT .GUI and PAT .Common, and 11 module pack-
ages. Each of the 11 modules implements necessary mod-
ule interfaces and is packed into a plug-in DLL. The com-
plete API can be found in both PAT tool and website [1].

4Bogor system design covers partial components in
PAT .Commom project. See Section 7 for detailed discus-
sion.

Figure 2: Class Diagram of PAT3

Note that abstract classes are preferred in PAT than in-
terface mainly due to the performance reason in C#. We
use the CSP module as a demonstrating example to explain
the implementation. The modeling language in CSP mod-
ule is called CSP# [30], which is an event-based modeling
language for concurrent systems. CSP# is an extension of
CSP [17] with shared variables and low-level programming
constructs (e.g., assignment, if-then-else, while-loop, etc).
The semantical model of CSP# is LTS.

4.1 Shared Code Base
PAT .GUI package implements main GUI and the plug-in

architecture. GUI package loads the syntax files of differ-
ent modules during the system initialization, which stores
the syntax information (e.g., keywords, folding, and auto-
completion) and module information. When users want to
perform syntax checking, simulation or verification of an in-
put model, the linked module (packed as one DLL) is loaded
into the system dynamically using reflection technique and
then the corresponding interface method is invoked.
PAT .Common package contains module interfaces, com-

mon GUI classes, expression classes and verification libraries.
Abstract class ModuleFacadeBase in PAT .Common pack-
age defines the module interface. It behaves as the central
gate communicating with the GUI package by adopting the
Façade design pattern, e.g., check syntax, show simulator
or model checker window. All modules must implement this
interface in order to be recognized by the plug-in framework.
Specification is the interface class for the internal representa-
tion of system models. It also uses Façade pattern to com-
municate with SimulatorGUI andModelCheckerGUI to pro-
vide the information of the user input model. SimulatorGUI
and ModelCheckerGUI are the graphic user interfaces for
simulation and model checking. Specification is composed
by system model and properties (named Assertions in Fig-
ure 2) which are to be verified. Because system model infor-
mation is module dependent, Specification is only associated
with Assertions in the common package.
The module interface implementation uses the Abstract

Factory pattern, where ModuleFacadeBase is the abstract
factory, and ModuleFacade classes in each modules are con-
crete factories. The product is Specification interface, and

the concrete products are the actual Specification implemen-
tations in modules. The clients of using the products are
the GUI classes. The Expression and Value classes define
the interfaces for a simple but general While language with
variables and some primitive values. Though these classes
should be implemented in the actual module, we move them
to the common library so that they can be shared by all
modules. Variable values need to be cloned if one state has
more than one outgoing transition.

Besides the module interfaces and shared libraries, PAT .
Common package contains the intermediate layer and veri-
fication algorithms in the analysis layer. In Figure 2, we use
LTS as an example. The IRL here is just one abstract class
LTSState, which implements a single transition with a target
state in LTS definition. The transition’s label is stored in the
Label property, and target state information (e.g., variable
valuation, channel buffer, program counter and so on) shall
be realized in the actual module since it is module related.
MoveOneStep method generates all the possible transitions
starting from the target state. GetID method returns the
unique hashed string representation of the label and target
state. If symbolic model checking is used, EncodeProcess
method performs the encoding of the target state and out-
going transitions to Boolean formulae that can be used by
the symbolic model checker or SAT solvers. The three ab-
stract methods shall be realized in the actual module and
will be used by the verification algorithms. It is clear that
starting from an initial state, these methods are sufficient to
generate the complete state space.

Assertion class defines the interface for properties. It has
one initial state, from where it explores the system state s-
pace and produces a counterexample if the property is not
satisfied. For LTS verification, four assertions are supported
as shown in Figure 2. We apply the Strategy pattern when
designing the verification algorithms. For example, for safe-
ty properties (e.g., DeadlockAssertion, RefinementAssertion
and ReachabilityAssertion), three searching strategies are
possible: depth-first-search (DFS), breadth-first-search (BF-
S) and symbolic verification algorithm. For liveness proper-
ties (i.e., LTLAssertion), two searching strategies are pos-
sible: nested DFS [18] or Tarjan’s strongly-connected com-
ponents searching algorithm. These strategies are selected

according to users’ choice during the run-time.
Verification algorithms need to keep track of visited states

