
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Formal Modeling and Validation of Stateflow Diagrams

Chunqing Chen1⋆, Jun Sun2, Yang Liu3, Jin Song Dong4, Manchun Zheng4

1 Hewlett-Packard Laboratories Singapore
e-mail: chunqing.chen@hp.com

2 Singapore University of Technology and Design
e-mail: sunjun@sutd.edu.sg

3 Temasek Laboratories, National University of Singapore
e-mail: tslliuya@nus.edu.sg

4 School of Computing, National University of Singapore
e-mail: {dongjs, zmanchun}@comp.nus.edu.sg

The date of receipt and acceptance will be inserted by the editor

Abstract. Stateflow is an industrial tool for modeling
and simulating control systems in model-based devel-
opment. In this paper, we present our latest work on
automatic verification of Stateflow using model check-
ing techniques. We propose an approach to systemati-
cally translate Stateflow diagrams to a formal modeling
language called CSP# by precisely following Stateflow’s
execution semantics which is described by examples. A
translator is developed inside the PAT model checker to
automate this process with the support of various State-
flow advanced modeling features. Formal analysis can be
conducted on the transformed CSP# with PAT’s simu-
lation and model checking power. Using our approach,
we can not only detect bugs in Stateflow diagrams, but
also discover subtle semantics flaws in Stateflow user’s
guide and demo cases.

Key words: Model-Based Development – Transforma-
tion – Validation – Model Checking – Stateflow

1 Introduction

Stateflow, a product of the MathWorks Company, has
been used widely to specify and simulate embedded con-
trol systems in various industry areas like aerospace [18]
and transportation [1,6]. Stateflow’s rich set of graphi-
cal modeling constructs allow users to quickly describe
complex systems, and its simulation capability further
helps users visualize system behavior under particular
circumstances. On the other hand, the increasing crit-
icality of embedded systems, for example, systems de-
ployed in huge quantities in automobile manufacturers,

⋆ The work was done when the author was at the School of
Computing, National University of Singapore.

raises the issue of providing high-level assurance at ear-
ly development stages. Unfortunately, Stateflow fails to
support this, due to the following two factors: (1) its
semantics is specified in a narrative and sometimes par-
tial manner over its 1358 pages long user’s guide [17]; (2)
simulations may be infeasible to analyze system behavior
over a large and possibly infinite number of situations.

The above gap between the requirements and the cur-
rent state of Stateflow creates an opportunity for formal
methods, which are mathematically based analysis tech-
niques for software engineering [11,26], since they pro-
vide unambiguous semantics (e.g., CSP [12] in process al-
gebras) and rigorous verification capabilities (e.g., model
checking [5]). In this paper, we develop formal analy-
sis support to complement Stateflow based on a generic
model checking system called Process Analysis Toolk-
it (PAT) [23,15]. PAT is a self-contained framework to
support composing, simulating, and analyzing dynamic
systems. PAT’s specification language CSP# [22] offers
great modeling flexibility by integrating high level oper-
ators from CSP with low level operators from common
programs. Also PAT implements various model check-
ing techniques catering for different properties such as
reachability and linear temporal properties [14] . These
strengths of PAT are useful for achieving our goal of for-
mal modeling and reasoning about Stateflow diagrams.

We first identify the execution semantics of State-
flow, namely, how a Stateflow diagram executes its com-
ponents and updates variables when it is simulated. Sec-
ond, we construct a translator in C# as part of PAT for
automatic translations. The inputs of the translator are
MDL files which are textual representation of Stateflow
diagrams in nested blocks of keywords and parameter-
value pairs. However, there is no document available ex-
plaining the syntax or grammar of the format of MDL
files. We hence acquire the details from experiments.
Last, we specify important requirements based on trans-
lated CSP# models which represent the whole diagrams



2 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

or some components, and they are verified fully auto-
matically by applying PAT’s model checking power.

So far we have covered a wide range of modeling
features of Stateflow, including history junctions, inter-
level transitions, implicit events, etc. Our approach has
been applied to all semantic examples in the user’s guide
and non-trivial examples (including demo cases used by
the MathWorks Company). We remark that we validate
the correctness of the execution semantics we model by
means of simulations, because the execution semantics
of Stateflow is described in informal operational terms
supported by examples. Thus, it is not possible to prove
the equivalence between these two execution semantics.
We carefully identify the execution semantics from the
user’s guide, and rigorously compare the execution order
and variable values of our CSP# models (that are ex-
ecutable) and those counterparts of Stateflow diagrams
step by step during simulations. This raises the confi-
dence in our CSP# models, and also leads to discovery
of subtle bugs and incomplete semantics in Stateflow us-
er’s guide [17]; these flaws have been acknowledged and
fixed by the MathWorks Company in its latest user’s
guide (released in September, 2010).

The remainder of this paper is organized as follows.
Related work is reviewed in the next subsection. Sec-
tion 2 introduces the characteristics of Stateflow and
PAT. Section 3 shows the translation from Stateflow di-
agrams into CSP# models. Experiments in Section 4
demonstrate the applicability and usefulness of our ap-
proach. Section 5 concludes the paper.

Related Work Although Stateflow appears to share many
graphical notations with Statecharts [9], (e.g., arrow lines
depicting transitions between states), its semantics is
clearly different from Statecharts in its handling of non-
determinism. The Stateflow semantics is complete deter-
ministic, as the execution order among parallel states or
outgoing transitions in a diagram is always sequential
and fixed. Furthermore, Stateflow has its own modeling
features; a condition action of a transition occurs before
its source status becomes inactive, for instance. There-
fore, existing work [10,13] on supporting Statecharts is
inapplicable to Stateflow.

There exist several approaches to apply various for-
mal verification tools to Stateflow. Banphawatthanarak
et al. [2] translated Stateflow diagrams into the language
of the SMV model checker. However, their work exclud-
ed multi-level hierarchical states and events, and only
Boolean-valued variables were allowed. In 2001, Sims et
al. [21] manually constructed Simulink/Stateflow mod-
els1 in an invariant checker, although the construction
was informally presented. Transformation to communi-
cation pushdown automata was reported by Tiwari [24],
although the work did not consider the sequential execu-

1 Simulink is a commercial product specifying and simulating
continuous dynamics, and usually integrates with Stateflow to
model hybrid systems.

tion order among parallel states in Stateflow. Scaife et
al. [20] converted a subset of Stateflow constructs into
Lustre, a synchronous programming language. Restric-
tions on the use of recursion in Lustre constrained the
type of Stateflow diagrams supported; for instance, inter-
level transitions were disallowed. Toyn and Galloway [25]
proposed to model Stateflow diagrams using Z notation
where they interpreted Stateflow as Statecharts. Recent-
ly, Cavalcanti [3] discussed the use of Circus [19] to spec-
ify Stateflow diagrams, though the way of handling event
broadcasting in Stateflow was inappropriate: the evalu-
ation was not done in a top-down manner. Denotational
and operational semantics of Stateflow were proposed
by Hamon [7] and Hamon and Rushby [8], respectively.
Their definitions were at an abstract level and a num-
ber of Stateflow modeling features were left out, such as
the way to capture the effect of actions was not specified
and states having during actions were missing. Simulink
Design Verifier [16] is a new product from the Math-
Works Company to check Simulink/Stateflow models a-
gainst assertions that are specified by logic expressions
over variable values. The analysis is performed to all as-
signments of variables during a simulation period, and
lack support of properties beyond assertions, for exam-
ple, temporal properties specified in temporal logic.

Compared with those existing approaches, our work
can provide a more comprehensive analysis of Stateflow
diagrams. We follow its intrinsic execution semantics
which is deterministic and sequential (among parallel s-
tates). A wide range of Stateflow modeling features is
covered such as inter-level transitions and the during ac-
tions. We also carefully investigate complex behavior like
event broadcasting in multi-level hierarchical diagrams.
We also develop a translator automate the translation
from Stateflow diagrams into PAT models.

In addition, this paper distinguishes itself from our
preliminary work [4] by extensive refinement and en-
hancement. Previously, we discussed the possibility of
modeling Stateflow diagrams in PAT, and a few basic
Stateflow constructs were considered. In this paper, we
extend the coverage of Stateflow by considering more
complicated constructs such as implicit events, and re-
fine previous method to capture the execution semantics
more precisely; in particular, we add auxiliary variables
for transitions to cope with event broadcasting in State-
flow. We also develop the translator and apply our ap-
proach to more and larger systems, for example, a fault-
tolerant fuel system that is a demo case used by the
MathWorks Company.

2 Background

In this section, we give a brief introduction to Stateflow
and PAT, by covering their necessary features used in
this paper. Complete description are available in their
respective documents [17,22,15].



Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams 3

Throttle 3

norm
entry: fail_state[THROT] = 0;

fail
entry: fail_state [THROT] = 1;

Speed 4

norm
entry: fail_state[SPEED] = 0;

fail
entry: fail_state[SPEED] = 1;

Counter 5
MultiFail

FL3 FL4FL2FL1FL0

[throt> max_throt | throt < min_throt]/
Counter.INC

[throt >  min_throt & throt < max_throt]
/ Counter.DEC

[speed ==0 & press < zero_thresh ]/
Counter.INC

[speed > 0] /
Counter .DEC

INC INC
1

DEC
1

DEC
2

INC
1

INC
2

DECDEC
2

Fig. 1. Part of a Stateflow diagram of a fuel control system

2.1 Stateflow

A Stateflow diagram is basically formed by states, tran-
sitions, and junctions to specify dynamics of an event-
driven system which changes its mode according to events
and conditions. In the following, we will introduce impor-
tant features of states, transitions, events, and junctions.
Actions will be explained with states and transitions. We
will also cover the behavior of a Stateflow diagram dur-
ing simulation and the general structure of its textual
representation in MDL files.

