
Modeling and Verification of Safety Critical
Systems: A Case Study on Pacemaker

Luu Anh Tuan and Man ChunZheng
School of Computing

National University of Singapore
{tuanluu, zmanchun}@comp.nus.edu.sg

Quan Thanh Tho
Hochiminh City University of Technology

Vietnam
qttho@cse.hcmut.edu.vn

Abstract—The pacemaker challenge proposed by Software
Quality Research Laboratory is looking for formal methods to
produce precise and reliable systems. Safety critical systems
like pacemaker need to guarantee important properties (like
deadlock-free, safety, etc.), which concern human lives. Formal
methods have been applied in designing safety critical systems
with verified desirable properties. In this paper, we propose
a formal model of pacemaker, modeling its behaviors and its
communication with the external environment, using a real-
time formalism. Critical properties, such as deadlock freeness
and heart rate limits are then verified using the model checker
PAT(Process Analysis Toolkit). This work yields a verified
formal model of pacemaker systems, which can serve as
specification for real pacemaker implementations.

Keywords-Pacemaker; PAT; model checking; verification;

I. INTRODUCTION

The failure of a safety critical system may result in loss
of life, severe damage to equipment or environment [18].
Systems such as medical devices, aircraft flight control,
weapons, and nuclear systems are always safety critical.
Therefore, safety critical systems require high correctness
to guarantee reliability and robustness. Flaws or bugs are
always vital to breaking correctness of a system. Traditional
software testing techniques are valid for finding bugs in
implementations of systems. Testing always requires care-
fully designed test cases to cover all possible paths of
execution, but it is hard to guarantee that the design of test
cases is a complete cover of all possible executing paths.
Usually, testing technicians are unable to tell whether all
bugs existing in the system have been detected after testing.

Model checking, is a formal verification technique in-
troduced to exhaustively explore the complete state space
of a system for finding flaws or bugs. To apply model
checking techniques, a system is first specified as a formal
model, which is then verified against properties. In [28] the
properties of safety critical systems such as dependability,
safety and real-time constraint are considered, and formal
specification is introduced as a valuable way to understand
them. Formal method is considered as an important tech-
nique to improve correctness of safety critical systems, as
presented in [14]. [7] discusses the standards of applying
formal methods technique, while [6] examines the industrial

uses of formal methods for the development of safety critical
system, and discusses the application details of formal
methods.

A pacemaker is an electronic device used to treat patients
who have symptoms caused by abnormally slow heartbeats.
The purpose of using a pacemaker is to maintain heartbeats
so that adequate oxygen and nutrients can be delivered
through the blood to the organs of the human body. A
pacemaker is safety-critical, since its failure may cause
severe damage to human body or even loss of human
life. Software Quality Research Laboratory proposes the
pacemaker challenge, which is looking for formal methods
to produce correct and reliable systems. The verification
grand challenge sets the stage for the program verification
community to embark upon a collaborative effort to build
verifiable programs. Boston Scientific has released into the
public domain the system specification [1] for a pacemaker
of a previous generation.

According to the informal requirements presented in [1],
we establish a formal model (i.e. RTS model) of the pace-
maker. RTS, is a process algebra based formalism, with
timed extensions to CSP. Our home-grown model checker
PAT has been enhanced for verifying timed refinements.
The RTS model of pacemaker is then verified against safety
properties and timed constraints. In this paper, we first
explain the construction of the RTS model of pacemaker,
as a parallel of timed processes, modeling pacemaker’s
components and its interaction with the environment (i.e.
the implanted heart). It is vital that a pacemaker maintains a
normal heart rate and prevents abnormal slow heart beatings.
Such requirements are described as safety properties and
timed constraints, and are defined as LTL (Linear Temporal
Logic) formulae and timed refinements. Experiments are
then carried out to verify the RTS model against those critical
properties of pacemaker, in our home-built model checker
PAT. We believe that our work will produce a reliable and
correct pacemaker formal model which satisfies a set of
critical properties.
Outline The rest of the paper is organized as follows.
Section II discusses related works on formal models and
verifications of pacemaker. Section III presents some back-

ground knowledge, including a summary of formal methods,
an overview of RTS model and the informal description of
pacemaker. Section IV details the RTS models of pacemaker
and the approach to verify the models for critical properties.
Results of experiments of verifying the RTS model are
presented in Section V, and Section VI finally concludes
the whole paper.

II. RELATED WORK

Wiggelinkhuizen uses mCRL2 [13] and UPPAAL [5] for
formally modeling the pacemaker from Vitatron. Several
formal models have been constructed to investigate the
feasibility of model checking on the pacemaker firmware
designs of Vitatron, modeling components of the firmware
and the environment as well. He applies mainly two ap-
proaches for verifications. One is to verify the firmware
model in the context of a formal heart model, which only
succeeds for heart rates in a range from low to ’average’
and fails for high heart rates because of dramatic state space
explosion. The other approach is to verify a design part of
the firmware, which is feasible because the specific part
has little dependencies on external variables. The second
approach is able to find the known deadlock rather soon.
However, this work still is not able to verify the whole
formal model.

Macedo et. al propose a concurrent and distributed real-
time model of pacemaker using VDM [8]. The sequential
model is then validated primarily by scenario-based tests
like absence of sensed pulses and outputted pulses at the
correct time, helping to detect potential bottlenecks within
suggested architectures for the subsequent development of
implementation [20]. It uses the notion of event sensing and
reaction to specify the pacemaker operations. They model
8 bradycardia operation modes including corresponding pa-
rameters.

