
Demo: Towards Bug-free Implementation
for Wireless Sensor Networks

Manchun Zheng
National University of Singapore

zmanchun@comp.nus.edu.sg

Jun Sun
Singapore University of
Technology and Design

sunjun@sutd.edu.sg

David Sanán
Singapore University of
Technology and Design

davidsanan@sutd.edu.sg

Yang Liu
National University of Singapore

liuyang@comp.nus.edu.sg

Jin Song Dong
National University of Singapore

dongjs@comp.nus.edu.sg

Yu Gu
Singapore University of
Technology and Design

jasongu@sutd.edu.sg

Abstract
In this demonstration, a systematically domain-specific

model checker, NesC@PAT, is presented. The tool takes
NesC programs as input, and automatically verifies WSNs
against properties specified in the form of deadlock freeness,
state reachability or linear temporal logic formulas. We will
show that NesC@PAT is able to find errors caused by rarely
unexpected scenarios, which are difficult to be detected by
general simulating or debugging.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-

ods, Model checking

General Terms
Design, Verification

Keywords
NesC, TinyOS, model checking

1 Introduction
TinyOS has been widely used for developing wireless

sensor network (WSN) applications. The programming lan-
guage of TinyOS applications, NesC [3], provides fine-
grained control over the underlying devices and resources.
However, due to the event-driven feature of TinyOS/NesC
and the concurrent execution of sensors and computations, it
could be challenging to understand, analyze or debug NesC
programs or WSN operations. Unexpected behaviors, like
the overflow of the task queue, can evolve to very rare and
buggy scenarios which are difficult to be detected by debug-
ging tools [2] or simulating tools like TOSSIM [4].

Copyright is held by the author/owner(s).
SenSys’11, November 1–4, 2011, Seattle, WA, USA.
ACM 978-1-4503-0718-5/11/11

NesC Parser

Graphic
Simulator

Assertion
Collection

Assertion Parser

Network
Model

Parser

Model Genertor

On-the-fly
Model

CheckerCounterexample

Model Checker

Simulator

Sensor
Model

Collection

Hardware
Model

Collection

NesC Program Network Topology Assertions Editor

Network Parser

Figure 1. Overview of NesC@PAT
Model checking [1] is a verification technique to check

desired properties (often expressed in temporal logic) by
systematically exploring all possible scenarios of the given
system. This technique has been applied to verifying both
software and hardware systems. One recent success is the
full verification of the Intel i7 chip using model check-
ing techniques. One representative existing model check-
ing tool for NesC programs is T-Check [5], which is built
upon TOSSIM [4] and uses explicit state model checking to
verify safety and liveness properties. T-Check revealed sev-
eral bugs of components/applications in the TinyOS distribu-
tion. However, T-Check has limited capability in detecting
concurrent and low-level errors because TOSSIM executes
events atomically and abstracts away interrupt-driven con-
currency. The assertions of T-Check are specified in proposi-
tional logic, and are incapable of specifying significant tem-
poral properties like the infinitely often releases of a buffer or
the alternate occurrences of two events.

Our contribution in this demonstration is a fully auto-
matic model checking tool, NesC@PAT, which takes NesC
programs and a network topology as the input and veri-
fies WSNs against properties specified as deadlock freeness,
state reachability or linear temporal logic (LTL) formulas.
The expressive power of LTL has allowed the tool to spec-
ify a larger set of properties, compared to that supported by
T-Check. With the aim of minimum manual effort, a model
generator is integrated to generate models from NesC code
automatically, preserving the interrupt-driven concurrency
among tasks and events, which is essential for TinyOS appli-
cations. NesC@PAT covers most NesC language features in-

r e s u l t t t r y N e x t S e n d () {
a t om ic {

i f (! sendTaskBusy){
p o s t sendTask () ;
sendTaskBusy = TRUE;

}
} . . .

}

(a) Buggy code

r e s u l t t t r y N e x t S e n d () {
atomic {

i f (! sendTaskBusy){
i f (SUCCESS != pos t sendTask ())

sendTaskBusy = FALSE ;
e l s e sendTaskBusy = TRUE ;

} . . .
}

(b) Revised code
Figure 2. A Motivating Scenario

cluding pointer, command, event and task or even advanced
features like parameterized wiring and hierarchical wiring.
2 Overview of NesC@PAT

With the Parser and the Model Generator, the NesC
program running on a node, like the scratch showed in Fig-
ure 2(a), is translated into a Label Transition System (LTS),
avoiding manual construction of models and making the tool
useful in practice. The operational semantics for each NesC
language structure has been defined [6], which provides the
basis for constructing LTSs from NesC programs. More-
over, the interrupt-driven feature of the TinyOS execution
model is preserved in the generated LTS, which allows con-
currency errors among tasks and interrupts to be detected.
Radio, timer, sensor device and other devices are abstracted
in the Hardware Model Collection, which is also taken into
account in the generation of LTS. With the network topology
and individual node LTSs, the LTS of a WSN is composed,
considering the non-determinism between sensor nodes.