2.1.1 States

A state is either active or inactive during a simulation;
it changes in response to events and conditions. The ac-
tivity status of a state determines the state’s behavior.
Specifically, entry actions occur when a state becomes
active, during actions take place when a state is active,
and exit actions are executed when a state becomes in-
active. We here use Figure 1, part of Stateflow diagrams
modeling a fuel control system2 which will be illustrated
in Section 4, as a running example. For instance, when
substate norm within state Throttle becomes active,
an assignment fail state[THROT] = 0 occurs, where
fail state is an array and THROT is a constant.

To support hierarchical structure in Stateflow, a su-
perstate can contain substates. During simulation, a su-
perstate is activated (and executed) followed by its sub-
states, and it is exited after all of its substates become
inactive. For instance, state Counter contains a substate
MultiFail that is a superstate of states FL2, FL3 and
FL4 in Figure 1. A superstate is decomposed either 1)
exclusively where its substates are called OR states and
there is at most one OR state being active at a time,
or 2) in parallel where its substates are called AND s-
tates and all AND states are active at the same time.

2 Also available at http://www.mathworks.com/products/

stateflow/demos.html?file=/products/demos/stateflow/

sldemo_fuelsys/sldemo_fuelsys.html

For example, states Counter, Speed, and Throttle in
Figure 1 are parallel state as indicated by the dashed
border. Note that the numbers at the top right corners
of these states show the activation and execution order
among them; Speed becomes active after the activation
of Throttle but before Counter, for instance. The or-
der can be assigned manually by users or determined
automatically by the Stateflow simulator.

2.1.2 Transitions

A transition is a directed edge that links one graphical
object, either a state or a junction (discussed later), to
another. A transition between two states represents a
mode change from the source state to the destination s-
tate. When the source state is the destination state, it is
a self-loop transition that causes the source state to be-
come inactive and immediately thereafter become active.
When the source state and the destination state are at
different structure layers, namely, contained in different
superstates (or diagrams), the transition is an inter-level
transition; as shown in Figure 1 when the transition from
state FL1 to state FL2 is executed, state MultiFail then
becomes active implicitly. When the destination state is
a substate of the source state, the transition is an inner
transition. A default transition is a transition with no
source state and it specifies which exclusive state to en-
ter initially, for example, state FL0 is entered when state
Counter becomes active.

A transition is characterized by its label which con-
sists of events, conditions, condition actions, and transi-
tion actions in the following format.

events[conditions]{cond actions}/trans actions

A transition with a label is enabled when its source state
is active, events (the absence of them means any event)
occur, and conditions (the absence of them means val-
ue true) are true. When a transition is enabled and be-
fore it is taken, condition actions take place. In contrast,
transition actions occur only after the source state of a



4 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

valid transition becomes inactive, i.e., the transition is
taken. For instance, transition from FL1 to FL2 can oc-
cur when FL1 is active and event INC occurs. Note that
there are two outgoing transitions from FL1 and both
are ornamented with numbers indicating the execution
order. Similar to the execution order of states, Stateflow
can determine the order among multiple transitions from
the same state so as to avoid nondeterminism.

2.1.3 Events

An event is used to trigger actions of a transition or a
Stateflow diagram. An explicit event is defined by user-
s, and it can be an input from Simulink, an output to
Simulink, or local within a diagram. An implicit event is
a built-in event that broadcasts automatically during di-
agram execution. Three commonly used implicit events
are tick, enter(state name), and exit(state name): tick
indicates the moment when a Stateflow diagram awak-
ens, and the other two occur when the specified state of
state name is entered or exited, respectively.

Event broadcasting is a common communication tech-
nique in Stateflow. When an event is globally broadcast,
the evaluation of the event starts from a Stateflow di-
agram that is the root of all its components and fol-
lows the hierarchy of states in a top-down manner. An
event can also be directly broadcast from one state to
another to synchronize parallel states, and the evalua-
tion of the event is within the destination state. Direc-
t event broadcasting is specified in a qualified format
state name.event name. For example, transition from
state fail to state norm of state Speed in Figure 1 broad-
casts directly event DEC to its parallel state Counter.

2.1.4 Junctions

There are two types of junctions in Stateflow. First, con-
nective junctions enable representations of different pos-
sible transition paths for a single transition. They are
often used to model certain types of constructs in a flow
graph, such as an if-then-else decision and a for loop. For
instance, in Figure 2(a), the transition has three possi-
ble paths to different states by a nested if-then-else con-
struct. To be specific, if condition C1 is true, state B is
entered; else if condition C2 is true, state C is entered;
when both C1 and C2 are false, a backtracking occurs and
hence state D is entered.

Second, history junctions record historical activity
information of states. A superstate containing a histo-
ry junction chooses to activate the substate which was
active last time when the superstate was exited. Taking
state PowerOn in Figure 2(b) as an example, it possesses
a history junction (located at the top right corner), and
hence after the initial phase, when PowerOn becomes ac-
tive, it will activate substates Low or High based on the
historical state activation information rather the default

BA

CD

E 1
[C1]

1

[C2]

22

(a) Two connective junctions

(b) A history junction

Fig. 2. Examples of junctions in Stateflow

transition. In other words, after the initial phase the ac-
tivation of substates is determined by history junctions
not default transitions.

2.1.5 Diagram Execution

A Stateflow diagram is executed in discretely steps dur-
ing simulation. At each sample (discrete) time step, ex-
ecution proceeds top-down through the diagram hierar-
chy. Initially, default activities are performed; for exam-
ple, a substate attached to a default transition becomes
active. After the initial phase, the diagram updates its
components in response to events and conditions. Ac-
tions that take place based on an event are atomic to
that event, and hence these actions must finish before
evaluating another event; for instance, state norm of s-
tate Speed in Figure 1 can be re-entered only after the
evaluation of the direct event broadcast Counter.DEC to
state Counter completes.

2.1.6 MDL Structure

Stateflow diagrams are saved as text files with MDL ex-
tension. The MDL files are organized in a nested block
structure with parameter-value pairs. Each Stateflow ob-
ject such as states is specified by a block that comprises a
pair of brackets following a keyword. The contents with-
in each block depict the properties of the corresponding
object by a sequence of pairs where each pair consists of a
Stateflow parameter and particular value. As mentioned
in the introduction, there is no document available for
the syntax of MDL files. We have learned the structure
of MDL files by careful inspection of a number of case
studies. Figure 3 presents part of the MDL file that rep-
resents the fuel control system in Figure 1, specifically,
states Speed and fail and the transition from fail to
state norm in Speed.

As shown in Figure 3, each object is assigned to a
unique integer as its identification (ID) in MDL files.



Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams 5

state { id 11
labelString "Speed"
treeNode [2 14 10 16]
type AND_STATE
executionOrder 4 }

state { id 15
labelString "fail\nentry: fail_state[SPEED] = 1;"
treeNode [11 0 14 0]
type OR_STATE }

transition { id 49
labelString "[speed > 0] /\nCounter.DEC"
src { id 15 }
dst { id 14 }
linkNode [11 47 0] }

Fig. 3. Contents of a MDL file for the fuel control system

User-defined properties such as state names, actions, and
transition conditions are stored as strings of parameter
labelString. The hierarchical structure of states is p-
reserved by parameter treeNode where the first elemen-
t indicates the superstate and the second one the first
substate. For example, treeNode [11 0 14 0] within
the block of fail whose ID value is 15 indicates that
Speed (ID value 11) is its superstate; value 0 means no
Stateflow object, i.e., fail has no substate. In addition,
execution order of a parallel state is explicitly stated; for
instance, executionOrder 4 of Speed which is a paral-
lel state, denoted by type AND STATE. Important tran-
sition properties like source state (by src), destination
state (dst), and scope (linkNode [11 47 0] specifies
that the transition is within state Speed) are also cap-
tured in the transition block specification.

The MDL files are the input of our translator as these
files capture all characteristics denoted by Stateflow dia-
grams. The complicated behaviors of Stateflow diagrams
require our analyzing system to be very expressive and
have powerful reasoning capabilities; the process anal-
ysis toolkit which is introduced in the next subsection
satisfies these requirements.

2.2 Process Analysis Toolkit (PAT)

PAT is an extensible model checking framework for sys-
tem modeling, simulation and verification. PAT consists
of an editor, a simulator and various verifiers. The editor
provides an environment to develop system models and
includes syntax checking. The simulator enables users to
interactively execute and observe system behavior using
facilities such as random simulation, user-guided step-
by-step simulation, trace playback, counterexample visu-
alization, etc. The verifiers apply state-of-the-art model
checking techniques (e.g., depth-first-algorithm for safe-
ty properties and strongly connected components based
algorithm for liveness properties) to analyze systems.
Using PAT, we can rigorously and automatically veri-
fy important properties including deadlock-freeness and
linear temporal logic properties.