(StateManager) or have a scheduler if the concurrent pro-
cesses have different priorities (SchedulingManager). They
are linked with the Assertion so that the verification algo-
rithm can use them to store the states and perform process
scheduling without worrying about the actual implementa-
tion. These two classes also adopt the Strategy pattern
since a number of state hashing and scheduling strategies
are possible.
To increase the reusability of the code, we create the

generic version of popular algorithms using Template pat-
tern. For example, DFS and BFS are searching algorithms
used in all safety property verification. To have a reusable
implementation, we create a generic DFS (BFS) algorith-
m with an abstract early termination condition. Different
algorithms implement the early termination condition dif-
ferently. For instance, DeadlockAssertion’s early termina-
tion condition is that the current state is a deadlock state.
ReachabilityAssertion’s early termination condition is that
the current state satisfies the desired condition.

4.2 Encapsulated Module Design
Each module is encapsulated in a stand alone package,

which implements the module interface and specification
interface, and contains modeling layer’s components, i.e.,
language parser (e.g., CSPParser), variable valuation and
channel buffer (stored in Valuation) and language syntax
classes.
The language syntax classes in CSP module naturally for-

m a Composite pattern by following the language grammar.
Each language construct (e.g., parallel composition, sequen-
tial compositions, choice process and so on) is implemented
as a single class, which implements the Process interface
with two key methods: MoveOneStep and EncodeProcess.
These two methods implement the semantics of the lan-
guage syntax for the two different model checking approach-
es. MoveOneStep method implements the operational se-
mantics rules to realize the state transitions from current
state to a list of target states. EncodeProcess performs the
encoding of the syntax to Boolean formulae that can be used
by the symbolic model checker or SAT solvers.
The most important class to be implemented is CSPState

class, which realizes the concrete transitions of the LTS. For
CSP#, each system state contains the current valuation of
variables, buffered elements in the channels and current ac-
tive process [30]. This composition is exactly implemented
in Figure 2. The MoveOneStep method (or EncodeState
method) in CSPState class will invoke the MoveOneStep
(or EncodeProcess) method of the current active process by
providing current variable valuation and channel buffer da-
ta. This guarantees that LTS is generated by following the
operational semantics. At this point, the modeling layer is
completed.
Most of the abstraction and reduction techniques are high-

ly language dependent [20]. For example, different timed
operators in real-time systems shall update the zones in d-
ifferent ways. Partial order reduction strategies require in-
formation about processes, global variables, dependencies of
transitions, etc. This restriction makes the abstraction layer
hardly fully independent from modeling layer. Most of the
abstraction and reduction techniques are embedded inside
method MoveOneStep or EncodeState to produce a reduced

state space. In PAT3, we demonstrate these techniques by
code samples and libraries so that our experiences can be
reused.

5. PAT3 EXTENSIONS
In this section, we discuss the possible extensions of PAT3

and related technical challenges. These extensions allow do-
main experts to create customized model checkers in all lev-
els, based on their knowledge of model checking.

5.1 Easy Translation with Module Interface
The easiest way of creating a model checker is to create

a syntax rewriter from a domain specific language to an
existing tool. Comparing with other model checkers, pro-
gramming a language translator is straightforward in PAT3.
Because PAT3 has well-defined APIs for Specification faca̧de
class and module language constructs, users only need to cre-
ate the Specification model and generate the language con-
structs objects using these APIs. For example, Specification
class in CSP# module offers the interfaces to create global
variables, channels, processes and assertions. This approach
requires no interaction with PAT3 codes. Most importantly,
the target language model is automatically generated from
the Specification class, which can guarantee syntax correct-
ness. The usefulness of this extension has been demonstrat-
ed by the build-in translator from Promela to CSP# and
the translator from UML state diagram to CSP#. Bogor’s
extensions for two languages (Java and Cadena) are based
on the translation approach.

However, these are drawbacks for this approach. For ex-
ample, the translation may not be optimal if special domain
specific language features are present. In addition, reflect-
ing analysis results (e.g., showing the counterexample trace)
back to the domain model is often non-trivial.

