
Integrating Specification and Programs for System Modeling and Verification

Jun Sun, Yang Liu, Jin Song Dong and Chunqing Chen
National University of Singapore

{sunj,liuyang,dongjs,chenchun}@comp.nus.edu.sg

Abstract

High level specification languages like CSP use math-
ematical objects as abstractions to represent systems and
processes. System behaviors are described as process ex-
pressions combined with compositional operators, which
are associated with elegant algebraic laws for system anal-
ysis. Nonetheless, modeling systems with non-trivial data
and functional aspects using CSP remains difficult. In this
work, we propose a modeling language named CSP# (short
for communicating sequential programs) which integrates
high-level modeling operators with low-level procedural
codes, for the purpose of efficient mechanical system ver-
ification. We demonstrate that data operations can be mod-
eled as terminating sequential programs, which can be com-
posed using high-level compositional operators. CSP# is
supported by the PAT model checker and has been applied
to a number of systems.

1. Introduction

System modeling is very important and highly non-
trivial. The choice of specification language is an important
factor in the success of the entire development. The lan-
guage should cover several facets of the requirements and
the model should reflect exactly (up to abstraction of irrel-
evant details) an existing system or a system to be built.
The language should have a semantic model suitable to
study the behaviors of the system and to establish the va-
lidity of desired properties. A formal model can be the ba-
sis for a variety of system development activities, e.g., sys-
tem simulation, visualization, verification or prototype syn-
thesis. Many specification languages have been proposed.
High-level languages like CSP [8] and CCS [13] use math-
ematical objects as abstractions to represent systems or pro-
cesses. System behaviors are described as process expres-
sions combined with a rich set of compositional operators,
e.g., deterministic or nondeterministic choice, parallel com-
position and recursion. The operators are associated with el-
egant algebraic laws for system analysis.

The original CSP derives its full name from the built-in
syntactic constraint that processes belong to the sequential
subset of the language. CSP has passed the test of time. It
has been widely accepted and influenced the design of many
recent programming and specification languages. Nonethe-
less, modeling systems with non-trivial data structures and
functional aspects completely using languages like CSP re-
mains difficult. A characteristic of CSP is that processes
have disjoint local variables, which was influenced by Dijk-
stra’s principle of loose coupling [4]. CSP supports inter-
process communication through message passing but not
shared memory, i.e., shared variables. It has long been
known (see [8] and [15], for example) that one can model
a variable as a process parallel to the one that uses it. The
user processes then read from, or write to, the variable by
CSP communication. Though feasible, this is painful for
systems with non-trivial data structures (e.g., arrays) and
operations (e.g., array sorting). Therefore, ‘syntactic sug-
ars’ like shared variables are mostly welcomed.

In order to solve the problem, many specification lan-
guages integrating process algebras like CSP or CCS with
state-based specification languages like the Z language or
Object-Z have been proposed. The state-based language
component is typically used to specify the data states of
the system and the associated data operations in a declar-
ative style. Examples include Circus [20] (i.e., an integra-
tion of CSP and the Z language), CSP-OZ [7] (i.e., an in-
tegration of CSP and Object-Z) and TCOZ [11] (i.e., an in-
tegration of Timed CSP and Object-Z). However, because
declarative specification languages like Z are very expres-
sive and not executable, automated analyzing (in particular,
model checking) of systems modeled using the integrated
languages is extremely difficult.

In this work, we propose an alternative solution, i.e., in-
stead of specifying data states and operations in declara-
tive languages, they are given as procedural codes. We pro-
pose a modeling language named CSP# (short for commu-
nicating sequential programs, pronounced as ‘CSP sharp’)
which mixes high-level modeling operators with low-level
programs, for the purpose of system modeling and verifi-
cation. We demonstrate that data operations can be natu-
rally modeled as terminating sequential programs, which

then can be composed using high-level compositional op-
erators. The idea is to treat sequential terminating pro-
grams as atomic events. CSP# models are executable with
complete operational semantics, and therefore subject to
system simulation and, more importantly, fully automated
system verification techniques like model checking. CSP#
is supported by the PAT model checker [18] (available at
http://pat.comp.nus.edu.sg) and has been applied to model
and verify a number of systems.

