
Model Checking C# Code: A Translation Approach

Huiquan Zhu
School of Computing

National University of Singapore
huiquanz@comp.nus.edu.sg

Abstract—Extracting model from source code helps to ensure
the implementation in accord with design. The properties
of interest can be checked on implemented system via the
extracted model. Previous approaches usually abstract the
source at the level of intermediate language or assembly code.
We are building a module to automatically extract CSP# model
from C# source code and use PAT (Process Analysis Toolkit)
to check the properties. As PAT support user-defined C# data
type, We make the extracted model adapting to either program-
implied or user-defined abstraction level.

Keywords-Model Checking; Source Code; Refinement;

I. INTRODUCTION

Complex control systems often confront subtle errors
related to multiple processes cooperation. In many cases,
these defects are hard to be reproduced or located. Good
design helps to ensure the system satisfies the security
requirements. However, defects might be introduced in the
coding phase. To ensure the system fulfils the requirement
we need more automatic techniques to compare the design
model and the implemented system.

Directly model checking on source code is a competitive
way to ease these problems. Different from testing, model
checking approach has full control on the processes sched-
ule. The trace to the error, including system and environment
information, can help analysing the cause of error. It should
also be configurable to thoroughly traverse all possible
running paths at appropriate detail levels.

Model checking source code faces challenges. (1) The
state of program contains the global or local variable,
one need efficient and flexible way to represent them to
avoid explosion. (2) Modelling each line of assembly code
as an event in model may be inefficient, we need good
abstraction from the source code, with optimization for the
program language. (3) The model shall be able to check the
requirement, as properties, on the design model and on the
source-extracted model.

II. RELATED WORKS

Directly checking C source code is particularly interested
in embedded system. There are quite some C source code
model checkers today, such as BLAST, SLAM and CBMC
(refer to [1], [2]). Some of them translate the source code to
boolean program or CIL(C Intermediate Language), along
with theorem provers and SAT solvers to check abstracted

predicates. Some of them translate C source code to be the
input of general model checkers such as SPIN.

Compared to C language, Java, C# and other similar
object-oriental languages provide built-in multi-thread fea-
ture and garbage collect mechanism. Java PathFinder [3] and
MoonWalker [4] provide two virtual machine approaches
to model check Java and C# program respectively. Java
PathFinder acts as a Java virtual machine so the compiled
Java program can run on it, while Java PathFinder analysing
the program and interleaving the operations of different
threads. MoonWalker works similar to Java PathFinder but
targets .NET framework. Most of the discussed systems
above work on the byte-code or intermediate language level.
In [5] each line of Java source code is translated to one
statement of promela.

PAT (Process Analysis Toolkit) is a flexible general-
purpose model checker [6], [7]. It bases on the classic
process algebra CSP and extends to support share vari-
ables, asynchronous message passing, automated refinement
checking [8]. The principle ideas share commons with
TCOZ [9], [10] and other integrated specification languages.
PAT adds real-time system module, probability model and
web-service design module to allow specific domain mod-
elling. In general, PAT accepts the models that can be
represented as labelled transition system (LTS). The edge
connecting the states in LTS could be abstract event or
data operation. Verification of linearizability, time refinement
checking and parallel verification are well supported by PAT
[11], [7].

Fairness of different levels are supported by PAT, includ-
ing strong/weak event level, strong/weak process level and
global level [7]. PAT also supports fairness on the process
counter abstraction, which enables more efficient checking
on large scale parameterized systems.

PAT is developed in C# under .NET framework. The input
model can import data types from standard or user-specified
C# class libraries. The C# code can be attached to the events
as “event{code1; code2;}”. Compared to other general-
purpose model checkers, PAT gives more flexibility on the
model abstraction level and it shows good performance
compared to state-of-art general model checkers [12].



III. EXTRACT CSP# MODEL FROM C# SOURCE CODE

Currently we are building a module of PAT to automat-
ically extract CSP# model from C# source code. This will
avoid manually translating program to the input of general-
purpose model checkers, which is error-prone and time-
consuming. The developers can also use it to check whether
the implemented system refines the higher level design. The
following features are introduced to gain the module’s better
performance.