5.2 Extensible Data Type and Library
Modules in PAT3 only support primitive types like in-

teger, Boolean variables and arrays of integers. However,
sometimes user defined data type is necessary and can sim-
plify the model substantially. In PAT .Common package,
PAT3 defines the interface for variable valuations, which in-
cludes state hashing methods, a to-string method for sim-
ulator display and a deep-clone method for duplicating the
values. PAT3 provides the functionality to create arbitrary
data type by simply creating a C# class inheriting the Value
interface, which can be imported into the model (based on
the reflection mechanism in .NET) and used as normal vari-
ables. Note that polymorphic in types is also possible in
PAT3, i.e., user defined types can be nested. This extension
is not novel, Boger’s “language extension” uses the similar
idea. To be more accurate, this extension is to support new
data type rather than the extensions of modeling languages.

This extension brings two benefits. Firstly, data abstrac-
tion can be achieved by controlling the data hashing function
which may reduce the state space significantly. For exam-
ple, a check board can be presented by the position of pieces
only. Therefore, a smaller state representation is possible
by defining board using a user defined data type. Secondly,
this method seamlessly links the implementation (in C#5)
with the specification modeling (in CSP#). This link gives

5We use C# for simplicity of the implementation. Other
languages like Java can also be linked with PAT3.

us the power to verify/test the real implementation by run-
ning the specification. For example, given a concurrent“Set”
implementation, we can model the usages of the Set objects
in CSP# model. This model can contains several process-
es accessing the Set object concurrently, which is hard to
write using test cases. During the verification of CSP#
model, the actually Set implementation is executed. Fur-
thermore, PAT3 supports Microsoft Contracts specification
(i.e., method pre-condition/post-condition and class invari-
ants) in the user defined data types. During the verification
of CSP# model, the contracts methods will be also checked,
which gives one more level of verification.

5.3 Language Extension
In general, the input language of a model checker must

be carefully designed, with preciseness, intuitiveness and ef-
ficiency in mind. A minor syntax extension or modification
may require re-examination of the whole system. PAT3 fa-
cilitates such extensions by adapting parsers for the new
syntax and implementing the corresponding syntax class-
es (refer to PAT .CSP package in Figure 2). For example,
to support try-catch statement in CSP# module requires
a new class implementing exception throw statement and a
new class implementing try-catch semantics. PAT3’s layered
design requires minimum change in the system and all mod-
el checking algorithms developed can be reused. Knowledge
about existing modules is required and a new parser may be
created for the extended language features.

5.4 Property Extension
It is possible that a domain may have specialized prop-

erties and require dedicated model checking algorithms for
these properties. PAT3’s design allows seamless integration
of new model checking algorithm and optimization tech-
niques by simply creating a new assertion class, which in-
herits the base Assertion class and implements its APIs. In
addition, the counterexample generation method needs to be
customized to instruct how to produce the counterexample.
PAT3 offers a number of algorithm templates like generic

DFS and BFS algorithms to help the fast algorithms de-
velopment. Furthermore, supporting functions, like LTL to
Büchi/Rabin/Streett automata conversion which is essen-
tial for LTL model checking, or DBM library which is for
real-time system verification, are provided in PAT3. With
this design, we have successfully extended PAT3 with the
algorithms for divergence checking, refinement checking in
real-time system module and new deadlock and probabilistic
reachability checking in probabilistic systems.

5.5 Abstraction Extension
Abstraction techniques are often language dependent and

hard to extend. As a result, abstraction techniques are to be
encoded as part of language semantics, in the MoveOneStep
or EncodeProcess methods of each language construct in
each module. PAT3 offers a framework for abstract-refinement
techniques. If over-approximation abstraction is applied,
users must override the method to check whether a gen-
erated counterexample is spurious and override the method
to refine the abstraction.
Currently, PAT3 offers one module independent abstrac-

tion, i.e., process counter abstraction. Parameterized sys-
tems are characterized by the presence of a large (or even un-
bounded) number of behaviorally similar processes, and they

often appear in distributed/concurrent systems. A common
state space abstraction for checking parameterized system-
s groups behaviorally similar processes rather than keeping
track of all process identifiers. When a system has identi-
cal concurrent processes, process counter abstraction can be
implemented by invoking the library provided in PAT3 to
update the counter and mark the group of identical process-
es as abstracted. The verification algorithms will automat-
ically recognize this mark and check whether the generated
counterexample is spurious due to the abstraction or a real
counterexample. With the provided sample codes, counter
abstraction can be implemented quickly and correctly.