This work is related to research on integrated formal
methods, in particular, works on integrating state-based
specification and event-based specification [20, 7, 11, 10].
Different from previous approaches, our modeling language
is designed for automated system analysis. Therefore, it
is fully operational and supported by PAT. Two other lan-
guages are designed for similar purposes, namely machine
readable CSP (which we will refer to as CSPM) sup-
ported by the refinement checker FDR [14] and Promela
which is supported by the model checker SPIN [9]. Com-
pared to CSPM , CSP# supports additional language fea-
tures like shared variables, asynchronous communication
channels and event associated programs, which offers users
great flexibility in modeling. Furthermore, we give an in-
terpretation of state/event Linear Temporal Logic in CSP#
semantics framework, which allows temporal logic based
model checking of CSP# models. Compared to Promela,
CSP# supports more process constructs, i.e., Promela is
based on a subset of CSP, whereas all CSP models are valid
CSP# models. In particular, CSP# inherits the classic trace,
stable failures and failures/divergence semantics from CSP,
and therefore, allows us to perform a variety of refinement
checkings. CSP# is also remotely related to other languages
which are designed for model checking [3].

The remainder of the paper is organized as follows. Sec-
tion 2 presents the syntax of CSP#. Section 3 defines its se-
mantic model. Section 4 demonstrates a CSP# model of a
multi-lift system. Section 5 concludes the paper.

2. Syntax

Integrating a highly abstract language like CSP with pro-
gramming codes leads to many complications. Our design
principle is to maximally keep the original CSP as a sub-
language of CSP#, whilst offering a connection to the data
states and executable data operations.

A motivating example We use a mult-lift system as a run-
ning example. The reason is that it has complicated dynamic
behaviors as well as nontrivial data states. Furthermore, the
single-lift system has been modeled using many model-
ing languages including CSP. The system contains multi-
ple components, e.g., the users, the lifts, the floors, the in-
ternal button panels, etc. There are non-trivial data compo-
nents and data operations, e.g., the internal requests and ex-

ternal requests and the operations to add/delete requests. For
simplicity, we assume there is no central controller for as-
signing external requests. Instead, each lift functions on its
own to find and serve requests, in the following way. Ini-
tially, a lift resides at the ground level ready to travel up-
wards. Whenever there is a request (from the internal but-
ton panel or outside button) for the current residing floor,
the lift opens the door and later closes it. Otherwise, if there
are requests for a floor on the current traveling direction
(e.g., a request for floor 3 when the lift is at floor 1 travel-
ing upwards), then the lift keeps traveling on the current di-
rection. Otherwise, the lift changes its direction. Other con-
straints on the system include that a user may only enter
a lift when the door is open, there could be an internal re-
quest if and only if there is a user inside, etc.

2.1. Sequential Programs as Events

Shared variables offer an alternative means of communi-
cation among processes (which reside at the same comput-
ing device or are connected by wires with negligible trans-
mission delay). They record the global state and make the
information available to all processes. In the lift example,
the internal/external requests can be naturally modeled as
shared arrays. In CSP#, they are declared as follows.

1. #define NoOfFloor 3;
2. #define NoOfLift 2;
3. var extUpReq [NoOfFloor];
4. var extDownReq [NoOfFloor];
5. var intRequests[NoOfLift][NoOfFloor];
6. var doorOpen[NoOfLift];

where define and var are reserved keywords. The former
defines a global constant, e.g., NoOfFloor which denotes
the number of floors and NoOfLift which denotes the num-
ber of lifts. The latter defines a variable, e.g., extUpReq and
extDownReq which store external requests, intRequests
which store internal requests and doorOpen which captures
lift doors’ states. CSP# has a weak type system (like JSP)
and therefore type information is not necessary for variable
declaration. By default, all the above defined are treated
as arrays of integers. In particular, elements in extUpReq
(or extDownReq) are binary: 1 at j -th position means that
there is a request for traveling upwards (or downwards)
at j -th floor; 0 means no request. Two dimensional array
intRequests stores internal requests from all lifts. In par-
ticular, the internal request for the j -th floor from the i -th
lift is stored at intRequests[i][j] in the array. Elements in
intRequests are binary: 1 means that the floor has been
requested and 0 means not requested. Elements in array
doorOpen range from −1 to NoOfFloor − 1. The i -th el-
ement of doorOpen is −1 if and only if the door of i -th
lift is closed and it is j such that j ≥ 0 if and only if the