Gomes et al. present a formal specification of the pace-
maker system using the Z notation in [12], according to
the informal requirements in [1]. The overall state of
the pacemaker is based on a Z state called PulseGen (i.e.
Pulse Generator), over which many operations are modeled.
Then they validate that the formal specification satisfies
the informal requirements, by using a theorem prover,
ProofPower − Z, to formulate proofs of specification-to-
model correspondence for high-assurance secure systems
like the pacemaker.

Our approach to formally model the pacemaker is
also based on the Pulse Generator, with reactions to
environmental information sensed by sensors placed in
chambers. Nevertheless, our approach differs from them in
that we model the pacemaker on the fundamental of timed
aspects, since most critical properties of the pacemaker
concerns time. Our approach is able to model such timing
patterns via timed processes with timed operators (which
will be as discussed in Section III-B). And the time-related

properties are then verified by timed refinements in PAT.

III. BACKGROUND

A. Formal Methods

Formal methods for specifying, designing and verifying
real-time safety critical systems in order to improve their
safety and reliability are surveyed in [24]. [35] illustrates six
well-known formal specification languages with examples,
including Z, VDM [8], temporal logic, CSP [15], transition
axioms, and so on.

CSP [15] (Communicating Sequential Processes) is a
specification language for describing patterns of interac-
tion in concurrent system. CSP has been used by many
researchers in many areas. [19] presents the use of CSP in
designing safety critical systems with high degree of cor-
rectness. [26] discusses the issues involved in modeling and
verifying key-exchange protocols with CSP and its model-
checking tool FDR [27]. [36] presents a methodology based
on CSP to validate critical properties of ad-hoc networks. In
addition, CSP is used in [31] to model check Live Sequence
Charts.

Timed CSP is built as an extension to CSP, designed to
handle concurrency combined with timing considerations,
and incorporate timing information for reasoning about
real-time systems [30], [10]. Operators dealing with tim-
ing information are defined in timed-CSP, such as Wait,
Timeout, Timed Interrupt and so on, as presented in [9].
The operational semantics for Timed CSP is defined in [29],
discussing the timing operators in detail. Timed-CSP has
been applied widely in many areas. In [2], A. F. Ates et al.
present an example of using Timed CSP in specifying fine-
grain synchronization of multimedia systems, focusing on
safety and liveness timing requirements in terms of temporal
logic formulas. The specification of synchronization among
media items using timed-CSP is described in [11]. In [23]
protocols for updating copies and recovering from failures
are specified in Timed CSP.

Formal verification, model checking [3] in specific, has
been recognized as an important method to prove the correct-
ness of distributed algorithms formally and automatically.
Model checking first builds a finite state machine of a formal
model of a system, and then verifies if a property, written in
some temporal logic, about the system holds or not through
a state space search. A counterexample can be generated
when the checked property fails to hold, which explains why
the formal model does not satisfy the property. With careful
design, formal verification can even assure faultless system.
In [17], R. Kaivola et al. present the work in replacing
testing with formal verification in Intel Core i7 processor
execution engine validation. A number of frameworks for
model checking CSP or Timed CSP models have been
proposed, such as SPIN [16], FDR [25], [27], etc.

B. Overview of RTS model
RTS (Real-time System) is presented in [34], as an di-

alect of Timed CSP with extensions like variables, event
operations, and so on. Interested readers are strongly rec-
ommended to refer to [34] for its operational semantics. An
RTS process is a timed process defined as the following BNF,
where P and Q range over processes, e ∈ Σ is an observable
event, b is a Boolean expression on global variables or
process parameters and d is an integer constant.

P = Stop | Skip – primitives
| action → P – data-operation prefixing
| if b then P else Q – if-then-else
| P 2 Q – general choice
| P ‖ Q – parallel composition
| P; Q – sequential composition
| P \ X – hiding
| P =̂ Q – process referencing
| Wait[d0, d1] – delay
| P timeout[d] Q – timeout
| P interrupt[d] Q – timed interrupt
| P within[d0, d1] – react within some time
| P waituntil[d] – wait until
| P deadline[d] – deadline

Process Stop does nothing but idling. Process Skip termi-
nates (possibly after some idling). Process e → P engages
in event e first and then behaves as P. Notice that e may
be an abstract event or a data operation, e.g. written in the
form of e{x = 5; y = 3; } or an external C# program. The
data operation may update data variables (and is assumed
to be executed atomically). A guarded process is written
as if b then P else Q. If b is true, then it behaves as P,
else it behaves as Q. Parallel composition of two processes
is written as P ‖ Q, where P and Q may communicate
via multi-party event synchronization or shared variables.
Process P; Q behaves as P until P terminates and then
behaves as Q immediately. Given a channel ch with pre-
defined buffer size, process ch!exp → P evaluates the
expression exp (with the current valuation of the variables)
and puts the value into the respective buffer and then behaves
as P. Process ch?x → P gets the first element in the
respective buffer, assigns it to variable x and then behaves
as P.

Timed process constructs are used to capture common
real-time system behavior patterns. Process Wait[d] idles for
exactly d time units. In process P timeout[d] Q, the first
observable event of P shall occur before d time units elapse
(since the process starts). Otherwise, Q takes over control
after exactly d time units elapse. Process P interrupt[d] Q
behaves exactly as P (which may engage in multiple ob-
servable events) until d time units elapse, and then Q takes
over control. Process P within[d]behaves as P but will not
terminate before d time unit elapse. Process P deadline[d]
constrains P to terminate before d time units.