PAT adopts a layered design to support the anal-
ysis of different models such as concurrent and proba-
bilistic models. For each supported model, a dedicated

module is created which defines the (specialized) lan-
guage syntax, well-formedness rules and formal (opera-
tional) semantics. In our work, we use the CSP module
due to its support of a rich modeling language name
CSP#. CSP# combines high-level operators like non-
deterministic choice from the classic process algebra C-
SP (short for Communicating Sequential Programs) [12],
with programmer-favored low-level constructs like vari-
ables and if-statement. In addition, built-in types in PAT
cover integers, Boolean, and array of integers. User-defined
data types can be constructed by creating a C# class
which inherits the C# Value interface and importing
that class to CSP# models.

A constant is declared with keyword #define. For ex-
ample, #define on 1 defines a global constant on with
value 1. Note that constant values can only be integer
and Boolean in CSP#.

A variable is indicated with keyworkd var and is ei-
ther a scalar or an array. Range and initial value(s) can
be specified explicitly. For instance, var status: = on

assigns constant value on as the initial value of variable
status, and var fail state[4]:{0..1} defines an ar-
ray fail state with 4 elements and the range (0 or 1)
of each element.

A CSP# process can be constructed as follows.

– The process Skip terminates and does nothing.
– Data operation prefixing: extends the conventional

event prefixing processes in CSP by attaching a s-
tatement block of a sequential program to an event.
The sequential program that usually updates vari-
ables is executed atomically with the occurrence of
the event. When no event is given, it is interpreted
as the invisible event τ . For instance, {x = x + 1;}
-> Skip increases variable x and then terminates.

– Sequential composition: processes P and Q composed
by operator ; perform in a sequential manner: Q s-
tarts only when P has finished.

– General choice: in process P [] Q, either process P

or process Q may execute.
– Conditional choice: classic if-then-else construct is

supported in PAT by the form if(c){P} else{Q},
where c is a Boolean formula. If c is true, process P
executes, otherwise process Q executes. Note that the
else-part is optional.

– Atomic sequence: keyword atomic defines a process
which always makes maximum progress. If a sequence
of statements is enclosed in parentheses with atomic

as its prefix, the sequence executes in one super-step
without interference from other processes.

An assertion is a query about system behaviors or
properties, indicated by keyword #assert.

– Deadlock: #assert P deadlockfree checks if pro-
cess P does not deadlock.

– Reachability: #assert P reaches goal tests whether
process P can reach a state at which a given Boolean-
valued condition goal holds.



6 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

– Linear Temporal Logic (LTL): PAT supports the full
set of LTL syntax, such as2 (always) and3 (eventu-
ally) temporal modal operators. In general, #assert
P |= F examines if P satisfies an LTL formula F.

The above expressive power of CSP# and the au-
tomatic reasoning ability of PAT allow us to model the
execution semantics of Stateflow and verify dynamic sys-
tems represented as Stateflow diagrams against impor-
tant properties.

3 Translating Stateflow Diagrams to CSP#

Our translation takes MDL files that are textual repre-
sentations of Stateflow diagrams; states, transitions and
junctions are denoted by block entities that contain user-
specified parameter values. The translation first converts
states (Section 3.1) followed by transitions (Section 3.2)
into PAT models. During the translation of states and
transitions, we invoke processes of transforming actions
(Section 3.3) and (implicit) events when needed. After
translating all states and transitions, we construct the
PAT models for the diagrams (Section 3.4.1). Our trans-
lation also covers advanced Stateflow modeling features
like junctions (Section 3.4.2). At the end of this section,
we present our discoveries and discussion.

3.1 States

We translate each state into four CSP# processes, where
three of them model types of behavior, and the fourth
process captures transition between those three types
of behaviors. A state is represented by a block of con-
tents headed by keyword state, and essential parame-
ters that capture its structure and functionality are list-
ed below, where N and string denote a natural number
and a string value, respectively.

state{
id N

labelString " string "

treeNode [ N, N, N, N ]

type AND_STATE or OR_STATE or FUNC_STATE

decomposition SET_STATE or CLUSTER_STATE

executionOrder N

}

The value of the labelString parameter stores user-
defined information like state name, and actions in re-
sponse to different state status; for example, actions fol-
lowing string exit are executed when the state exits its
active status. We demonstrate below how these param-
eters with their values guide our translation.

3.1.1 Modeling Entry Behavior

The name of the process modeling a state entry behavior
is suffixed by EnAct(). In addition, we use the process

Fig. 4. Workflow for modeling entry behavior of a state S

name to indicate the hierarchy structure of the state, by
appending the names of all states (using symbol “ ”)
along the diagram’s hierarchy. For example, a process
name A B indicates that a state named B is contained
in state A. This hierarchy information can be derived
from the treeNode parameter.

The procedure of constructing a process body to mod-
el the entry behavior of a state is sketched in Figure 4;
its five constituent steps are demonstrated below.

1. If the state is contained in a superstate (i.e., the first
element of parameter treeNode is greater than zero),
a CSP# conditional choice is generated followed by
a CSP# sequential composition operator. Otherwise,
the construction procedure moves to the next step.
In the generated conditional choice, the condition re-
turns true when the superstate is inactive, and the
then-branch invokes the process name which repre-
sents the superstate so as to activate the superstate.

2. If the state is a parallel state (i.e., the value of param-
eter type is AND STATE) with a left sibling state (i.e.,
the third element of parameter treeNode is greater
than zero), a CSP# conditional choice is generated;
otherwise the construction procedure continues. In
the generated conditional choice, the condition re-
turns true when the left sibling state is inactive. In
other words, we need to activate the parallel state
(in this case, the left sibling state) which has higher
execution priority. The then-branch invokes the pro-
cess name which represents the left sibling state, and
the else-branch contains all CSP# specifications that
will be produced in the following steps.

3. The state activity status is updated and entry ac-
tions are executed (the way to handle actions will be
elaborated in Section 3.3). In our CSP# model, each
status is indicated by a variable whose name com-
prises the process name of the corresponding state
and the suffix “ Status”. The value of such a vari-



Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams 7

able is either active (defined as a CSP# constant
with value 1) or inactive (a constant with value 0).

4. If the state is a superstate (i.e., the second element of
parameter treeNode is greater than zero), a CSP#
conditional choice without the else-branch is created;
otherwise, the procedure moves to Step 5.
In the generated conditional choice, the condition re-
turns true if this superstate is not activated by any
of its substates. During our translation, an auxiliary
variable is defined for every superstate to indicate
the activation direction. The name of such a variable
appends the suffix “ EnterBU” to the process name
of the superstate, and the value is Boolean; initially,
the value is false denoting that no substate activates
that superstate, and the value can be changed when
a substate executes Step 1.
The then-branch contains a process, which specifies
the entry behavior of the default substate(s), fol-
lowed by any CSP# specifications generated in Step
5. Based on the decomposition type of this state,
There are two ways to identify the default substate(s).
– When the substates are AND states, (i.e., the val-

ue of parameter decomposition is SET STATE),
the substate whose identification (id) is equal to
the second element of parameter treeNode has
the highest execution priority. Therefore the pro-
cess name representing the substate as the default
state is invoked to perform entry behavior. We re-
mark that the property where the second element
of treeNode points to a substate with the high-
est execution priority is learnt from our intensive
experiments although this property is unavailable
from Stateflow’s documents (the property has al-
so been confirmed by the MathWork).

– When the substates are OR states, (i.e., the value
of parameter decomposition is CLUSTER STATE),
we identify default substate(s) from default tran-
sition(s) that will be described in Section 3.2.
Once default substate(s) are known, we can in-
voke corresponding process name(s) to model the
entry behavior. Note that multiple default sub-
states are possible (guarded by different condi-
tions). Moreover, the second element of parame-
ter treeNode in this case usually does not point
to a default substate; this is different from the
case when substates are parallel.

5. If the state is a parallel state (i.e., the value of pa-
rameter type is AND STATE) with a right sibling state
(i.e., the fourth element of parameter treeNode is
greater than zero), a CSP# conditional choice with-
out the else-branch is generated and the whole con-
struction procedure completes. Otherwise, if the s-
tate is not a superstate (checked in the previous step),
a Skip process is created and the construction pro-
cedure terminates; else the procedure terminates. In
the generated conditional choice, the condition re-
turns true if the right sibling state is inactive, and

Fig. 5. Workflow for modeling during behavior of a state S

the then-branch invokes the process name which rep-
resents the right sibling state.

Taking state Speed in Figure 1 as an example, it is a
parallel state and contains two exclusive substates. Pro-
cess Speed EnAct() is generated to specify the entry
behavior: the then-branch at line 2 (created at Step 2)
activates state Throttle which has higher execution pri-
ority than Speed if Throttle is inactive; after changing
Speed’s status at line 3 (Step 3), the default substate
norm may be activated if Speed is not activated by any
of its substates (indicated by variable Speed EnterBU)
at line 4 (Step 4); the then-branch at line 5 will activate
state Counter which has lower execution priority than
Speed if Counter is inactive (Step 5).

1 Speed_EnAct()=

2 if(Throttle_Status == inactive){ Throttle() }
3 else{ {Speed_Status = active;} ->

4 if(Speed_EnterBU == false){ Speed_norm();

5 if(Counter_Status == inactive){ Counter()}}};

The above CSP# specification complies with the in-
formative description about entry behavior in Stateflow
user’s guide. First, when a superstate is activated by one
of its substate, the superstate does not trigger its sub-
states and not check its right sibling state. Second, all
parallel states are activated at the same time according
to their execution priority. In addition, our construction
prevents repeated execution of entry actions of parallel
states; details are elaborated in Section 3.5.