intRequests[i][level] = 0;
if (dir > 0){extUpReq [level] = 0; }
else {extDownReq [level] = 0; }

Figure 1. CSP# codes for clearing requests

i -th lift has opened door at j -th floor. We assume that ini-
tially all doors are closed. We remark if the Z language is
used for specification, specific types for elements in the ar-
rays may be defined to constrain their values. In CSP#, we
instead use PAT to verify that the constraints hold given any
system behavior.

Associated with the variables are data operations which
query or modify the variables. In the lift system, whenever a
lift opens its door, the requests must be updated accordingly.
For instance, the codes shown in Figure 1 clear the requests
when the i -th lift opens the door at level -th floor. Let dir
be the current traveling direction (1 for upwards and -1 for
downwards). The first line clears internal requests, by sim-
ply resetting the respective position in array intRequests to
0. The rest clears external requests. Only the request along
the lift’s traveling direction is cleared. A more complicated
operation is to determine whether there are requests along
the current traveling direction, so as to determine whether a
lift should keep traveling in the same direction or to change
direction. This operation may be implemented by the codes
in Figure 2, where level is a variable recording the floor that
the lift is residing at, index is a loop counter and result [i]
records the result (0 for no such request and 1 for yes). A
while-loop is used to search for a request along the current
traveling direction, e.g., if the lift is traveling upwards, we
search for a request for (or from) an upper floor. The search
stops when the ground or top floor is reached.

A system may contain multiple data operations, each of
which is terminating and is assumed to be executed atom-
ically. They can be implemented using the CSP# syntax
as shown above, or they can be implemented using exist-
ing programming languages. For instance, we offer the key-
word call in PAT to allow invocation of data operations (as
atomic events) implemented externally as C# static meth-
ods in CSP# models. Data operations may be invoked al-
ternatively or in parallel. In CSP#, data operations can be
treated as atomic events and composed using compositional
operators. From another point of view, we allow an event to
be associated with an optional sequential terminating pro-
gram. For instance, the program in Figure 2 may be labeled
as event checkIfToMove.i .level , which then can be used to
constitute CSP process expressions, e.g., see Figure 3 and 5.
Data races are prevented by not allowing synchronization of
events containing procedural code.

index = level + dir ; result [i] = 0;
while (index >= 0 && index < NoOfFloor

&& result [i] == 0){
if (extUpReq [index]! = ||

extDownReq [index]! = 0 ||
intRequests[i][index]! = 0){
result [i] = 1;

}
else {index = index + dir ; }

}

Figure 2. CSP# codes for searching requests

2.2. Composing Programs

The high-level compositional operators in CSP capture
common system behavior patterns. They are very useful in
system modeling. Furthermore, process equivalence can be
proved or disproved by appealing to algebraic laws which
are defined for the operators. In CSP#, we reuse most of the
operators and integrate them with our extensions in a rigor-
ous way so as to maximally preserve the algebraic laws.

A CSP# specification may contain multiple process def-
initions. A process definition gives a process expression a
name, which can be referenced in process expressions. The
following is a BNF description of the process expression1.