5.6 Module Extension
Module extension is the last resort if the previous ap-

proaches are not applicable. In this case, users need to im-
plement module components and make connections with the
intermediate layer. This approach is the most complicated
compared with the ones discussed previously. Nevertheless,
this approach gives the most flexibility and efficiency as user-
s control the language syntax and assertions to be support-
ed, and abstraction/reduction techniques to be applied. To
further simplify the process of building a module in PAT3,
we have developed a module generator tool6. By providing
module name, language syntax construct names and choic-
es of assertions, module generator can automatically gener-
ate the module project (in C#) with interface classes (e.g.
ModuleFacade, Specification, state interface etc.), language
classes and code skeleton. With the generated code, users
only need to create a parser and implement the operational
semantics of the modeling language. Module extension in
PAT3 requires only knowledge about the module interfaces
and IRL layer. New module can be developed independently
without the source code of PAT3. This approach is still fea-
sible for domain experts who have only the basic knowledge
on model checking, since verification algorithms and reduc-
tion techniques are separated from modeling languages.

It is difficult to quantify the effort required to build a high-
quality module in PAT3. We developed a Timed Automata
(TA) module in PAT3 to experiment the effort. With a ba-
sic understanding of PAT3 tool design, we finished the TA
module within a month. In total, users only need to imple-
ment 7 classes to create this module, i.e., 2 interface classes
(generated), 1 parser class, 3 language related components
(partially generated) and 1 state interface (generated). Since
1995, Uppaal [4] has been dedicated to support the mod-
eling, simulation and verification of Timed Automata. The
TA module in PAT3 offers similar functionalities with much
less efforts. Note that the performance of Uppaal is better
than TA module because of its sophisticated optimization
techniques. Nevertheless, this case study demonstrates the
benefit of layered design and adoption of design patterns.
The complete work-through and code sample can be found
in PAT3’s user manual.

6. PERFORMANCE EVALUATION
PAT3 is designed for reusability and extensibility. How-

ever, performance is also a critical measurement for model
checkers. As a result, choices between the performance and
extensibility have to be made. For instance, the code for
Tarjan’s strongly-connected components (SCC) algorithm is

6The tool can be found under “Tools” in the PAT3 toolbar.

Model #Proc Property PAT3(s) SPIN(s)
Deadlockfree dining philosophy 10 deadlock-freeness 15.7 14.1

same above 12 same above 232 -
Leader election for complete network 6 LTL with weak fairness 26.7 229

same above 8 same above 726 5720
Token circulation protocol for rings 7 LTL with global strong fairness 13.7 N/A

same above 9 same above 640 N/A
5-valued register 2 linearizability 44.9 NA
6-valued register 2 same above 297 NA

Scalable Non-Zero Indicator of size 2 2 same above 322 NA
Scalable Non-Zero Indicator of size 3 3 same above 6214 NA

(A) LTS-based Model Checking

Model #Proc Property PAT3(s) Uppaal(s) Uppaal-o(s)
Fischer’s mutual exclusion protocol 4 mutual exclusion 0.05 0.09 1.18

same above 5 same above 0.15 0.19 696.4
same above 6 same above 0.68 0.81 -

CSMA/CD protocol 5 liveness LTL 0.22 0.26 39.15
same above 7 same above 2.63 6.40 -
same above 10 same above 34.3 181 -

Railway control system 6 liveness LTL 5.24 0.43 -
same above 8 same above 349 20.7 -

(B) TTS-based Model Checking

Model #Proc Property PAT3(s) PRISM(s)
Probabilistic N -process mutual exclusion 6 mutual exclusion 1.161 0.364

same above 8 same above 8.624 0.937
Probabilistic dining philosophy 5 deadlock-freeness 2.413 0.156

same above 6 same above 25.775 0.672
Shared coin randomized consensus algorithm 4 liveness LTL 0.379 21.9

same above 6 same above 5.854 1755
Probabilistic CSMA/CD protocol 2 liveness LTL 0.933 2.314

same above 3 same above 6.284 7.233

(C) MDP-based Model Checking

Table 1: Performance evaluation on PAT3’s model checking algorithms

duplicated in many modules for performance reasons, which
could be easily generalized as a Template algorithm.
In the following, we evaluate the library of model check-

ing algorithms implemented in PAT3. We compare PAT3’s
performance with state-of-the-art model checkers. Table 1
shows the performance of model checking algorithms based
on LTS, TTS and MDP respectively. The experiment data
are obtained using a PC with 2 Intel Xeon CPUs at 2.13GHz
and 32GB RAM. N /A means not applicable due to either
a language feature required by the system is missing or the
kind of property is not supported; − means either out of
32GB memory or more than 4 hours. Note that all proper-
ties are true so that all states are explored. PAT3 is avail-
able at http://www.patroot.com. Experiments details can be
found at http://www.comp.nus.edu.sg/~pat/system.
Table 1(A) shows experimental results on applying LTS-