3.1.2 Modeling During Behavior

We construct a process whose name is append suffix
“ DurAct() to the process name denoting the state. Fig-
ure 5 shows the conceptual workflow of a generation pro-
cedure of the process body which depicts the during be-
havior of a state. Three steps are explained below.

1. Transform user-defined during actions into CSP# spec-
ifications (Section 3.3 elaborates how to handle ac-
tions in details).

2. Generate CSP# specifications to represent an inner
transition (its definition is given in Section 3.2) if
there exists any.



8 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

Fig. 6. Workflow for modeling exit behavior of a state S

3. When the state is a superstate (i.e., the second el-
ement of parameter treeNode has positive value),
there are two cases based on its decomposition type.
– If the decomposition is parallel, all substates are

executed in parallel. However, their execution is
still in a sequential order which is determined by
their execution priority; higher priority, executed
earlier. We declare a CSP# sequence composing
process names of all AND substates and the se-
quence order is the same to their execution order.

– If the decomposition is exclusive, there is at most
one active substate. We declare nested CSP# con-
ditional choices to identify any active substate.
Specifically, in a conditional choice, the condition
returns true when a substate is active and its
then-branch invokes the process name denoting
the substate; otherwise, the else-branch contain-
s a conditional choice for another substate. Note
that the order of checking is not important unlike
the case when the decomposition is parallel.

We reuse state Speed in Figure 1 here to further show
the resulting CSP# process specifying its during behav-
ior. In process Speed DurAct(), the during action of
Speed is null (denoted by Skip), and the conditional
choices at lines 2 to 4 check the activity status of sub-
states norm and fail.

1 Speed_DurAct()= Skip;

2 if(Speed_norm_Status == active){ Speed_norm() }
3 else{ if(Speed_fail_Status == active){
4 Speed_fail()}};

3.1.3 Modeling Exit Behavior

A CSP# process is generated to model the exit behav-
ior of a state, where the process name is suffixed with
“ ExAct()”. The generation procedure displayed in Fig-
ure 6 consists of the following steps.

1. If the state is a parallel state (i.e., the value of pa-
rameter type is AND STATE) and has a right sibling
state (i.e., the fourth element of parameter treeNode
is greater than zero), a conditional choice without
the else-branch is created. Otherwise, the procedure
moves to the next step.

The created conditional choice captures the behav-
ior that any active parallel state with lower execution
priority should be deactivated before the current par-
allel state. Specially, the condition returns true if the
right sibling state is active, and the then-branch refer-
ences a process name which models the exit behavior
of the right sibling state.

2. If the state is a superstate (i.e., the second element
of parameter treeNode has positive value), any ac-
tive substates should be deactivated before exiting
the state; otherwise, the procedure moves to Step 3.
There are two cases based on its decomposition type.
– If the decomposition is parallel, all active AND

substates should become inactive in a sequential
order which is opposite to their execution pri-
orities; namely, a substate having lower priori-
ty is deactivated earlier. Therefore, we declare
a sequence of conditional choices without else-
branches, where the sequence order is reverse to
the substates’ execution priorities and each condi-
tional choice deactivates a substate if it is active.

– If the decomposition is exclusive, all active OR
substates should become inactive in any order.
Thus, we declare nested conditional choices. Each
conditional choice checks the activity status of
one substate, and invokes the process name which
models the exit behavior of the substate in the
then-branch; the else-branch contains another con-
ditional choice which checks another substate.

3. Convert user-defined exit actions into CSP# specifi-
cations (details are in Section 3.3) followed by chang-
ing the activity status of the state to inactive.

Below we use state Speed in Figure 1 to demonstrate
our way of capturing exit behavior. Speed is a parallel
state where state Counter is its right sibling state, and
Speed also contains two substates norm and fail. In
our translated process Speed ExAct(), the conditional
choice at line 2 checks the activity status of Counter,
the nested conditional choices between lines 3 and 5 de-
activate any active substates, and the update of Speed’s
activity status is captured at line 6.

1 Speed_ExAct()=

2 if(Counter_Status == active){ Counter_ExAct()};
3 if(Speed_norm_Status == active){ Speed_norm_ExAct()}
4 else{ if(Speed_fail_Status == active){
5 Speed_fail_ExAct()}};
6 {Speed_Status = inactive;} -> Skip;

3.1.4 Modeling Overall Behavior

The previous three subsections define processes to mod-
el the entry, during, and exit behavior of a state. In this
subsection, we construct a process to model the overall
behavior of a state, to be specific, the transitions from
entry, through during, to exit behaviors. The process
name is formed by appending the state name to other



Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams 9

state names along the hierarchy in a particular State-
flow diagram. The contents of the process is a condi-
tional choice, where the condition returns true when the
state is inactive, and the then-branch invokes the pro-
cess name (generated in Section 3.1.1) which represents
the entry behavior. The else-branch copes with two cas-
es according to the existence of an outgoing transition
(its detection will be explained in Section 3.2).

Case 1: When a state has no outgoing transition,
the state will stay active, once activated. Thus, the else-
branch contains the process name which represents the
during behavior.

Case 2: When a state has an outgoing transition, the
state will become inactive if the transition occurs; an
auxiliary Boolean variable suffixed with “ OUTGOING” is
defined to indicate the occurrence. Furthermore, when
there are more than one transition, only one transition
can take place, and checking of their occurrences fol-
lows their individual execution priority (indicated by the
executionOrder parameter in a transition block textual
representation); in other words, a transition with high-
er execution priority is checked earlier. This behavior is
modeled by a sequence of conditional choices, where the
sequence order is the same as the transition execution
priority. Each conditional choice corresponds to an out-
going transition: it contains a predicate that requires the
auxiliary variable to be false, and updates the variable
to be true in its then-branch that specifies the behav-
ior when a transition occurs. Moreover, except the last
conditional choice, the others are created without their
else-branches; the else-branch of the last one invokes the
process name which represents the during behavior of the
state. This modeling avoids that transitions with lower
execution priorities to be retaken when a transition with
higher priority is possible.

In addition, as a transition can cross multiple layers
between states, i.e., an inter-level transition, it is crucial
to invoke the correct process names which represent the
exit behavior of a source state and the entry behavior of a
destination state in the then-branch of an above generat-
ed conditional choice. Algorithm 1 is designed to derive
the outermost source state of an outgoing transition: it
starts checking if the parent object of the source state
(Parentof (SrcID)) is equal to the container of a transi-
tion, and updates the parent object iteratively until the
equivalence is valid.

Algorithm 1 Find the outermost source state

Require: SrcID > 0
1: ContainerID ⇐ first element of linkNode
2: while Parentof(SrcID) ̸= ContainerID do
3: SrcID ⇐ Parentof(SrcID)
4: end while
5: return SrcID

The above algorithm returns a state whose parent is
the container of the transition, and thus we reference the

process which specifies the exit behavior of that state. In
contrast, it is unnecessary to derive an outermost des-
tination state, because our approach for modeling entry
behavior of a state requires a state to activate its su-
perstate when needed (Section 3.1.1). Namely, we can
reference the process which depicts the entry behavior
of the destination state of the transition.

We below exemplify state FL2 in Figure 1 which has
two outgoing transitions, one of them an inter-level tran-
sition. In the following simplified CSP# model of FL2
(process names are in an abstract form), the outermost
then-branch (at line 1) triggers the entry behavior when
process FL2() is invoked and FL2 is inactive. The two se-
quentially composed conditional choices (lines 3-7) cap-
tures the execution priority between the two outgoing
transitions. In addition, the outermost source states of
these transitions are different; the source state in the
first conditional choice is MultiFail which is a super-
state of FL2.

1 FL2()= if(FL2_Status == inactive){ FL2_EnAct()}
2 else{
3 if(... && (FL2_OUTGOING == 0)){
4 MultiFail_ExAct();{FL2_OUTGOING = 1;}...FL1()};
5 if(... && (FL2_OUTGOING == 0)){
6 FL2_ExAct();{FL2_OUTGOING = 1;}... FL3()}
7 else{ if(FL2_OUTGOING == 0){FL2_DurAct()}};
8 {FL2_OUTGOING = 0;}};

In this section, we covered the transformation of a s-
tate by constructing four processes to respectively model
three types of behaviors and the changes among them.
The translation retains the complex and dynamic be-
havior of states; for example, the entry behavior in our
approach takes into account if a state is a substate, a
superstate, or a parallel state.

3.2 Transitions

In a Stateflow diagram, a transition represents a change
of system mode and associated actions. We start with the
general structure of a transition in the textual format,
followed by details of different types of transitions. Last
but not least, an algorithm converting transitions into
CSP# models is presented.

A transition is described by a block starting with the
keyword transition in a MDL file. As shown below,
the block includes information such as the unique id of
a transition, ids of the source object (denoted by block
src) and the destination object (by block dst), and the
id of the container, the object containing the transition
(by the first element of parameter linkNode). In addi-
tion, user-defined specifications such as guarded events
and actions are stored in a string attached to parameter
labelString. When there are multiple transitions from
the same source object, parameter executionOrder indi-
cates the execution priority of a transition.



10 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

Fig. 7. Workflow for modeling a transition

transition{ id N

labelString " string "

src { id N }
dst { id N }
linkNode [ N, N, N]

executionOrder N }

Transitions can be classified into four types according
to their parameter values.

– Default transitions: the src block has no parameter-
value pair. In other words, the corresponding transi-
tion has no source object, and the destination object
will execute initially when the container becomes ac-
tive. For instance, if a default transition points to
a state, the state is a default state of its superstate
(used in Section 3.1.1).