P ::= Stop | Skip | e{prog} → P |
ch!exp → P | ch?x → P | P \X | P ; Q |
P [] Q | P u Q | if b {P} else {Q} |
[b]P | P ‖ Q | P ||| Q | P 4 Q | ref (Q)

where P ,Q are processes, e is a name representing an event
with an optional sequential program prog , X is a set of
event names (e.g., {e1, e2}), b is a Boolean expression, ch
is a channel, exp is an expression, and x is a variable. Be-
sides events attached with programs, the most noticeable ex-
tension to CSP is the use of asynchronous channels, which
again can be supported in CSP by explicitly modeling the
communication buffer. Nonetheless, explicitly supporting
them in CSP# is not only for users’ convenience but also
for possibly more efficient mechanical system exploration
(refer to Section ??). Given a channel ch with pre-defined
buffer size, process ch!exp → P evaluates the expression
exp (with the current valuation of the variables) and puts
the value into the tail of the respective buffer and behaves
as P . Process ch?x → P gets the top element in the respec-
tive buffer, assigns it to variable x and then behaves as P .
Sending/receiving multiple messages at once are supported.

1 Refer to PAT’s user manual for ASCII version of the symbols.

Stop is the process that does nothing. Skip = X →
Stop, where X is the special event of termination. Event
prefixing e → P performs e and afterwards behaves as pro-
cess P . If e is attached with a program, the program is exe-
cuted atomically together with the occurrence of the event.
Process P\X hides all occurrences of events in X . Sequen-
tial composition, P ; Q , behaves as P until its termination
and then behaves as Q . External choice P 2 Q is solved
only by the occurrence of a visible event. On the contrast,
internal choice P u Q is solved non-deterministically. Con-
ditional choice if b {P} else {Q} behaves as P if b evalu-
ates to true, and behaves as Q otherwise. Process [b]P waits
until condition b becomes true and then behaves as P . No-
tice that it is different from if b {P} else {Q}. One dis-
tinguishing feature of CSP is alphabetized multi-processes
parallel composition. Let P ’s alphabet, written as αP , be
the events in P excluding the special invisible event τ . Pro-
cess P ‖ Q synchronizes common events in the alphabets
of P and Q . In contrast, process P ||| Q runs all pro-
cesses independently (except for communication through
shared variables). Process P 4 Q behaves as P until the
first occurrence of an visible event from Q . A process ex-
pression may be given a name for referencing. Recursion is
supported by process referencing.

In CSP#, we support global variables which are glob-
ally accessible, process parameters which are accessible in
the respective process expression and local variables which
are accessible in one data operation. We restrict the use of
local variables in general. In particular, local variables in-
troduced as process parameters or variables to store chan-
nel inputs cannot be modified by event associated programs.
They can, however, be modified indirectly. The following il-
lustrates alternative ways of achieving the same effect.

P(x) = add{x = x + 1} → P(x); – ×
P(x) = add → P(x + 1); – X
var x ; P() = add{x = x + 1} → P(); – X

Because x cannot be modified, it becomes constant-like and
therefore can be simply replaced by its value. This restric-
tion allows us to perform efficient system verification. The
reason is that, in this setting, it is sufficient to store only
the valuation of the global variables and the process ex-
pression (with process parameters replaced with their val-
ues) when we explore the system states. Compared to soft-
ware model checking, we can safely omit the program stack
(which, combined with recursions, is very complicated to
maintain) from the global state.

Figure 3 presents a process Lift which concisely models
the behavior of one lift. Notice that the process has multiple
parameters, namely i which is an identifier of the lift, level
which denotes the residing floor and dir which denotes the
current traveling direction (1 for traveling upwards and -1
for downwards). The condition at line 7 is used to check

whether there is a request for the current floor, with the cor-
rect traveling direction if it is external. If yes, then the door
is opened, the requests for the floor are cleared (using the
code presented in Figure 1), and then the door is closed.
Otherwise, the lift checks whether to continue traveling on
the same direction (using the code presented in Figure 2).
If the result is 1, then the lift moves to the next floor. Oth-
erwise, the lift changes its direction and then repeats from
the start. In this example, we have events which are asso-
ciated with programs and simple events like moving .i .dir .
The rest of the system model is presented in Section 4.

3. Semantics

In the section, we present operational semantics of CSP#
models, which translates a model into a labeled transition
system (LTS). The sets of behaviors can be extracted from
the operational semantics, thanks to congruence theorems.
We then define properties which are subject to model check-
ing over the language of the LTS. We remark that the com-
plication due to conflicts between global variables and CSP
operational semantics (e.g., calculation of process alpha-
bets) is discussed.