based model checking algorithms to population protocols
and concurrent data objects. PAT3’s performance is com-
pared with SPIN. In the first experiment with the classical
dining philosopher example, SPIN marginally outperform-
s PAT3 for 10 philosophers. It runs out of memory for 12,
whereas PAT3 finishes it in 232 seconds. The experiments on
the leader election protocol and token circulation protocol
show that PAT3 outperforms SPIN if fairness assumption is

required. The reason is that PAT3 implements an efficient
SCC-based LTL verification algorithm that can check vari-
ous fairness assumptions directly. However, SPIN’s nested-
DFS method can only handle weak fairness. In the register
and scalable non-zero indicator experiments, PAT3 performs
trace refinement checking to verify linearizability of concur-
rent data objects, which is not supported in SPIN.

Table 1(B) shows experimental results on applying TTS-
based model checking algorithms (using zone abstraction) to
benchmark real-time systems. PAT3’s performance is com-
pared with the UPPAAL model checker. Three benchmark
real-time systems are used. The column Uppaal shows the
time of verifying the models using Uppaal. PAT is faster
than Uppaal for the first two examples due to the effective
zone abstraction technique. In the last example, Uppaal
outperforms PAT3 by using the effective optimization tech-
niques named extrapolation. The column Uppaal-o shows
the result of verifying the same models with extrapolation
disabled. PAT3 outperforms Uppaal-o significantly. This
has lead to our ongoing work on realizing extrapolation in
PAT3’s DBM package.

Table 1(C) shows experimental results on applying MDP-
based probabilistic model checking algorithms to probabilis-
tic systems. PAT3’s performance is compared with the PRIS-

M model checker. We use the iterative method in calculat-
ing the probability and set termination threshold as relative
difference 10−6 (exactly same as PRISM). In the experi-
ments of probabilistic mutual exclusion algorithm and prob-
abilistic dining philosopher example, PRISM outperforms
PAT3. The main reason is that PRISM is based on BD-
D, which handle large number of states in these examples.
The next two experiments, however, show that PAT3 some-
times outperforms PRISM for certain class of properties.
The main reason is that PAT3 models have much less states
than PRISM models thanks to the hierarchical modeling
language in PAT3.
We remark that the comparison above may not be com-

pletely fair due to many reasons, e.g., difference in modeling
languages or property specification languages or the mod-
el checking approaches. The above results thus should be
used as an indication that PAT3 offers comparable perfor-
mance to existing model checkers. At same time, we are ex-
perimenting new optimization techniques or state reduction
techniques constantly, thanks to PAT3’s extensible architec-
ture. In summary, PAT3 offers a library of well-optimized
model checking algorithms as well as a framework for devel-
oping new model checkers.

7. RELATED WORK
There has been a large body of work on tools supporting

verification using model checking technique. We partially
list the related model checkers according to the semantic
models. For concurrent systems, LTS-based model checking
in PAT3 is related to popular tools like SPIN [18], NuS-
MV [10], FDR [27], etc. In terms of real-time verification,
TTS-based model checking in PAT3 is related to a num-
ber of automatic verification supports for Timed Automata,
including Uppaal, KRONOS [6] and so on. For probabilis-
tic systems, MDP-based model checking in PAT3 is related
to probabilistic model checkers including PRISM and M-
RMC [19]. Different from these dedicated model checkers,
PAT3 is more than one model checker for one language, in-
stead, it is an extensible framework designed to facilitate
development of new modeling/verification techniques.
As an extensible model checking framework, PAT3 is close-

ly related to Bogor [14], the Model-Checking Kit [28], LT-
SA [24] and SAL [13]. The most relevant tool is Bogor,
which supports a modeling language close to Java. Bogor’s
extensibility is reflected in the extensions to the user defined
data types7, verification algorithms and optimization tech-
niques. PAT3 improves Bogor’s design by separating system
components using the layered design and the concept of s-
tate interface, which allows extensions in all components.
The support of the 3 semantic models is far beyond the ca-
pability of Bogor. Furthermore, to develop a new module
in Bogor can only base on the translation approach, which
requires the new modeling language to be a sub-language
of Bogor’s input language. Fully customized module devel-
opment based on the semantic model is not supported in
Bogor. Model-Checking Kit [28] is an open model checker
framework supporting extensions in languages and verifica-
tion algorithms with the semantic model Petri nets. LTSA