– Inner transitions: the source object is the container
(in Section 3.1.2). Namely, their IDs are equal.

– Regular transitions: the container is the parent ob-
ject of the source object, and is also the parent object
of the destination object.

– Inter-level transitions: the container is neither the
source object nor the parent object of the source ob-
ject, or the container is not the parent object of the
destination object (used in Section 3.1.4).

The algorithm that converts a non-default transition
consists of six steps as shown in Figure 7.

1. A conditional choice without an else-branch is gen-
erated. The condition contains a predicate that re-
turns true when the source state is still active (as
mentioned in Section 3.1.4 using auxiliary variables),
and other predicates can be created in the next step.
The then-branch includes a sequence of CSP# spec-
ifications that are produced in Steps 3 to 6.

2. If the transition has guarded events or conditions,
they are translated into predicates which return true
when events occur and conditions are true. Note that
an event is represented by a Boolean-valued variable

in our CSP# models. This allows us to capture the
deterministic behavior for multiple transitions from
the same source object. Reusing state FL2 in Fig-
ure 1 as an example, the sequential execution order
between its outgoing transitions is difficult to cap-
ture by a predefined event in CSP# which cannot
specify the occurrence order of events, although such
behavior is supported by the encoding we use (the
CSP# model is shown in Section 3.1.4).

3. If the transition is associated with conditional ac-
tions, those actions are converted into CSP# model
actions (details are in Section 3.3).

4. Invoke the process name which represents the exit
behavior of the source state; the way to deal with case
when the transition crosses different layers (an inter-
level transition) has been covered in Section 3.1.4.
Nevertheless, for an inner transition, the source state
remains active.

5. If a transition action is specified by users, it is con-
verted into a CSP# process (details are in Section 3.3).

6. If the destination object is a state, invoke the pro-
cess which represents the entry behavior of the state.
Otherwise, if the destination object is a connective
junction without outgoing transitions, no translation
is needed; and the situation that the object is a con-
nective junction with outgoing transitions is covered
later in Section 3.4.2.

The above procedure can be easily adapted to con-
vert default transitions by skipping Steps 1 and 4. More-
over, this procedure can serve as a foundation to cope
with transitions consisting of in-between connective junc-
tions (an advanced features of Stateflow) in Section 3.4.2.

3.3 Actions

In Stateflow, actions are attached to either states (e.g.,
entry actions) or transitions (e.g., conditional actions).
We consider two common types of actions. One is as-
signments, and the other is event broadcasting.

Assignments manipulate variable values, and are ex-
pressed in conventional mathematical format. These as-
signments are naturally mapped to their CSP# coun-
terparts in a data operation prefixing process. Current-
ly all unary and binary mathematical operators over
integers in Stateflow are supported in CSP#. We re-
mark that CSP# lacks direct support for floating points
and structured datatypes. Nonetheless, PAT support-
s user-defined data structures written in programming
languages such as C#, C, and Java, and hence we can
construct C# (C or Java) floating point fields (or struc-
tured datatypes) and use them in CSP# model.

There are two kinds of event broadcasting, global
and directed. Directed event broadcasting is an efficient
means of synchronization among parallel states. When
an event is broadcast to a specific state, that state re-
ceives the event and evaluates its impact. A directed



Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams 11

event broadcasting is translated into a sequence of CSP#
processes within the process which denotes the source s-
tate of a transition attached to the action. The sequence
first enables the event, followed by invoking the process
name which represents the target state, and lastly dis-
ables the broadcast event.

For example, the transition in Figure 1 from sub-
state norm to substate fail in state Speed contains a
transition action that directly broadcasts an event INC
to a parallel state Counter. This transition is modeled
by the else-branch of the following process Speed norm:
the data operation at line 3 updates the event (denot-
ed by INC), and the invocation of process Counter at
line 4 evaluates the effect of this action; the event be-
comes disabled at line 5. In the process, occurred and
notoccurred are declared as globally CSP# constants.

1 Speed_norm()=if(Speed_norm_Status == inactive){...}
2 else{if(((speed == 0)&&(press < zero_thresh))&&...){
3 ... {INC = occurred;}->
4 Counter();

5 {INC = notoccurred;}...}...};

When an event is broadcast globally, it impacts the
whole Stateflow diagram. That is to say, the evaluation
starts from the diagram level and moves down to states
according to their execution order. Moreover, an auxil-
iary global variable named broadcast is defined in our
CSP# model to count the occurrence number of global
event broadcasting. Similarly to the way of dealing with
directed event broadcasting, a sequence of CSP# pro-
cesses is created within the source state of the transi-
tion which triggers this action for modeling global even-
t broadcasting. The sequence first increases broadcast
by value 1, and then invokes the process named Chart

which denotes the whole diagram, followed by decreasing
broadcast by value 1. More details about Chart and the
usage of broadcast are in the next section. Note that we
here assume that the number of occurred event broad-
casting is finite; nonetheless, we can set a large threshold
to avoid potentially infinite event broadcasting.

3.4 Advanced Features

The previous three subsections have illustrated our trans-
lation for states, transitions and actions which are es-
sential constituents of Stateflow diagrams. This subsec-
tion describes our translation for advanced modeling fea-
tures: diagrams, junctions, and implicit events.

3.4.1 Modeling Diagrams Behavior

As initially mentioned, we focus on the execution se-
mantics of Stateflow diagrams, namely, the behavior at
each sample time step during simulation. We generate a
CSP# process named Chart to represent a Stateflow di-
agram. The body of Chart is a conditional choice, where

the then-branch specifies the initialization of the dia-
gram, and the else-branch models the during behavior.

Similar to states, a diagram is decomposed by either
exclusive states (denoted by value CLUSTER CHART of pa-
rameter decomposition) or parallel states (by SET CHART

of decomposition). The decomposition type determines
how a chart activates and executes its states. For exam-
ple, the during behavior of a chart with exclusive states
is represented by nested CSP# conditional choices to ex-
ecute any active states. Note that this is the same way
as states are handled (mentioned in Section 3.1.2).

A CSP# event click is defined to imitate a sample
time step in Chart. In addition, to capture the instan-
taneous behavior of actions at a sample time step, we
use the CSP# atomic construct to invoke processes de-
noting states. Thus, when an event is broadcast globally,
the effect consumes zero time; and no click occurs.

The above Chart process models the behavior of a S-
tateflow diagram at one sample time step. When the di-
agram interacts with environment, it requires input data
and events. We create a process named Initialization

to simulate the valuation of environmental variables, i.e.,
finite data and events at each sample time step. This
process captures all possible assignments by a sequence
of processes, where each constituent process comprises
of a set of CSP# general choices to describe a possi-
ble assignment of an environment input. For instance,
process ([]x: {l..h} @{ed = x;} -> Skip randomly
assigns an environment input ed a value which is from a
lower bound l to a higher bound h.

Based on processes Chart and Initialization, a
process named Stateflow is constructed to represent the
periodic behavior of a Stateflow diagram. When there is
an environmental variable, the contents of Stateflow is
Chart(); Initialization(); Stateflow(); that in-
voke itself recursively. Otherwise, we have Stateflow()
= Chart(); Stateflow();.

3.4.2 Modeling Junctions

Junctions in Stateflow are divided into two groups: con-
nective junctions (by value CONNECTIVE JUNCTION of pa-
rameter type in a textual format shown below) and his-
tory junctions (by value HISTORY JUNCTION of parame-
ter type). They serve different purposes, and thus the
ways of translating them varies; illustrative examples of
their use and our translation will appear in Section 4.

junction{ id N

linkNode [ N, N, N]

type CONNECTIVE JUNCTION or HISTORY JUNCTION }

Connective junctions within a single transition de-
note different transition paths. During simulation, the
evaluation of such a transition ends at either a state
or an ending connective junction (that has no outgo-
ing transitions). These connective junctions are used to
guide our translation algorithm to generate nested C-



12 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

SP# conditional choices to capture all transition paths.
To be specific, the condition at line 3 checks the type of
the destination object (tr .dst), and the condition at line
5 detects that the destination object contains at least
an outgoing transition (OutTS ). The for loop (lines 6 to
10) selects every outgoing transition (temptr) from the
connective junction, updates trActs by appending the
transition action associated with the transition which
ends at the junction, and invokes recursively the method
translateT with the latest transition and transition ac-
tions. When the destination object is an ending junc-
tion (at line 11) or a state (at line 15), the operation of
GenerateT generates processes that respectively model
the entry behavior of the source object, transition ac-
tions (if any), and the exit behavior of the destination
object (same as Steps 4 to 6 explained in Section 3.2).

Algorithm 2 Cover all transition paths

Require: src: the source object of the transition
tr : a transition; trActs: a list of transition actions.

1: translateT (src, tr , trActs){
2: handleCondAct(tr .condActs)
3: if tr .dst is instance of Junction then
4: OutTS ⇐ tr .dst .OutTS
5: if #OutTS > 0 then
6: for i = 0 to OutTS .size() do
7: temptr ⇐ OutTS(i)
8: temptrActs ⇐ append(trActs, tr .trActs)
9: translateT (src, temptr , temptrActs)

10: end for
11: else
12: GenerateT (src, tr , trActs)
13: end if
14: else
15: GenerateT (src, tr , trActs)
16: end if
17: }

In the above algorithm, conditional actions are han-
dled at line 2 by function handleCondAct (similar to Step
3 in Section 3.2). The reason for separating condition-
al actions from transition actions is that the former can
be executed once the corresponding condition is true.
We note that line 6 sorts the list of outgoing transition-
s according to their execution priorities as specified by
parameter executionOrder; so that an outgoing transi-
tion with higher execution priority is translated before
another with lower priority.