Figure 1. Heart Architecture

Our home-built model checker PAT1 (Process Analysis
Toolkit) is designed to apply state-of-the-art model checking
techniques for system analysis. PAT [33][32] supports a
wide range of modeling languages including CSP] (short for
communicating sequential programs), which shares similar
design principle with integrated specification languages like
TCOZ [21][22]. The verification features of PAT are abun-
dant in that on-the-fly refinement checking algorithm is used
to implement Linear Temporal Logic (LTL) based verifica-
tion, partial order reduction is used to improve verification
efficiency, and LTL based verification supports both event
and state checking. Furthermore, PAT has been enhanced to
accept RTS models, for verifying properties such as deadlock
freeness, divergence freeness, timed refinement, temporal
behaviors, etc [34].

C. Informal Specification of Pacemaker

As shown in Fig. 1, a heart is divided into right and
left sections by the interventricular septum. Each of these
(right and left) sections is also divided into upper and lower
compartments known as atria and ventricles, respectively.
The four main chambers of the heart are therefore the:
right atrium, right ventricle, left atrium and left ventricle.
A human heart can show a wide range of rates depending
on the activity level of the rest of the body and the heart can
suffer from several arrhythmias; such arrhythmias are often
the reason that a patient needs a pacemaker.

A pacemaker is a medical device which uses electrical
impulses, delivered by electrodes contacting the heart mus-
cles, to regulate the beating of the heart, and Fig. 2 is a
pacemaker device. The primary purpose of a pacemaker is
to maintain an adequate heart rate by delivering electrical
stimuli (paces) to the chambers of the heart, and prevent
human from being harmed by low heart rate. In this paper,
we adopt the system requirements of pacemaker specified
by Boston Scientific [1].

The pacemaker determines when paces must be delivered
based on calculating the timing of incoming contraction
events. The pacemaker must deal with all possible rates

1http://www.patroot.com

Figure 2. A pacemaker

and arrhythmias, which makes it a complex composition
of collaborating and interacting processes. Therefore, the
pacemaker has several operating modes that address different
malfunctions of the human heart. As described in [1], there
are 18 operating modes, each of which is to deal with a
certain kind of heart malfunction. The operating modes of
the device are classified using a code consisting of three or
four characters, as illustrated in Table I.

I II III IV

Type Chambers Chambers Response Rate
paced sensed to sensing modulation

Letters

O:None O:None O: None
A:Atrium A:Atrium T:Triggered Rate
V:Ventricle V:Ventricle I:Inhibited Modulation
D:Dual D:Dual D:Tracked

Table I
THE CODE OF OPERATING MODES

In the third column, O stands for No Response To Sensing,
meaning pacing without sensing, i.e. asynchronous pacing,
and delivering paces without regard to senses. T means
Triggered Response To Sensing, meaning a sense in a
chamber will trigger an immediate pace in that chamber.
I represents Inhibited Response To Sensing, when a sense
in a chamber shall inhibit a pending pace in that chamber.
D indicates Tracked Response To Sensing, during which an
atrial sense shall cause a tracked ventricular pace after a
certain delay, unless a ventricular sense has been detected
beforehand.

DOO mode is the operating mode in which both chambers
are paced but none are sensed, i.e. the pacemaker paces
the heart without any interaction with the heart activities.
VVI mode is the operating mode in which the pacemaker
paces the ventricles with sensed data from them, and a sense
in them shall inhibit a pending pace. As for DDD mode,
the pacemaker will sense and pace both the atria and the
ventricles, and an atrial sense will cause a tracked ventricular
pace after a certain delay, unless a ventricular sense has been
detected beforehand. A number of parameters are defined to

Abbrev. Description Detail

LRL Lower Rate
Limit

The smallest number of pulses de-
livered per minute.

URL Upper Rate
Limit

The biggest number of pulses de-
livered per minute.

AVD
Atrial-
Ventricular
Delay

The shortest period from an atrial
event to a ventricular pace.

ARP Atrial Refractory
Period

The interval following a atrial
event when atrial senses shall not
inhibit nor trigger paces.

VRP Ventricle Refrac-
tory Period

The interval following a ventricu-
lar event when ventricular senses
shall not inhibit nor trigger paces.

PVARP
Post Ventricular
Atrial Refractory
Period

The interval following a ventric-
ular event when an atrial car-
diac event shall neither inhibit
atrial paces nor trigger ventricular
paces.

RS Rate Smoothing The constraint that limits the
change of pacing rate.

AT Activity Thresh-
old

The value that the accelerometer
sensor output shall exceed before
the pacemaker’s rate is affected.

ReT Reaction Time
The time required to increase the
rate from LRL to URL with max-
imum activity.

RcT Recovery Time
The time required to decrease the
rate from USR to LRL upon ces-
sation of activity.

Table II
THE PARAMETERS

capture the timing patterns of the pacemaker, as summarized
in Table II.

In VVI mode, parameters LRL, URL and VRP should
be considered. In DDD mode, parameters LRL, URL, AVD,
VRP, and PVARP should be included. As for DDDR mode,
all parameters presented in Table II should be considered.