7Bogor claims it supports extensions in modeling language.
But in fact, its extension is same as the data type extension
in PAT3. Real language extension like add multi-party syn-
chronization in Bogor is impossible without the change of
parser and source code.

allows extension in modeling language by compiling input
languages (e.g., Message Sequence Chart or Web Service)
into LTS. SAL is a collection of separate tools for perform-
ing program analysis, theorem proving, and (both explicit
and symbolic) model checking on transition systems. SAL’s
input language is an LTS-like language, which is intend-
ed to serve as the target for translators that extract the
transition systems from other modeling languages. Com-
pared with these three, PAT3’s semantic model is designed
as state interfaces, which supports on-the-fly verification.
In Kit, LTSA and SAL, the complete model needs to be
converted into the semantic model first before starting the
verification. Therefore, the whole model may need to be
constructed first even if the property to be checked is false.
In addition to the difference mentioned above, PAT3 allows
extensions for a wide range of modeling languages thanks to
the three different sematic models. PAT3 is also unique that
it integrates explicit and symbolic model checking uniformly,
which is never addressed in these tools. Note that in SAL,
the symbolic model checkers and explicit model checkers are
separate tools. Hence, there is no software design involved
in SAL. Lastly, as shown in the experiments section, PAT3
achieves competitive performance with the state-of-the-art
model checkers, but still offers the great extensibility. Other
model checking frameworks related to PAT3 include the IF
TOOLSET [7] and ESMC framework [21].

A remotely related tool is Java Path Finder (JPF) [32],
which is a ground-breaking model checker working directly
on Java byte-code. JPF’s flexibility has been demonstrated
by the incorporation of a variety of search modes such as
heuristic searches. Working directly on byte-code allows one
to claim to some extent that the code being checked is the
code that is actually going to be run. However, our goal
with PAT3 is to provide an extensible modeling language
that can support checking of artifacts at different levels of
abstraction. Thus, PAT3 offers a compromise: it supports
checking of programming language like C#, and yet, it is
flexible enough to be adapted to obtain dedicated checkers
for different modeling languages. For the performance, some
initial experiments suggest that PAT3 is much faster than
JPF, since JPF is running on the Java Virtual Machine.

The BDD library in PAT3 is designed such that users on-
ly need the minimum knowledge of BDD in order to use it.
It is thus different from approaches like JTLV [25], which
are designed to allow flexible control of BDD packages for
advanced users. Furthermore, our library is intended to sup-
port systematic encoding of (at least a large subset of) ex-
isting compositional languages with ease.

Compared with early versions of PAT (PAT1 [31] and
PAT2 [23])8, the enhancement in PAT3 is dramatic. We
restructure the architecture by introducing the 4-layered de-
sign with a clear state interface design. TTS and MDP are
introduced in the IRL. Symbolic model checking is also sup-
ported in the framework. 11 modules have been developed
in PAT3. PAT3 has come to a stable stage with solid testing
and various applications. More than 100 built-in examples
and hundreds of test cases are embedded in PAT3. It is
now being used by a number of institutions as a research or
educational tool.

8Note that [31] and [23] are tool papers, which present the
functionalities of PAT only.

8. CONCLUSION
As model checking continues to grow in popularity, mod-

el checking tools need to adapt so that they can effectively
support a broad range of system descriptions and property
languages. One approach to overcoming the significant cost
of model checking is to exploit available domain knowledge
of specific software artifacts to develop highly-optimized s-
tate space representations, reductions and search algorithm-
s. PAT3’s extensible, customizable tool architecture will
help minimize the amount of model checking-specific knowl-
edge that a domain expert needs to build cost-effective anal-
ysis capabilities. In addition, this approach can be repeated
to build similar verification framework.
To show the practicality, we have implemented 11 domain-

specific model checkers using PAT3, which can give signifi-
cant space and time reductions while reducing the cost of the
implementation relative to other model checkers. Further-
more, experiment results show that PAT3 does verification
efficiently. Our future works include integration of other
model checking techniques (e.g., counterexample guided ab-
straction refinement, assume-guarantee model checking and
verification using SMT solvers), automatic module genera-
tion based on syntax grammar and operational semantics
rules as well as software component reuse to reduce the re-
dundant code crossing different modules.