The Model Checker conducts an exhaustive search (op-
timized by partial order reduction) of the generated LTS
state space, and it returns a counterexample if an assertion
(i.e., a correctness criterion) is violated. Currently, it in-
tegrates model checking algorithms for verifying deadlock
freeness, state reachability and LTL formulas. This provides
flexibility for specifying significant goals to verify WSNs
against. Taking the code in Figure 2(a) as an example, if
a previous sendTask has not been posted successfully, then
sendTaskBusy will remain TRUE. As a result, the state-
ment post sendTask() will not able to execute any more.
Such a scenario is undesirable and should be avoided un-
der any circumstance. With NesC@PAT, it is very conve-
nient to find this buggy behavior by model checking the code
with the LTL property 23sendTaskBusy = FALSE (P1), i.e.
sendTaskBusy is always eventually set to FALSE.

Using the Simulator, users can easily simulate the visu-
alized execution of a node or a whole network step by step.
At each step only a fine-grained statement (e.g., updating a
variable) is executed, which provides detailed runtime be-
haviors to be monitored. Moreover, if a property is violated,
the Model Checker will report a counterexample to the Sim-
ulator, so that users can reason about it and correct the buggy
code. Verifying the code in Figure 2(a) against P1, the Model
Checker will return a counterexample, in which there is a
state where post sendTask() fails. Simulating this counterex-
ample helps to correct the program to be the revised one in
Figure 2(b), where sendTaskBusy is set to FALSE if the state-
ment post sendTask() fails.
3 Demonstration Highlights

NesC@PAT is developed with a well-organized GUI,
based on which we will present the benefits brought forth

by a systematically domain-specific model checker. In spe-
cific, we will show how to prepare a WSN with different
NesC programs on sensor nodes and a set of properties to
be verified. It will be shown that node-level verification can
help reduce errors before network-level verification. Multi-
ple WSN applications, including Trickle algorithm and cer-
tain routing protocols, will be verified on the spot with ap-
propriate properties, in order to exemplify finding significant
errors by model checking. For violated properties, we will
explain how to use the Simulator to visualize the counterex-
ample to analyze and refine the source code. We will also
discuss how to define important and desired properties in
terms of state reachability or LTL formulas with regard to
the particular requirements of different WSNs.

4 Conclusion and Future Work
In this demonstration, we present a systematic and fully

automatic model checker NesC@PAT, for modeling and ver-
ifying WSNs with NesC programs. In the current tool, we
assume that the network topology is static. A future direc-
tion is to establish network dynamics, e.g., nodes joining
or leaving, communication failures, etc, and to apply prob-
abilistic model checking for verification. Another direction
is to optimize the tool for better scalability and efficiency by
symmetric reduction or symbolic model checking.

5 References
[1] C. Baier and J. P. Katoen. Principles of Model Checking. The

MIT Press, May 2008.

[2] Q. Cao, T. F. Abdelzaher, J. A. Stankovic, K. Whitehouse, and
L. Luo. Declarative Tracepoints: a Programmable and Applica-
tion Independent Debugging System for Wireless Sensor Net-
works. In Proceedings of the 6th International Conference on
Embedded Networked Sensor Systems, SenSys’08, pages 85–
98, Raleigh, NC, USA, 2008. ACM.

[3] D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC Language: A Holistic Approach to Net-
worked Embedded Systems. In Proceedings of the 24th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’03, pages 1–11, California, USA, 2003.

[4] P. Levis, N. Lee, M. Welsh, and D. E. Culler. TOSSIM: Accu-
rate and Scalable Simulation of Entire TinyOS Applications. In
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, SenSys’03. ACM, 2003.

[5] P. Li and J. Regehr. T-Check: bug finding for sensor networks.
In Proceedings of the 9th International Conference on Informa-
tion Processing in Sensor Networks, IPSN’10, pages 174–185,
Stockholm, Sweden, 2010.

[6] M. Zheng, J. Sun, Y. Liu, J. S. Dong, and Y. Gu. Automatic
Verification of TinyOS Applications for Wireless Sensor Net-
works. Technical report, National Univ. of Singapore, 2011.
http://www.comp.nus.edu.sg/∼pat/NesC TechReport.pdf .