Up to now, several modes have been discussed, and details
about all the 18 operating modes can be found in [1].
The pacemaker shall support single and dual chamber rate
adaptive pacing. The atrial and ventricular pacing pulse am-
plitudes shall be independently programmable. The device
shall have the ability to adjust the cardiac cycle in response
to metabolic need as measured from body motion using an
accelerometer. The accelerometer shall determine the rate of
increasing or decreasing the pacing rate.

IV. MODELING AND VERIFYING PACEMAKER IN PAT

In this section, we illustrate how the pacemaker is mod-
eled as RTS models with critical properties defined for
verification in PAT. The RTS model is modeled according to
the informal specification in Section III-C and more detailed
sources like [4].

A. The RTS Model for Pacemaker

Our model for the pacemaker system consists of 4 parts:
Environment, Sensor, Rate Controller and Pulse Generator,
as shown in Fig.3. Environment models the behavior of the
human heart, i.e. the contraction events of the atria and the
ventricles. Sensor models the sensors paced in the chambers,
which senses the contraction events of the human heart
and the human activity level, and thus is a communicating
medium between the environment (i.e. the human heart)
and the Pulse Generator, Rate Controller. Rate Controller
models the accelerometer which determines the changing
rate of the heart rate. Pulse Generator will generate stimuli
(paces) if necessary based on the sensing data from the sen-
sor. Our work models the behaviors and operations of all 18

Environment
(Heart Activity)

 Sensor (Pulse
sensing and

Activity sensing)

Heart pulse

Pulse Generation Rate Controller
Rate interval

Pulse sensingActivity information

Sensing
 or
not

Figure 3. An Overview of the Model

modes, which are described in [1]. All modes share the same
models for Environment and Sensor (for heart contractions),
which are presented in Section IV-A1 and Section IV-A2
respectively. Only models for rate-modulation modes (eg.
VVIR, DDDR, etc) modes include the activity sensor and
Rate Controller, as discussed in Section IV-A3. Since each
mode has different operations upon same sensing events,
PulseGenerator is modeled separately for each mode, as
illustrated in Section IV-A4.

Since some components of the pacemaker work in a
similar way, not all details of each of the 18 modes are
presented in this section. We discuss the key approach and
idea of modeling the pacemaker in this paper, and interested
readers can download the whole model at [37].

1) Modeling the Environment:
Environment is modeled as a process Heart, which gen-

erates atrial and ventricle contraction events, i.e. pulseA
and pulseV , periodically. The process Heart is composed of
internal choices of 6 sub-processes, which models possible

malfunctions of the natural heart, as shown below.

Heart =

/ ∗ normal case ∗ /

(pulseA → Wait[AVD]); (pulseV → Wait[HI − AVD]); Heart

u / ∗ pulseA missed ∗ /

(noPulse → Wait[AVD]); (pulseV → Wait[HI − AVD]); Heart

u / ∗ pulseV missed ∗ /

(pulseA → Wait[AVD]); (noPulse → Wait[HI − AVD]); Heart

u / ∗ dead heart ∗ /

(noPulse → Wait[AVD]); (noPulse → Wait[HI − AVD]); Heart

u / ∗ pulseA delayed ∗ /

(pulseA → Wait[AVD + X]);

(pulseV → Wait[HI − AVD]); Heart

u / ∗ pulseV delayed ∗ /

(pulseA → Wait[AVD]);

(pulseV → Wait[HI − AVD + X]); Heart;

AVD is a variable storing the value of Atrial Ventricular
Delay, HI is a variable keeping the average interval
between two successive atrial/ventricular events of a
normally working heart, and X is a random length of time
which delays a pulsing event. Note that the events pulseA
(an atrial pulse) and pulseV (a ventricular) event will be
reused in Sensor processes.

2) Modeling the Sensor:
There are 3 sensors in of the pacemaker system, two of

which are to sense the contraction events from the atria
and the ventricles respectively, and the other is to sense the
activity level of the human body. As the activity data is only
necessary in rate-modulation modes and is not required for
non-rate-modulation modes, we put the model of the sensor
for activity data to Section IV-A3, where Rate Controller
shared by rate-modulation modes are discussed.

Heart pulse

Sensor
Sensor allow == true

Pulse Generation

Sensing event

Sensor allow == falseIgnore
pulse

Rate controller

Activity data

Figure 4. Atrial/Ventricular Sensor

As illustrated in Figure 4, an sensor placed in the
atrium/ventricle will sense pulse from the corresponding
chamber, and deliver the sensing event to Pulse Generator
if senses are not inhibited, or ignore the pulse otherwise.

Below is the RTS process AtriaSensor modeling the sensor
placed in the atria.

/ ∗ Sensor in Atria ∗ /

AtriaSensor =

[SA == T]pulseA → senseA → AtriaSensor
2 [SA == F]pulseA → AtriaSensor;

SA is a Boolean variable denoting whether an atrial pulse
(pulseA) from the environment (Heart) will be accepted
by the pacemaker to generate an atrial pace event. If SA
is true, then an event senseA will be executed, otherwise
nothing is done and the process waits for another pulseA
event from Heart. Note that pulseA is the common event
between processes Heart and AtriaSensor, and senseA is the
common event between process AtriaSensor and processes
that model atrial-sensed modes (eg. AAT mode).

The sensor monitoring pulses in the ventricles is modeled
as a process named VentricleSensor in a similar way,
the details of which are not presented for the purpose of
simplicity.