3.1. Operational Semantics

A system configuration is composed of two components
(V ,P) where V is a function mapping a variable name (or
a channel name) to its value (or a sequence of items in the
buffer), which we refer to as a valuation function in the fol-
lowing, and P is a process expression. A system transition
is of the form (V ,P) e→ (V ′,P ′) where e is an event.

The operational semantics is presented as firing rules as-
sociated with each process construct. The rules naturally
extend the operational semantics for CSP [1] and Timed
CSP [17]. Let Σ be the set of visible event names. For sim-
plicity, we assume a function upd(V , prog) which, given a
sequential program prog and V , returns the modified val-
uation function V ′ according to the semantics of the pro-
gram. We write V � b (or V 6� b) to denote that con-
dition b evaluates to true (or false) given V . We write
eva(V , exp) to denote the value of the expression evaluated
with variable valuations in V . To abuse notations, we write
app(V , ch!exp) to denote the function V ′ in which the re-
spective channel buffer is appended with eva(V , exp). We
write pop(V , ch?x) to denote the function V ′ in which the
top element (written as top(V , ch)) in the respective chan-
nel buffer is removed.

Figure 4 illustrates part of the firing rules. The rest can
be found in the Appendix. Rule prefix captures how event
associated with sequential programs are handled, i.e., the
occurrence of the event and program is simultaneous and
appears, to the system, to be atomic. Notice that, this is

7. Lift(i , level , dir) = if ((dir > 0 && extUpReq [level] == 1) || (dir < 0 && extDownReq [level] == 1) ||
8. intRequests[i][level] == dir){
9. opendoor .i{doorOpen[i] = level ; *code shown in Figure 1*} →
10. closedoor .i{doorOpen[i] = −1} → Lift(i , level , dir)
11. } else {
12. checkIfToMove.i .level{*code shown in Figure 2*} →
13. if (result [i] == 1){moving .i .dir →
14. if (level + dir == 0 || level + dir == NoOfFloors − 1){Lift(i , level + dir ,−1 ∗ dir)}
15. else {Lift(i , level + dir , dir)}
16. } else {
17. if ((level == 0 && dir == 1) || (level == NoOfFloors − 1 && dir == −1)){
18. Lift(i , level , dir)
19. }
20. else {changedir .i .level → Lift(i , level ,−1 ∗ dir)}
21. }
22. };

Figure 3. CSP# model of the lift

the only way global variables are modified. Rule out and
in captures semantics of channel output/input. We remark
that there are two rules associated with if b {P} else {Q},
whereas only one is associated with [b]P . Therefore, if b
is false given [b]P , then the process will block until b be-
comes true.

The semantics of parallel composition P ‖ Q depends
on the alphabets of P and Q . Parallel composition is one of
the most complicated operators in CSP. In CSPM , users are
asked to specify the synchronizing events2. This is some-
times troublesome. In CSP#, we use only one form of par-
allel composition (i.e., P ‖ Q). We remark this is not a
restriction. In CSP#, users are allowed to manually spec-
ify the alphabet of a process3 (e.g., #alphabet P X where
X is a set of event names). In addition, we offer a sophisti-
cated procedure to mechanically calculate the default alpha-
bet of a process (and the synchronizing events), i.e., the set
of simple events which constitute the process expression.
We remark that in general, this is not always possible, e.g.,
if the event name is constituted with global variables or pro-
cess parameters which are changing through recursive calls.
In such cases, PAT will make a complaint, when a paral-
lel composition is subject to simulation or model checking.
Notice that an event which is associated with a data oper-
ation is excluded from the alphabet in CSP#. For instance,
assume x is a global variable,

P() = a{x = x + 1} → Stop;
Q() = a{x = x + 2} → Stop;

2 in the form of P [| a |]Q , P [a || a′]Q or P [c < − > c′]Q .
3 By default, the alphabet of a process includes X.