Another group of junctions are history junctions. When
a state, called container (whose ID is the first element
of parameter linkNode), containing a history junction,
becomes active again, it activates a substate (usually is
exclusive) which was exited last time; the container ac-
tivates its default substate at the beginning of a simula-
tion, i.e., time zero. In other words, the history junction
records the latest active substate. We capture this mod-
eling feature by the following three steps.

1. Declare a global CSP# variable to represent a history
junction. The variable name is the process name de-
noting the state containing the history junction and
the suffix “ H”.

2. Update the history variable value in the process that
represents the exit behavior of the container. The up-
date takes place after the invocation of the process
which denotes the exit behavior of a substate in the
container (Step 2 in Section 3.1.3), and assigns the
substate ID to the history variable.

3. Construct conditional choices to control the activa-
tion of a substate of the container in the process
representing the container’s entry behavior. When
the history variable is equal to the default value 0,
the container activates default substate(s) as demon-
strated in Step 4 of Section 3.1.1. Otherwise, the sub-
state to be activated is determined by the value of the
history variable.

3.4.3 Modeling Implicit Events

Implicit events are built-in events in Stateflow, which
are not described by event objects in MDL files. Instead,
they are specified as strings associated with other State-
flow objects, usually as guarded events in transitions.
In our translation, an implicit event is identified by its
specific representation format and the location where it
appears, and the event is captured by a CSP# specifi-
cation specifying its effect in a particular diagram.

For example, an outgoing transition, with “enter(A)”
as the value of its parameter labelString, is guarded
by an implicit event that occurs when the specified s-
tate (A) is activated. This behavior is captured by CSP#
specifications generated in the following steps. First, a
Boolean-valued variable is defined to denote the implicit
event; for the above example, Enter A is declared in var

Enter A:{0..1} = notoccurred. Next, a sequence of
processes is produced to model a directed event broad-
casting in the process that specifies the entry behavior
of the specified state, A in this case; the targeted object
of the broadcasting is the source state of the transition.
Last, a condition is created by checking the occurrence
of the declared variable in the process that represents
the overall behavior of the source state of the transition.

3.5 Discussions and Discoveries

We have up to now illustrated how to transform funda-
mental elements of Stateflow, such as states, transitions,
actions and junctions, into CSP# models. We have also
explained how to cope with advanced Stateflow modeling
features such as implicit events and history junctions.

Our CSP# modeling of the Stateflow execution se-
mantics is based on Stateflow user’s guide [17] which pro-
vides concrete examples to illustrate their behavior step
by step. We used our approach to automatically trans-
late the majority of these examples into CSP# models.



Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams 13

We validated our modeling by comparing the simulation
results from our CSP# models and those from Stateflow
simulations. The comparison is conducted by checking
the equivalence 1) between the execution order of dia-
gram states and that of processes, and 2) between the
variable values of diagrams and CSP# models at each
step. When there is a difference, we revised carefully
our models and discussed our findings with experts from
the MathWorks, so as to ensure that our interpretations
comply with the execution semantics adopted by State-
flow. We have also validated that fundamental properties
of Stateflow are retained; for example, we have proved
that the property where at most one OR substate is ac-
tive holds in those CSP# models by model checking.

From our rigorous modeling and checking procedures,
we have discovered two previously unknown flaws as
demonstrated below. These flaws have been confirmed
by experts from the MathWorks and corrected in the
latest version of user’s guide.

One flaw is the description of the entry behavior for
parallel states. Originally, (1) before executing entry ac-
tions of a parallel state, say A, “all entry steps” of paral-
lel states with higher execution priorities than A are per-
formed if they are inactive, and (2) after executing the
entry actions of A, “all entry actions” of parallel states
with lower execution priories are performed if they are
inactive. The above description may result in repeated
execution of A’s entry actions when it activates a paral-
lel state, say B , with a higher execution priority: first all
entry steps of B are performed due to original rule (1),
and those steps include performing all entry actions of A
because of original rule (2); after B completes its entry
steps, A continues its own entry behavior including the
execution of its entry actions. However, this redundan-
t execution behavior conflicts with the actual execution
behavior from the Stateflow simulator where the entry
action of A is executed only once. We fix this original
description in our construction procedure for modeling
entry behavior of a state, particularly, at Step 2 in Sec-
tion 3.1.1 by separating the invocation of the parallel
state with higher execution priority (in the then-branch)
from the other entry steps of the current parallel state
(in the else-branch); A only performs its entry actions
when it is invoked by B in the above example.

Another flaw concerns the behavior of substates that
are destination objects of inner transitions. First, the
original user’s guide misses one circumstance where a
substate is active and an inner transition whose destina-
tion is this substate is valid; from our experiments, we
observed that the substate became inactive and immedi-
ately active again when the inner transition was taken.
Second, we defined generic execution semantics of this
type of substates: an active substate exits and enter-
s itself when there is a valid inner transition, no matter
the substate is the transition’s destination. Lastly, based
on our definition, we identified an incorrect statement
in [17] which stated simplification of diagrams by adopt-

ing substates with inner transitions can retain the same
behavior. However, that statement left out the special
behavior as we discovered that shows the simplification
may not behave correctly.

4 Experimental Studies

We have built up a translator in C# to automate the
transformation procedure illustrated in the previous sec-
tion. Besides applying the translator to examples from
the user’s guide [17], we have also used it on several
applications, including two demo cases from the Math-
Works company: an alarm monitor system for a car [20],
and a stopwatch with lap time measurement [7,8]. These
applications cover a wide range of Stateflow modeling
features such as inter-level transitions, history junction-
s, and implicit events. In this section, we first show how
to systematically convert and rigorously analyze a fault-
tolerant fuel control system, and next summarize the
experimental results.

4.1 System Description and Stateflow Diagrams

The fault-tolerant fuel control system is designed to be
robust where individual sensor failures can be detected
and the control system can be dynamically reconfigured.
A Stateflow diagram, consisting of six parallel states,
displayed in Figures 1 and 4.1, models the control log-
ic. The four parallel states, at the top of Figure 1 and
in Figure 8(a), indicate four individual sensors. The re-
maining two parallel states determine the overall system
operation mode according to the status of four sensors.

Initially, all sensors are in their normal mode except
the oxygen sensor; the warmup state in state Oxygen is
activated in the beginning until a period (symbol t in
Stateflow represents time) exceeds a predefined constant
o2 t thresh. When a sensor fails, the control systems
broadcasts directly an event INC to state Counter (in
Figure 1) which records the number of failed sensors.

The fueling mode of the engine is modeled by state
Fueling in Figure 8(b). When a single sensor fails (de-
noted by an implicit event in(Counter.FL1)), the en-
gine continues its operation and moves to a richmode (in
state Rich). When more than one sensor fails (by anoth-
er implicit event enter(Counter.MultiFail)), the en-
gine shuts down (at state Shutdown). In addition, when
speed exceeds the maximum setting (max speed), state
Overspeed is activated. Note that the fueling mode af-
ter state Running is re-entered is decided by two history
junctions in states Running and Low, respectively.

4.2 Transformation and Validation of Diagrams

The Stateflow representation of this fault-tolerant fuel
control system applies several Stateflow modeling fea-



14 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

Oxygen 1
fail
entry: fail_state[O2] = 1;

warmup
entry: fail_state[O2] = 1;

normal
entry: fail_state[O2] = 0;

Pressure 2

norm
entry:  fail_state[PRESS] = 0;

fail
entry: fail_state[PRESS] = 1;

[Ego < max_ego] /
Counter.DEC

[Ego > max_ego]/
Counter.INC

[t > o2_t_thresh]

[press > max_press | press < min_press]
/Counter.INC

[press > min_press & press < max_press] /
Counter.DEC

(a) States modeling oxygen sensor and pressure sensor

Fueling 6Disabled
entry: fuel_mode = DISABLED;

Overspeed

Shutdown

Running H

Low
entry: fuel_mode = LOW; H

Normal

Warmup

Rich
entry: fuel_mode = RICH;

Single_Failure

[ speed > max_speed ]

2

[!in(Counter.MultiFail)]

1

enter(Counter.MultiFail)
1

exit(Counter.MultiFail)

[ in(Speed.norm) & ...
speed < (max_speed − hys)]

[in(Counter.MultiFail)]
2

[in(Counter.FL1)]

[in(Counter.FL0)]

[in(Counter.FL1)]1
2

[ in(Oxygen.normal)]

(b) State modeling fueling mode

Fig. 8. Fuel Control System in Stateflow

tures, such as directed event broadcasting among par-
allel states, inter-level transitions, history junctions and
implicit events. We here show how to deal with these
advanced features by transforming states Running and
Overspeed in Figure 8(b); Section 3.1 demonstrated our
approach to convert states in Figure 1.

State Running contains two substates, a history junc-
tion, and two outgoing inter-level transitions. The follow-
ing process Fueling Running EnAct captures its entry
behavior, where the first conditional choice (lines 2 to 4)
checks the activity status of state Fueling, a superstate
of Running. The data operation at line 5 updates the s-
tatus of Running, followed by a conditional choice (from
line 6 to line 11) depicts the behavior of its substates
when Running is not activated by any of its substates,
i.e., variable Fueling Running EnterBU being false.