3) Modeling the Rate Controller:
Rate Controller determines the changes of heart rate

according to the level of the activity of the human. We
assume that a activity sensor is placed in the human body
to capture such information, which is modeled as the RTS
process ActivitySensor as bellow.

ActivitySensor =

(senseNone{sensedAct = actData} → RateController
u senseVLow{sensedAct = VLOW} → RateController
u senseLOW{sensedAct = LOW} → RateController
u senseMEDLOW{. . .} → RateController
u senseMED{. . .} → RateController
u senseMEDHIGH{. . .} → RateController
u senseHIGH{. . .} → RateController
u senseVHIGH{. . .} → RateController)within[0];

While Heart and AtriaSensor (or VentricleSensor)
communicate via common events, ActivitySensor and
Rate Controller communicate via the global variable
sensedAct. sensedAct holds the value of the activity, which
will be used in Rate Controller to determine the new rate of
the heart, as shown in the following RTS process. within[0]
requires that the first event of the process will be engaged
immediately once it is enabled.

RateController =

(rateControlling{
if (sensedAct! = actData)

{actData = sensedAct; newInterval = . . . ; }
if (interval < newInterval){/ ∗ increaseinterval ∗ /}
if (interval > newInterval){/ ∗ decreaseinterval ∗ /}

} → Skip) within[0] ;

actData is the variable keeping the value of the current
activity level, interval is the time interval between two
successive pacing events, and newInterval is the target pulse
interval based on the new sensed activity data. Note that the
heart rate (number of pulse per minute) is represented by
interval (number of milliseconds between two consecutive
pulses). According to [1], the activity data is classified into
seven levels, from very low (VLOW) to very high (VHIGH).
Rate Controller decides the value of the newInterval based
on the activity data and , and changes the interval at a
certain rate based on reaction time (ReT) or recovery time
(RcT).

4) Modeling the Pulse Generator:
Pulse Generator is responsible for generating paces if

necessary, the operations of which are different for different
modes. As discussed in Section III-C, the pacemaker may
pace either atria or ventricles or both, with or without
sensing the chambers. Therefore, we discuss the models
of Pulse Generator for AOO mode, VVI mode and DDD
mode in the following. The models of Pulse Generator for
all modes can be found in [37].

AOO mode
Working in AOO mode, Pulse Generator generates an

atrial stimulus (paceA) at fixed rate, without interacting with
Heart via Sensor. The RTS process modeling the AOO mode
Pulse Generator is presented as bellow.

PulseGenAOO =

(paceA → Wait[interval])within[0]; PulseGenAOO;

VVI mode
In VVI mode, Pulse Generator paces the ventricles ac-

cording to the activity of the heart captured by Sensor. As
shown in Fig. 5, initially if there is a ventricular sense, the
Pulse Generator goes to state 2; Otherwise, it goes to state
4 and generates a ventricular pace after the timeout of LRI
(i.e. the interval corresponding to LRL). State 2 stands for
a state that a ventricular event (sensed or paced) has just
happened, where Pulse − Generator will be idle for a time
period of URL interval (URI) and go to state 3. State 3 is
similar to the initial state, except that the amount of time
allowed without sense from ventricle is (LRI-URI).

Following the state machine described above, the RTS
process PulseGenVVI is defined as the following.

PulseGenVVI =

((atomic{senseV → paceV{SV = F} → Skip})
timeout[LRI]((paceV{SV = F} → Skip)within[0]);

Wait[URI]; (enableSV{SV = T} → PaceVVI)within[0]);

PaceVVI = ((atomic{senseV → paceV{SV = F} → Skip})
timeout[LRI − URI]((paceV{SV = F} → Skip)within[0]);

Wait[URI]; (enableSV{SV = T} → PaceVVI)within[0]);

2

34

1

Sensing event

Ventricle sense

Ventricle sense
Wait [URL interval]

Ventricle pace
Timeout [LRL interval]

Timeout [(LRL – URL) interval]

Figure 5. The State Machine of the VVI-mode Pulse Generator

When a senseV event is engaged, a paceV event will
be engaged immediately. Every time when there is a
pacing event, the SV is set as F (FALSE), disallowing
Pulse Generator to generate a pacing event, based on a
sensed event. After a URI’s time, the SV is set as T (TRUE)
by event enableSV . In this way, the Pulse Generator assures
that the interval between each two successive pacing event
should be larger than URI and smaller than LRI.

DDD mode
As for DDD mode, Pulse Generator will pace both the

atria and the ventricles based on senses from both chambers,
and an atrial sense will cause a tracked ventricular pace after
a delay (AVD), unless a ventricular sense has been detected
beforehand. The RTS process PulseGenDDD is defined as
follows to model such behaviors.

PulseGenDDD =

(atomic{senseV → paceV{SA = F; SV = F} → Skip}
timeout[LRI](paceV{SA = F; SV = F} → Skip)within[0]);

Wait[URI]; (enableSA{SA = T} → Skip)within[0];

(atomic{senseA → paceA{SA = F; SV = T} → Skip}
timeout[LRI − AVD − URI](paceA{SA = F; SV = T}
→ Skip)within[0]); PaceDDD;

PaceDDD = (atomic{senseV → paceV{SA = 0; SV = 0} → Skip}
timeout[AVD](paceV{SA = 0; SV = 0} → Skip)within[0]);

Wait[URI]; (enableSA{SA = 1} → Skip)within[0];

(atomic{senseA → paceA{SA = 0; SV = 1} → Skip}
timeout[LRI − AVD − URI](paceA{SA = 0; SV = 1}
→ Skip)within[0]); PaceDDD;

5) Composing the Top-level Process:
After each part of the pacemaker has been modeled as a

RTS process, a top-level process SysMODE is defined as hi-
erarchial parallel or sequential composition of Environment,
Sensor, Rate Controller and Pulse Generator.