Given the above, event a is not synchronized in the parallel
composition of P() and Q(). The intuition is that data op-
erations are local actions, instead of communications. This
prevents synchronizing events associated with different data
operations but with the same name (e.g., a in the above ex-
ample) and syntactically avoids potential data race.

We call a process expression and a function V a
model. The transition system of the model is a LTS
LV

P = (S , init ,→) where S is the set of reachable system
configurations, init is the initial configuration (V ,P) and
→ is a labeled transition relationship conforming to the op-
erational semantics presented in Figure 4 and the Appendix.
A finite execution of P with V is a finite sequence of al-
ternating states/events 〈s0, e0, s1, e1, · · · , en , sn+1〉 where
s0 = init and si

ei→ si+1 for all 0 ≤ i ≤ n . An infinite exe-
cution is an infinite sequence 〈s0, e0, s1, e1, · · · , ei , si , · · ·〉
where s0 = init and si

ei→ si+1 for all i ≥ 0.
A model is deadlock-free if and only if there does

not exist a finite execution 〈s0, e0, s1, e1, · · · , en , sn+1〉
such that sn+1 is a deadlock state, i.e., no firing rules
are applicable given sn+1. Given a proposition p, a
state satisfying the predicate is reachable (or equiva-
lently p is reachable) if and only if there exists a fi-
nite execution 〈s0, e0, s1, e1, · · · , en , sn+1〉 such that
sn+1 = (Vn+1,Pn+1) and Vn+1 � p.

3.2. Traces, Failures and Divergences

Verification of CSP models has been traditionally
based on refinement checking. CSP refinement is expres-
sive enough to cover a large class of properties [16]. In

[prefix]
(V , e{prog} → P) e→ (upd(V , prog),P)

c is not full in V [out]
(V , c!exp → P)

c!eva(V ,exp)→ (app(V , c!exp),P)

c is not empty in V [in]
(V , c?x → P)

c?top(c)→ (pop(V , c?x),P)

V � b, (V ,P) e→ (V ′,P ′) [cond1]
(V , if b {P} else {Q}) e→ (V ′,P ′)

V 6� b, (V ,Q) e→ (V ′,Q ′) [cond2]
(V , if b {P} else {Q}) e→ (V ′,Q ′)

V � b, (V ,P) e→ (V ′,P ′) [guard]
(V , [b]P) e→ (V ′,P ′)

(V ,P) x→ (V ′,P ′), x ∈ αP , x 6∈ αQ [par1]
(V ,P ‖ Q) x→ (V ′,P ′ ‖ Q)

(V ,Q) x→ (V ′,Q ′), x ∈ αQ , x 6∈ αP [par2]
(V ,P ‖ Q) x→ (V ′,P ‖ Q ′)

(V ,P) x→ (V ,P ′), (V ,Q) x→ (V ,Q ′), x ∈ αP ∩ αQ [par3]
(V ,P ‖ Q) x→ (V ,P ′ ‖ Q ′)

P =̂ Q , (V ,Q) ∗→ (V ′,Q ′) [def]
(V ,P) ∗→ (V ′,Q ′)

Figure 4. operational semantics where e ∈ Σ; eτ ∈ Σ ∪ {τ}; x ∈ Σ ∪ {X} and ∗ ∈ Σ ∪ {τ,X}

the following, we extend the trace, stable failures and fail-
ures/divergences semantics of CSP to CSP# models.
Unlike those in CSP, the definitions are defined on the la-
beled transition system LV

P . We then briefly discuss how
the respective refinement relationship can be checked me-
chanically.

A finite sequence of events 〈x0, x1, · · · , xm〉 is a trace
of P with V if and only if there exists a finite ex-
ecution 〈s0, e0, s1, e1, · · · , en , sn+1〉 of LV

P such that
〈e0, e1, · · · , en〉 � {τ} = 〈x0, x1, · · · , xm〉 where tr � X re-
moves the events in X from the sequence tr . The set of all
traces is written as traces(P ,V).