1 Fueling_Running_EnAct()=

2 if(Fueling_Status == inactive){
3 {Fueling_EnterBU = true;}->Fueling();
4 {Fueling_EnterBU = false;}->Skip };
5 {Fueling_Running_Status = active;}->
6 if(Fueling_Running_EnterBU == false){
7 if(Fueling_Running_H == 0){ Skip}
8 else{if(Fueling_Running_H == 27){
9 Fueling_Running_Low()}
10 else{if(Fueling_Running_H == 28){
11 Fueling_Running_Rich()}}}};

In the above process specification, the then-part of
the conditional choice at line 6 captures the effect of a
history junction, denoted by variable Fueling Running H,
on the activation of the substates of Running. For in-
stance, lines 10 and 11 depicts that state Rich becomes

active when the variable value is equal to 28. On the
other hand, the update of this history junction is spec-
ified by the following process Fueling Running ExAct.
To be specific, before state Running becomes inactive,
it assigns Fueling Running H the ID value of the sub-
state which is inactivated. For example, lines 16 to 18
states that if state Rich whose ID value is 28 is inacti-
vated, the value of Fueling Running H is updated to 28.

12 Fueling_Running_ExAct()=

13 if(Fueling_Running_Low_Status == active){
14 Fueling_Running_Low_ExAct();

15 {Fueling_Running_H = 27;}->Skip}
16 else{if(Fueling_Running_Rich_Status == active){
17 Fueling_Running_Rich_ExAct();

18 {Fueling_Running_H = 28;}->Skip}};
19 {Fueling_Running_Status = inactive;}->Skip;

Note that at the beginning of execution there is no
substate to be activated in Running (at line 7). This is
because state Warmup, a substate of state Low, is acti-
vated by default with an inter-level default transition as
shown in Figure 8(b). This special behavior can be de-
rived from the transition’s textual representation below:
1) the empty content of the src block states that the
transition is a default transition, 2) the first element,
i.e., 23, of the linkNode parameter is the ID of state
Fueling, and 3) the value 32 in the dst block indicates
that the default state is Warmup.

1 transition{ id 70

2 src{ }
3 dst{ id 32}
4 linkNode [23 69 0] }



Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams 15

The above implicit event associated with Running is
captured in the following process Fueling Running. In
particular, the condition at line 4 checks if the implicit
event, denoted by variable Enter Counter MultiFail,
takes place. We note that the sequence of conditional
choices from line 4 to line 12 captures the execution pri-
orities between Running’s two outgoing transitions.

1 Fueling_Running()=

2 if(Fueling_Running_Status == inactive){
3 Fueling_Running_EnAct()}
4 else{if(...&& (Enter_Counter_MultiFail==occurred)){
5 Fueling_Running_ExAct(); ...

6 Fueling_Disabled_Shutdown()};
7 if((speed > max_speed) && ...){
8 Fueling_Running_ExAct(); ...

9 Fueling_Disabled_Overspeed()}
10 else{if(Fueling_Running_OUTGOING == 0){
11 Fueling_Running_DurAct()}};
12 {Fueling_Running_OUTGOING = 0;}->Skip};

The outgoing transition from state Overspeed con-
tains a connective junction that is the source of two out-
going transitions to different states.

junction{ id 35

type CONNECTIVE JUNCTION }
transition{ id 60

labelString "[in(Speed.norm) &...]"

src{ id 26} dst{ id 35} }
transition{ id 61

labelString "[!in(Counter.MultiFail)]"

src{ id 35} dst{ id 25} }
transition{ id 66

labelString "[in(Counter.MultiFail)]"

src{ id 35} dst{ id 31} }

The above contents show these three transition seg-
ments and the junction in the MDL file, where ID 26 is
Overspeed, ID 25 Running, and ID 31 Shutdown. Ap-
plying Algorithm 2 in Section 3.4.2, the translation s-
tarts at the transition with ID 60 that is the outgoing
transition of Overspeed, and checks the object type of
the transition’s destination whose ID is 35 (at line 3 in
Algorithm 2). In this case, the type is a connective junc-
tion which has two outgoing transitions with ID 61 and
66, respectively. Hence, the for loop between line 6 and
line 10 of Algorithm 2 is executed. As shown in the fol-
lowing CSP# process specifying the overall behavior of
Overspeed, transitions from the connective junction are
converted into a sequence of conditional choices between
line 4 and line 9, and the sequence order follows their ex-
ecution order priorities.

1 Fueling_Disabled_Overspeed()=

2 if(Fueling_Disabled_Overspeed_Status == inactive)...

3 else{if(((Speed_norm_Status == active) &&...){
4 if(!((Counter_MultiFail_Status == active))&&...){
5 Fueling_Disabled_ExAct();...Fueling_Running()};
6 if((Counter_MultiFail_Status == active) &&...){
7 Fueling_Disabled_Overspeed_ExAct(); ...

8 Fueling_Disabled_Shutdown()}
9 else{...}} ...};

We note that “in(state name)” is an implicit event
that occurs when the specified state is active. Thus, in
our above CSP# specification, we represent this type of
implicit events by checking the activity status of their
corresponding states.

The whole diagram is translated into a process named
Chart that describes the diagram behavior at a sample
time step denoted by event click (mentioned in Sec-
tion 3.4.1). The process shown below executes six pro-
cesses of six parallel states based on their execution pri-
ority order; initially, only state Oxygen is invoked (at
line 3), because the process modeling the entry behavior
of Oxygen will activate other parallel states with lower
execution priority, see Step 5 in Section 3.1.1 Note that
no click event occurs when variable broadcast is not
equal to value 0 (at line 8). Moreover, the update of time
symbol t used in Oxygen is associated with the click

event (at lines 2 and 5).

1 Chart()= if(Chart_init == true){
2 click{t = (t + 1);}->
3 atomic{{Chart_init= false;}->Oxygen()}}
4 else{if(broadcast == 0){
5 click{if(t < 5){t = (t + 1)};}->
6 atomic{Oxygen(); Pressure(); Throttle(); Speed();

7 Counter(); Fueling()}}
8 else{ atomic{Oxygen(); Pressure(); Throttle();

9 Speed(); Counter(); Fueling()}}};

This control system receives four inputs from its en-
vironment sensors. For the sake of simplicity, we restrict
the input type to integer. The random valuation of these
four inputs is captured by the process Initialization
using general choices (discussed in Section 3.4.1). With
process Initialization, the periodic behavior of the
control system is modeled by process Stateflow below.

1 Initialization()= atomic{
2 ([]x:{0..2}@{Ego=x} -> Skip);

3 ([]y:{0..6}@{press = y} -> Skip);

4 ([]z:{0..4}@{throt = z} -> Skip);

5 ([]w:{0..5}@{speed = w} -> Skip) };
6 Stateflow()= Chart();Initialization();Stateflow();

Our transformed CSP# models preserve the hier-
archical structure of corresponding Stateflow diagram-
s, and capture all information such as states, variables
and events. For example, variable Counter FL0 Status

indicates the activity status of state FL0 within its su-
perstate Counter, and INC denotes a broadcasting event
INC in Figure 8(a). This one-to-one correspondence al-
lows users to easily specify desired properties of the di-
agrams using the CSP# models. We present below four
safety properties of the control system which have been
verified by the model checking capabilities of PAT.



16 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

Case States Trans Junc Addition
1 30 32 2 inter-level transitions, di-

rected event broadcast,
history junctions, array
datatype, implicit events,
temporal constraints

2 9 14 0 directed event broadcast,
temporal constraints

3 10 13 1 implicit events
4 6 15 4 inter-level transitions, in-

ner transitions

Table 1. Summary of Diagram Features

#define R1 !(Pressure_fail_Status == active)

||(Counter_FL0_Status == inactive);

#assert Stateflow() |= [] R1;

#define R2 !(Pressure_fail_Status == active &&

Throttle_fail_Status == active)

||(Counter_MultiFail_Status == active);

#assert Stateflow() |= [] R2;

#define R3 !(Counter_MultiFail_FL4_Status == active &&

INC == occurred);

#assert Stateflow() |= []R3;

#define InterMulti Counter_MultiFail_Status == active;

#define EngineDown Fueling_Disabled_Status == active;

#assert Stateflow() |= [](InterMulti -> <> EngineDown);

– R1 ensures that the failure of a sensor (e.g., state
fail becomes active in state Pressure) is captured
by state Counter, namely, state FL0 is inactive.

– R2 checks that when there are at least two failed sen-
sors, the counter must be greater than value 1, i.e.,
state MultiFail in Figure 1 is active.

– R3 indicates that when the counter reaches the max-
imum value 4 (denoted by state FL4), no INC event
can be generated from any sensor.

– The last assertion requires that when there are more
than one failed sensors (denoted by MultiFail), the
fueling mode becomes disabled eventually. In other
words, state Disabled is activated.

4.3 Summary of Experiments

Besides the above fuel control system, we have also trans-
formed and validated other systems. Table 1 lists the
modeling features of those systems’ Stateflow diagrams;
not only basic elements such as states, transitions, and
connective junctions are used, additional features like
event broadcasting and implicit events occur. Note that
the one-to-one correspondence between our transformed
CSP# models and Stateflow diagrams facilitates user-
s to quickly relate problematic traces of CSP# models
(denoting a counterexample) to Stateflow diagrams.

– Case 1 is the fault-tolerant fuel control system, our
running example throughout this paper.