Non-rate-modulation Mode

For non-rate-modulation modes, the rate controller as well
as the activity sensor are not considered since rate will
never be changed according to the activity level of human.
Generally, the top-level process for a mode is defined as the
following RTS process.

SysMODE =

Heart ‖ AtriaSensor ‖ VentricleSensor ‖ PulseGenMODE;

In RTS semantics, processes composed by ‖ operator
will synchronize with others at each of their common
events. For instance, AtriaSensor and PulseGenAAT shares
the event senseA, and thus in process SysAAT , every time
when AtriaSensor executes senseA, PulseGenAAT will exe-
cutes senseA as well. Note that one of the sensor processes
may be missed in single chamber sensed mode, such as VVI
mode shown in the following.

SysVVI = (Heart ‖ VentricleSensor ‖ VVIpace)
\ {pulseA, pulseV, noPulse, enableSV,

disableSV, senseV};

The operator \ in this case is to make invisible the events in
subsequent {} block, which in fact only keeps event paceV
in the traces of the process SysVVI . Such a design is to
make the process SysVVI valid for checking timed refinement
targeting a specification process only composing of event
paceV , as the property P2 presented in Section IV-B.

Rate-modulation Mode
As for rate-modulation modes like DDDR mode, all four

components described above should be included.

SysMODE =

Heart ‖ AtriaSensor ‖ VentricleSensor ‖ RatePaceMODE;

RatePaceMODE = ActivitySensor; RateController;
PulseGenMODE; RatePaceMODE;

The sub-process RatePaceMODE of SysMODE is the
one models the interactions between the ActivitySensor,
RateController, PulseGenMODE, which communicate via
shared global variables such as sensedAct and interval.

B. Critical Properties

In order to formally validate that our specification for
the pacemaker satisfies the informal requirements presented
in [1], we define several categories of properties, against
which the RTS model illustrated in last section is verified.
These properties are defined as assertions in PAT’s assertion
annotation language for RTS models, including timed
refinements, LTL formulae, reachability and so on [34].

Deadlock Freeness (P1)
Deadlock is a common undesired state for safety-critical
systems, especially in our case, a pacemaker. The existence
of a deadlock state means that there is a state when the
pacemaker may terminate while in fact it is expected to

perform calculations. Being aware that such a terminal state
may cause the loss of the life of the implanted patient, we
firstly verify our specification for deadlock freeness, i.e. the
specification exists no deadlock in every execution path. An
assertion for verifying deadlock freeness can be defined in
PAT as the following syntax, where MODE is the reference
of the process modeling the behaviors of the pacemaker
under a certain mode.

#assert SysMODE deadlockfree;

Lower and Upper Rate Limits (P2)
Besides deadlock freeness, it is critical that the pacemaker
satisfies the lower and upper rate limits (LRL and URL). If
is dangerous if the pacemaker allows the heart to beat at a
rate slower than the lower rate limit or faster than the upper
rate limit. To verify such constraints, a specification RTS
process is first defined to described the correct behaviors of
the pacemaker with respect to LRL and URL. The process
modeling the pacemaker is then verified that the set of
all its timed traces will be a subset of the specification
process’s, i.e. timed refinement [34]. For example, to verify
that the pacemaker working in VVI mode (i.e. SysVVI) has
no conflicts with LRL or URL, the a specification process
SPECVVI

Rate representing the correct behaviors is defined as
bellow.

SPECVVI
Rate = paceV → Loop;

Loop = (paceV → Loop) within[URI, LRI];

Process SPECVVI
Rate requires that the interval between each

two consequent pulses in ventricles should be larger than
URI and smaller than LRI. Note that URI is the interval
corresponding to URL and LRI corresponding to LRL. And
the corresponding timed refinement is written as bellow.

#assert SysVVI wT SPECVVI
Rate;

Refractory Period (P3)
Refractory period is another timing requirement, during
which natural stimuli (i.e. sensing events) shall neither trig-
ger nor inhibit paces, and there are Atrial Refractory Period
and Ventricular Refractory Period, as shown in Table II.
For instance, while working in AAT , the pacemaker might
not response to a sensing event from the atria in each
Atrial Refractory Period (ARP). Similarly, timed refinement
is used to express the property and the specification process
representing the correct behaviors satisfying ARP is given
as follows.

SPECAAT
ARP = (paceA → Skip)waituntil[ARP]; SPECAAT

ARP;

Atrial-Ventricular Delay (P4)
For the Tracked modes, an atrial sense shall cause a tracked
ventricular pace after a certain delay, unless a ventricular
sense has been detected beforehand. Therefore, after an atrial
event, there should be ventricular event within a time of
AVD. This property is verified via timed refinement as well,
and the specification process SPECDDD

AVD is defined as the

Mode P1 P2 P3 P4 P5
AAT

√ √ √
- -

VVT
√ √ √

- -
AOO

√ √ √
- -

AAI
√ √ √

- -
VOO

√ √ √
- -

VVI
√ √ √

- -
VDD

√ √ √ √
-

DOO
√ √ √ √

-
DDI

√ √ √ √
-

DDD
√ √ √ √

-
AOOR

√ √ √
-

√

AAIR
√ √ √

-
√

VOOR
√ √ √

-
√

VVIR
√ √ √

-
√

VDDR
√ √ √ √ √

DOOR
√ √ √ √ √

DDIR
√ √ √ √ √

DDDR
√ √ √ √ √

Table III
SUMMARY OF PROPERTIES FOR 18 MODES

following.