9. REFERENCES
[1] PAT: Process Analysis Toolkit.

http://www.patroot.com/.

[2] SAT Competition. http://www.satcompetition.org/.

[3] B. Alpern and F. B. Schneider. Recognizing Safety and
Liveness. Distributed Computing, 2(3):117–126, 1987.

[4] G. Behrmann, A. David, K. G. Larsen, J. H̊akansson,
P. Pettersson, Y. Wang, and M. Hendriks. UPPAAL
4.0. In QEST 2006, pages 125–126, 2006.

[5] A. Biere, E. M. Clarke, R. Raimi, and Y. S. Zhu.
Verifiying Safety Properties of a Power PC
Microprocessor Using Symbolic Model Checking
without BDDs. In CAV 1999, pages 60–71. Springer,
1999.

[6] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis,
and S. Yovine. Kronos: A Model-Checking Tool for
Real-Time Systems. In CAV 1998, pages 546–550,
1998.

[7] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis.
Tools and Applications II: The IF Toolset. In SFM,
pages 237–246, 2004.

[8] R. E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on
Computers, 35(8):677–691, 1986.

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic Model Checking: 1020

States and Beyond. Information and Computation,
98(2):142–170, 1992.

[10] A. Cimatti, E. M. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV 2: An OpenSource Tool for
Symbolic Model Checking. In CAV, pages 359–364,
2002.

[11] E. M. Clarke, A. Biere, R. Raimi, and Y. S. Zhu.
Bounded Model Checking Using Satisfiability Solving.
Formal Methods in System Design, 19(1):7–34, 2001.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 2000.

[13] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby,
N. Shankar, M. Sorea, and A. Tiwari. Sal 2. In CAV
2004, pages 496–500, 2004.

[14] M. B. Dwyer, J. Hatcliff, M. Hoosier, and Robby.
Building Your Own Software Model Checker Using the
Bogor Extensible Model Checking Framework. In
CAV, pages 148–152, 2005.

[15] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[16] A. Hinton, M. Z. Kwiatkowska, G. Norman, and
D. Parker. PRISM: A Tool for Automatic Verification
of Probabilistic Systems. In TACAS, pages 441–444,
2006.

[17] C. A. R. Hoare. Communicating Sequential Processes.
International Series on Computer Science.
Prentice-Hall, 1985.

[18] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Wiley, 2003.

[19] J. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns,
and D. N. Jansen. The Ins and Outs of the
Probabilistic Model Checker MRMC. In QEST 2009,
pages 167–176, 2009.

[20] M. Kattenbelt. Towards an explicit-state model
checking framework, August 2006.

[21] M. Kattenbelt, T. Ruys, and A. Rensink. An
object-oriented framework for explicit-state model
checking. In VVSS 2007, pages 84–92, 2007.

[22] K. G. Larsen, P. Pettersson, and Y. Wang. Uppaal in
a Nutshell. International Journal on Software Tools
for Technology Transfer, 1(1-2):134–152, 1997.

[23] Y. Liu, J. Sun, and J. S. Dong. Developing Model
Checkers Using PAT. In ATVA 2010, pages 371–377,
2010.

[24] J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. Wiley, 1999.

[25] A. Pnueli, Y. Sa’ar, and L. D. Zuck. Jtlv: A
framework for developing verification algorithms. In
CAV 2010, pages 171–174, 2010.

[26] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1,
infty)-Counter Abstraction. In CAV 2002, pages
107–122, 2002.

[27] A. W. Roscoe. The Theory and Practice of
Concurrency. Prentice-Hall, 1997.

[28] C. Schröter, S. Schwoon, and J. Esparza. The
model-checking kit. In ICATPN 2003, pages 463–472,
Berlin, Heidelberg, 2003. Springer-Verlag.

[29] A. P. Sistla. Safety, Liveness and Fairness in Temporal
Logic. Formal Asp. Comput., 6(5):495–512, 1994.

[30] J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen.
Integrating Specification and Programs for System
Modeling and Verification. In TASE 2009, pages
127–135, 2009.

[31] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT:
Towards Flexible Verification under Fairness. In CAV
2009, pages 702–708, Grenoble, France, June 2009.

[32] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Automated Software
Engineering Journal, pages 3–12, 2000.