Deciding the atomicity of the modelling is important as
it influences the performance significantly. If we translate
everything to byte-code level, it will be very specific but not
quite necessary. Partial order reduction and other reduction
techniques could be used after extracting the byte-code level
model, but abstract the model at earlier phase will be more
profitable. The consecutive operations, if they do not access
outside the thread’s local data, are grouped in one code block
attached to one τ event with a block of C# code operating
on the share variables. If the code access other objects’
methods (also in the global share variables), whether the
method call is modelled as an event or a process is based
on the object’s abstraction level(could be user-specified).
For example the code “loc assign1; loc assign2; method-
call1; loc assign3;” might be translated to “τ{loc assign1;
loc assign2;} → methodcall1(); τ{loc assign3;}→ Skip;”
or “τ{loc assign1; loc assign2; methodcall1; loc assign3;}
→ Skip;” The code in the curly bracket will be treated as
atomic.

The polymorphism is hidden in the C# libraries imported
in model. This avoids manually maintaining the complex
inheritance relations and thus simplifies the model. More
specific, the embedded C# libraries (as .dll files) contain the
definitions of the classes and their relations. For the methods
of certain class, if the atomicity is defined at method level,
the translated code will be put in the C# library. Otherwise
the method need to be explicitly modelled by CSP# events
for interleaving.

The translation approach in [5] uses variables to monitor
the locks and the returned values of the methods. As
for PAT we prefer using channels and events to achieve
the same result. This avoids the variables corresponding
to synchronization to be represented in global state. This
will also save the storage of system state and enhance the
extracted model’s processing efficiency.

PAT supports verification of various properties, including
deadlock, reachability, LTL, refinement, divergence-free etc.
The assertions in the source code will be translated to an
“assert” event in the model. More complex properties can
be separately modelled as predicate assertions in PAT model.

Compared to other discussed approaches, our solution
makes use of the PAT’s embedded C# library to provide
more efficient handling on the variables in the program. In
the translation we allow more control on atomicity of the

abstracted model. Currently the system configuration need
to be a close-system. In the future we plan to add in more
static optimizations or integrate it with testing framework.

REFERENCES

[1] B. Schlich and S. Kowalewski, “Model checking c source
code for embedded systems,” International Journal on Soft-
ware Tools for Technology Transfer (STTT), vol. 11, no. 3,
pp. 187 – 202, 2009.

[2] D. Beyer, T. A. Henzinger, and G. Thoduloz, “Configurable
software verification: Concretizing the convergence of model
checking and program analysis,” in In Conf. on Computer
Aided Verification (CAV).

[3] F. Lerda and W. Visser, “Addressing dynamic issues of pro-
gram model checking,” in Proceedings of the 8th international
SPIN workshop on Model checking of software. Toronto,
Ontario, Canada: Springer-Verlag New York, Inc., 2001, pp.
80–102.

[4] N. H. A. D. Brugh, V. Y. Nguyen, and T. C. Ruys, “Moon-
Walker: verification of .NET programs,” in Proceedings of
the 15th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, ETAPS 2009.

[5] K. Havelund and T. Pressburger, “Model checking java
programs using java pathfinder,” International Journal on
Software Tools for Technology Transfer (STTT), vol. 2, no. 4,
pp. 366 – 381, 2000.

[6] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: towards
flexible verification under fairness,” in Proceedings of the 21th
International Conference on Computer Aided Verification
(CAV’09).

[7] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang, “Specifying
and verifying event-based fairness enhanced systems,” in
Proceedings of the 10th International Conference on Formal
Engineering Methods (ICFEM 2008).

[8] J. Sun, Y. Liu, and J. S. Dong, “Model checking CSP
revisited: Introducing a process analysis toolkit,” in Proceed-
ings of the Third International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation
(ISoLA 2008).

[9] B. Mahony and J. S. Dong, “Timed communicating object Z,”
IEEE Transactions on Software Engineering, vol. 26, no. 2,
pp. 150–177, 2000.

[10] ——, “Blending Object-Z and Timed CSP: an introduction to
TCOZ,” in Proceedings of the 20th international conference
on Software engineering(ICSE’98). IEEE Computer Society,
1998, pp. 95–104.

[11] Y. Liu, J. Sun, and J. S. Dong, “Scalable multi-core model
checking fairness enhanced systems,” in Proceedings of the
11th IEEEInternational Conference on Formal Engineering
Methods (ICFEM 2009).

[12] J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong,
“Fair model checking with process counter abstraction,” in
Proceedings of the Second World Congress on Formal Meth-
ods (FM’09).