SPECDDD
AVD = paceA → Loop;

Loop = (paceV → SPECDDD
AVD)within[AVD];

Rate Controlling (P5)
In rate controlling mode, the pacemaker allows the heart
rate to be modified according to the activity of the human.
Therefore, rate controlling properties are to validate that
whether the pacemaker working in rate modulation modes is
able to change the heart rate according to changes of human
activities. Such properties are expressed in LTL formulae.
For example, the following code defines the property that a
pacemaker shall finally change the heart rate equivalent to
an pacing interval of 750 ms when the activity data becomes
MEDIUM.

#define SenseMed sensedAct == MED;

#define RateMed interval == 750;

#assert SysXXXR |= 2 (SenseMed → (3NewRateMed));

Summary
We have modeled the pacemaker for all 18 operating modes
as described in [1], and all of them should satisfy properties
P1, P2 and P3. The properties that each mode should satisfy
are presented in Table III.

V. EXPERIMENTS

In last section, we discuss how each mode is modeled
as RTS processes and how critical properties are defined in
assertions. Based on those models and assertions, experi-
ments are carried to verify each property for each mode

Property Mode Result #States Time (sec.)

P1

AAT True 3774 0.4766
VVI True 3653 0.4175
DDD True 15179 1.3116
DDDR True 221933 20.1130

P2

AAT True 3990 0.3489
VVI True 3780 0.3281
DDD True 15711 1.7212
DDDR True 223529 24.7651

P3

AAT True 3990 0.4375
VVI True 3780 0.3451
DDD True 18347 2.2235
DDDR True 285941 33.1382

P4

VDD True 16955 2.0637
DDI True 16129 1.7552
DDD True 15711 1.7179
DDDR True 223529 24.9738

P5

AOOR True 201743 27.4588
VVIR True 203496 30.2149
DDIR True 218113 31.4460
DDDR True 244801 36.6312

Table IV
RESULTS OF EXPERIMENTS

as presented in Table III. Some modes share the similar
operations. As an example, VVI mode and AAI mode is
only different in that VVI mode senses and paces only the
ventricles while AAI mode senses and paces only the atria.
For full verification, we have run all verifications for those
properties of all 18 modes in Table III. However, we only
present the results of 4 modes for each category of property
for simplicity. The experiments were carried out on a PC
with Intel Core2 CPU at 2.33GH and 3.25GB RAM, and
the results are shown in Table IV.

The results show that our RTS models satisfy all the
properties defined in last section. The time used for verifying
the most complex mode (i.e. DDDR mode) is less than one
minute, visiting more than 200,000 states. This indicates
that our approach is efficient and valid for verifying the
correctness of the pacemaker model.

VI. CONCLUSION

In this paper, we present a Real-Time model for the
pacemaker, modeling all its 18 operating modes described
in [1]. Five categories of properties are then defined and
verified against the RTS models for all modes.

Our contributions include that we present a full model
for the pacemaker regarding all 18 operating modes, which
provide a complete formal specification of the pacemaker.
Meanwhile, necessary properties from the five categories de-
scribed in Section IV-B are defined for each mode, assuring
that the pacemaker working in each mode will satisfy a set
of critical properties. Moreover, our work proves that formal
modeling and verifying techniques are applicable and useful
for assuring critical properties for safety critical systems.
Our experiences in modeling the pacemaker and constructing

verification goals will be helpful for other researchers to
model and verify other safety critical systems, especially
real-time systems.

Since the description in [1] is quite abstract, details
about complex and advanced operations of the pace-
maker are unclear. Therefore, our model are restricted
to focus on the sensing and pacing behaviors, and
are unable to specify those complex behaviors, such as
AtrialTachycardiaResponse [1]. Thus, one of our future work
is to study the deep details of the pacemaker, and model
more complex operations, allowing more detailed properties
of the pacemaker to be defined and verified. During our
procedure of crafting the RTS model for pacemaker, we
suffered a lot from fixing bugs of the model for a correct
and concise model. This experience has motivated us to
study methods for automating create precise RTS models
from requirement descriptions.

REFERENCES

[1] Pacemaker system specification. Soft-
ware Quality Research Laboratory, 2007.
http://sqrl.mcmaster.ca/ SQRLDocuments/PACEMAKER.pdf.

[2] A. F. Ates, M. Bilgic, S. Saito, and B. Sarikaya. Using
Timed CSP for Specification Verification and Simulation of
Multimedia Synchronization. IEEE Journal on Selected Areas
in Communications, 14(1):126–137, 1996.

[3] C. Baier and J. P. Katoen. Principles of Model Checking. The
MIT Press, New York, 2008.

[4] S. S. Barold, R. X. Stroobandt, and A. F. Sinnaeve. Cardiac
Pacemakers Step by Step : AN ILLUSTRATED GUIDE.
Futura, Blackwell Publishing, 1st edition, 2004.

[5] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on
Uppaal. In SFM, pages 200–236, 2004.