– Case 2 is another demo from the MathWorks Compa-
ny3. It models gear selection in an automatic trans-
mission. The temporal constraints modeled in this S-
tateflow diagram return true after the diagram wakes

3 http://www.mathworks.com/products/stateflow/demos.

html?file=/products/demos/shipping/simulink/sldemo_

autotrans.html

Case Property Verdict Visited States Time(Sec)
Fuel Control []R1 Yes 3,021,176 63
Fuel Control []R2 Yes 3,021,176 65
Fuel Control []R3 Yes 3,021,176 58
Fuel Control []R4 Yes 3,178,838 173
Alarm Monitor []R1 No 9303 0.19
Alarm Monitor []R2 No 3993 0.07
Stopwatch []R1 No 140 0.01

Table 2. Validation Result

up user-specified times since activation of their asso-
ciated states.

– Case 3 is an alarm monitor system for cars designed
to fulfill two safety properties [20]. One property (R1)
ensures that car doors are locked when the car ex-
ceeds a predefined speed, and the other (R2) triggers
a belt alarm when the car exceeds a specific speed
and the seat belts are not fastened. The PAT mod-
el checker analyzed the transformed CSP# models
of the Stateflow diagram, and detected subtle bugs
violating both properties, respectively [4]. One coun-
terexample depicts that: the car can exceed the pre-
defined speed before turning on its engine (e.g., mov-
ing on a slope), and thus after the engine is on, the de-
fault state where doors are unlocked is entered with-
out checking the speed. The other counterexample
revealed also the necessity of adding conditions to
different default states.

– Case 4 is a stopwatch with lap time measuremen-
t [8]. Its Stateflow diagram adopts inner transitions
to specify the counting of time from seconds to min-
utes and to hours. From our experiment, we identified
a bug that the time for display may not be equal to
the digital clock (R1) when several events occur be-
tween two digital clock clicks; the update of the time
is a during action which cannot take place when the
state of that action becomes active and then inactive
at a pair of adjacent of clock clicks.

Table 2 shows the validation results of those cases
using PAT, where property R4 of the fuel control system
is InterMulti -> <> EngineDown. The result includes
the number of visited states and time (in seconds). The
computer running the experiment is equipped with Intel
Core Duo CPU at 1.86GHz and 2GB memory.

5 Conclusion

We have demonstrated a systematic approach to trans-
form and validate Stateflow diagrams based on a generic
model checker PAT. The automatic translation from S-
tateflow models to CSP# models in PAT preserves the
execution semantics of Stateflow, and it covers advanced
Stateflow modeling features such as implicit events and
history junctions. The transformed CSP# models are
executable, and this enables us to validate our interpre-
tation of Stateflow semantics by means of simulations,
specifically, comparing execution sequences and variable



Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams 17

values step by step between CSP# models and State-
flow semantic examples from its user’s guide. Moreover,
users can verify their systems against important safety
and liveness properties based on the model checking fa-
cilities of PAT. We have applied our approach to several
examples including two demo cases from the MathWorks
Company, where we discovered subtle defects in State-
flow user’s guide and demo cases.

Our modeling language CSP# lacks direct support
for floating points and structured datatypes. Nonethe-
less, PAT supports user-defined data structures written
in programming languages such as C#, C, and Java.
Thus, we can construct C# (C or Java) floating point
fields or a structured datatypes and then invoke them
in CSP# models. Note that using C# is straightfor-
ward in PAT since PAT is developed based on the .NET
framework; other programming languages can be used
in CSP# models by leveraging some bridging libraries
(e.g., using JNBridge to call Java in .NET). One catch
is that we must ensure that there are only finitely many
different values for any of those datatypes. Separately,
human effort is still needed to map execution trace of C-
SP# models to corresponding Stateflow diagrams when
there is a violation of desired properties. Automating
this mapping process is one future work.

Acknowledgements. The authors would like to thank all the
reviewers for their constructive comments which help us im-
prove the paper. The authors are also grateful to Melody
Yung, John de Leon, and Wiriyanto Darsono from the Math-
Works Company for their assistance in using Stateflow. This
work is partially supported by the following projects: A*STAR
SERC PSF 1121202016, MOE2009-T2-1-072, TRF Project
“Research and Development in the Formal Verification of
System Design and Implementation”, and IDG31100105 /
IDD11100102 from Singapore University of Technology and
Design.

References

1. S. Bacherini, A. Fantechi, M. Tempestini, and N. Zingo-
ni. A story about formal methods adoption by a rail-
way signaling manufacturer. In FM’06: Proceedings of
the 14th International Symposium on Formal Methods,
pages 179–189. Springer, 2006.

2. C. Banphawatthanarak, B. H. Krogh, and K. Butts.
Symbolic verification of executable control specification-
s. In CACSD’99: Proceedings of the 10th International
Symposium on Computer Aided Control System Design,
pages 581–586. IEEE, 1999.

3. A. Cavalcanti. Stateflow diagrams in circus. Electronic
Notes in Theoretical Computer Science, 240:23–41, 2009.

4. C. Chen. Formal analysis for stateflow diagrams. In
SSIRI-C’10: Proceedings of the 4th International Confer-
ence on Secure Software Integration and Reliability Im-
provement Companion, pages 102–109. IEEE Computer
Society, 2010.

5. J. Edmund M. Clarke, O. Grumberg, and D. A. Peled.
Model checking. MIT Press, Cambridge, MA, USA, 1999.

6. A. Ferrari, A. Fantechi, S. Bacherini, and N. Zingoni.
Formal development for railway signaling using commer-
cial tools. In FMICS’09: Proceedings of the 14th Interna-
tional Workshop on Formal Methods for Industrial Crit-
ical Systems, pages 197–198. Springer, 2009.

7. G. Hamon. A denotational semantics for Stateflow. In
EMSOFT’05: Proceedings of the 5th ACM International
Conference on Embedded Software, pages 164–172. ACM,
2005.

8. G. Hamon and J. M. Rushby. An operational semantics
for Stateflow. International Journal on Software Tools
for Technology Transfer, 9(5-6):447–456, 2007.

9. D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231–
274, June 1987.

10. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Poli-
ti, R. Sherman, A. Shtull-Trauring, and M. B. Trakht-
enbrot. STATEMATE: A working environment for the
development of complex reactive systems. IEEE Trans-
actions on Software Engineering, 16(4):403–414, 1990.

11. M. Hinchey, M. Jackson, P. Cousot, B. Cook, J. P.
Bowen, and T. Margaria. Software engineering and for-
mal methods. Communications of the ACM, 51(9):54–59,
2008.

12. C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

13. D. Latella, I. Majzik, and M. Massink. Automatic veri-
fication of a behavioural subset of UML Statechart dia-
grams using the SPIN model-checker. Formal Aspects of
Computing, 11(6):637–664, 1999.

14. Y. Liu, J. Sun, and J. S. Dong. Analyzing hierarchical
complex real-time systems. In FSE’10: Proceedings of the
18th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 365–366. ACM,
2010.

15. Y. Liu, J. Sun, and J. S. Dong. PAT 3: An Extensible Ar-
chitecture for Building Multi-domain Model Checkers. In
ISSRE’11: Proceedings of the 22nd annual Internation-
al Symposium on Software Reliability Engineering, pages
190–199. IEEE, 2011.

16. The MathWorks. Simulinkr Design VerifierTM 1 - Us-
er’s Guide, September 2009.

17. The MathWorks. Stateflowr and Stateflowr coderTM

7 - User’s Guide, March 2009.
18. L. Ng, P. Hubbard, and S. O’Young. Simulation of fully

autonomous control of unmanned air vehicles for mar-
itime surveillance. In Proceedings of the 2010 Spring
Simulation Multiconference, SpringSim’10, pages 40:1–
40:9. ACM, 2010.

19. M. Oliveira, A. Cavalcanti, and J. Woodcock. A utp
semantics for circus. Formal Aspects of Computing, 21(1-
2):3–32, 2009.

20. N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and
F. Maraninchi. Defining and translating a “safe” sub-
set of Simulink/Stateflow into Lustre. In EMSOFT’04:
Proceedings of the 4th International Conference on Em-
bedded Software, pages 259–268. ACM, 2004.

21. S. Sims, R. Cleaveland, K. Butts, and S. Ranville. Au-
tomated validation of software models. In ASE’01:
Proceedings of the 16th IEEE International Conference



18 Chunqing Chen et al.: Formal Modeling and Validation of Stateflow Diagrams

on Automated Software Engineering, pages 91–96. IEEE
Computer Society, 2001.

22. J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating
specification and programs for system modeling and ver-
ification. In TASE’09: Proceedings of the 3rd IEEE In-
ternational Symposium on Theoretical Aspects of Soft-
ware Engineering, pages 127–135. IEEE Computer Soci-
ety, 2009.

23. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards
flexible verification under fairness. In CAV’09: Proceed-
ings of the 21th International Conference on Computer
Aided Verification, pages 709–714. Springer, 2009.

24. A. Tiwari. Formal semantics and analysis methods for
Simulink Stateflow models. Technical report, SRI In-
ternational, 2002. See URL: http://www.csl.sri.com/

~tiwari/~stateflow.html.
25. I. Toyn and A. Galloway. Proving properties of stateflow

models using ISO standard Z and CADiZ. In ZB’05:
Proceedings of the 4th International Conference of B and
Z Users, pages 104–123. Springer, 2005.

26. J. Woodcock, P. G. Larsen, J. Bicarregui, and J. S.
Fitzgerald. Formal methods: Practice and experience.
ACM Computing Surveys, 41(4), 2009.