[6] J. P. Bowen and V. Stavridou. Safety-Critical Systems, Formal
Methods and Standards. Software Engineering Journal,
8:189–209, 1993.

[7] J. P. Bowen and A. Tanenbaum. Formal Methods in Safety-
Critical Standards. IEEE Computer, 27:168–177, 1993.

[8] c. B. Jones. Systematic software development using vdm -
teaching notes. 1995.

[9] J. W. Davies. Specification and Proof in Real-Time CSP.
Cambridge University Press, New York, NY, USA, 1993.

[10] J. W. Davies and S. Schneider. A Brief History of Timed
CSP. Theor. Comput. Sci., 138(2):243–271, 1995.

[11] S. A. Ehikioya. A Formal Approach to Multimedia Informa-
tion Systems Development. In IEEE Int’l Conf. Systems, Man
and Cybernetics, volume 2, pages 1245 – 1249, 1998.

[12] A. O. Gomes and M. V. M. Oliveira. Formal Specification of
a Cardiac Pacing System. In FM, pages 692–707, 2009.

[13] J. F. Groote, A. Mathijssen, M. A. Reniers, Y. S. Usenko,
and M. Weerdenburg. The Formal Specification Language
mCRL2. In MMOSS, 2006.

[14] A. Hall. Seven myths of formal methods. IEEE Software,
7(5):11–19, 1990.

[15] C. Hoare. Communicating Sequential Processes. International
Series in Computer Science. Prentice-Hall, 1985.

[16] G. J. Holzmann. The Model Checker SPIN. IEEE Trans.
Softw. Eng., 23(5):279–295, 1997.

[17] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whit-
temore, S. Pandav, A. Slobodova, C. Taylor, V. Frolov, E.,
and A. Naik. Replacing Testing with Formal Verification in
Intelr CoreTM i7 Processor Execution Engine Validation. In
CAV ’09: Proceedings of the 21st International Conference
on Computer Aided Verification, pages 414–429, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[18] J. C. Knight. Safety critical systems: challenges and direc-
tions. In ICSE, pages 547–550, 2002.

[19] Y. K. H. Lau. The Design of Distributed Safety Critical
Software using CSP. In IEE Colloquium Safety Critical
Software in Vehicle and Traffic Control, pages 8/1–8/5, 1990.

[20] H. D. Macedo, P. G. Larsen, and J. S. Fitzgerald. Incremental
Development of a Distributed Real-Time Model of a Cardiac
Pacing System Using VDM. In FM, pages 181–197, 2008.

[21] B. Mahony and J. Dong. Blending Object-Z and Timed CSP:
An introduction to TCOZ. In In Proceedings of the 20th
International Conference on Software Engineering (ICSE’98),
pages 95–104, 1998.

[22] B. Mahony and J. Dong. Timed Communicating Object Z.
In IEEE Transactions on Software Engineering, volume 26,
pages 150–177, 2000.

[23] N. Ogura, K. Saisho, and A. Fukuda. Design of Protocols in
Timed CSP for Highly Reliable and Available Client-Server
System. In APSEC, pages 495–502, 1997.

[24] J. S. Ostroff. Formal methods for the Specification and
Design of Real-Time Safety Critical Systems. J. Syst. Softw.,
18(1):33–60, 1992.

[25] A. W. Roscoe. Model-checking CSP. In A classical mind:
essays in honour of C. A. R. Hoare, pages 353–378. Prentice
Hall International (UK) Ltd., Hertfordshire, UK, 1994.

[26] A. W. Roscoe. Modelling and verifying key-exchange proto-
cols using CSP and FDR. In In 8th IEEE Computer Security
Foundations Workshop, pages 98–107, 1995.

[27] A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and
Practice of Concurrency. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1997.

[28] J. Rushby. Critical System Properties: Survey and Taxonomy.
Reliability Engineering and Systems Safety, 43(2):189–219,
1994. Research report CSL-93-01.

[29] S. Schneider. An Operational Semantics for Timed CSP. Inf.
Comput., 116(2):193–213, 1995.

[30] S. Schneider. Concurrent and Real-time Systems: The CSP
Approach. John Wiley and Sons, 2000.

[31] J. Sun and J. S. Dong. Model Checking Live Sequence Charts.
In ICECCS ’05: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems,
pages 529–538, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[32] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In 21th International Conference
on Computer Aided Verification (CAV 2009), 2009.

[33] J. Sun, Y. Liu, J. S. Dong, and H. Wang. Specifying and
Verifying Event-based Fairness Enhanced Systems. In 10th
International Conference on Formal Engineering Methods
(ICFEM 2008), 2008.

[34] J. Sun, Y. Liu, J. S. Dong, and X. Zhang. Verifying Stateful
Timed CSP Using Implicit Clocks and Zone Abstraction. In
Proceedings of the 11th IEEEInternational Conference on
Formal Engineering Methods (ICFEM 2009), volume 5885
of Lecture Notes in Computer Science, pages 581–600, 2009.

[35] J. M. Wing. A specifier’s introduction to formal methods.
IEEE Computer, 23(9):8–24, 1990.

[36] I. Zakiuddin, M. Goldsmith, P. Whittaker, and P. H. B. Gar-
diner. A Methodology for Model-Checking Ad-hoc Networks.
In SPIN, pages 181–196, 2003.

[37] M. C. Zheng and L. A. Tuan. The RTS model of pacemaker.
http://www.comp.nus.edu.sg/˜pat/pacemaker-rts.zip, 2009.