Given a trace tr , we write (P ,V)/tr to denote the set
of system configurations that can be reached from (P ,V)
via trace tr . Because of nondeterminism, multiple configu-
rations can be reached via the same trace. Given process P
and valuation function V , the refusals are the sets of event
sets which may be refused.

refusals(P ,V) = {X | ∀ e : X
6 ∃(P ′,V ′) (P ,V) e→ (P ′,V ′)}

The failures of the model (P ,V) is defined as follows,

failures(P ,V) = {(tr ,X) | tr ∈ traces(P ,V) ∧
X ∈ refusals((P ,V)/tr)}

If (tr ,X) is a failure of the model, this means that the
model can engage in the sequence of events recorded by
tr , and then refuse to perform any event in X . A divergence
of a model is defined as a trace after (a prefix of) which

the model may perform infinite number of internal invisi-
ble actions. Equivalently, a trace tr is a divergence of the
model (P ,V) if and only if there exists an infinite execu-
tion 〈s0, e0, s1, e1, · · · , ei , si , τ, si+1, · · · τ, si+n , · · ·〉 of LV

P

such that 〈e0, e1, · · · , ei〉�{τ} is tr or a prefix of tr . The set
of divergence of a model is written as divergences(P ,V).

Given two models (P1,V1) and (P2,V2), model
(P1,V1) refines (P2,V2) in the trace semantics if and only
if traces(P1,V1) ⊆ traces(P2,V2); model (P1,V1) re-
fines (P2,V2) in the stable failures semantics if and only if
failures(P1,V1) ⊆ failures(P2,V2); model (P1,V1) re-
fines (P2,V2) in the failures/divergences semantics if
and only if failures(P1,V1) ⊆ failures(P2,V2) and
divergences(P1,V1) ⊆ divergences(P2,V2).

It can be shown that our definition is consistent with the
CSP definition with respect to the CSP subset of CSP#.
Moreover, the refinement checking algorithm implemented
in the FDR model checker [14], which is based on the op-
erational semantics of CSP, can be naturally extended to
check refinement relationship between CSP# models. We
refer the readers to [18] for details on the checking algo-
rithm (combined with partial order reduction), which has
been implemented in PAT.

3.3. State/Event LTL Semantics

Model checking based on temporal logic formulae has
been proved effective as well as intuitive, which has gath-
ered much attention, evidenced by the rich set of theories

and tools developed for CTL/LTL based verification [3, 9].
Because states/variables are made explicit in CSP#, state-
based temporal logic is a natural candidate for property
specification and verification. Furthermore, because we are
dealing with an event-based formalism, it would be mean-
ingful if the properties may concern both states and events.
For instance, in the lift example, we may be interested in
specifying and verifying the following property, where 2
and 3 are modal operators which read ‘always’ and ‘even-
tually’ respectively.

2(extUpReq [0] > 0 ⇒ 3extUpReq [0] = 0) ∧
23moving .0.1

The property states that a request at the ground floor must
eventually be served (i.e., cannot be ignored forever) and
the event moving .0.1 must always eventually occur (i.e., 0-
th lift must always eventually move upwards).

In this section, we follow the work presented in [2] to
define an interpretation of state/event linear temporal logic
(LTL) based on CSP# semantics, which allows us to apply
automata-based model checking [9] of temporal logic for-
mulae constituted with both event and state propositions.
Let Pr be a set of propositions (formulated using predi-
cates on global variables in CSP#). An extended LTL for-
mula is defined as follows.

φ ::= p | a | ¬φ | φ ∧ ψ | Xφ | 2φ | 3φ | φUψ

where p ranges over Pr and a ranges over Σ. Let π =
〈s0, e0, s1, e1, · · · , ei , si , · · ·〉 be an infinite execution. Let
πi be the suffix of π starting from Pi .

πi � p ⇔ si � p
πi � a ⇔ xi−1 = a
πi � ¬φ ⇔ ¬(πi � φ)
πi � φ ∧ ψ ⇔ πi � φ ∧ πi � ψ
πi � X ∧ φ⇔ πi+1 � φ
πi � 2φ ⇔ ∀ j ≥ i • πj � φ
πi � 3φ ⇔ ∃ j ≥ i • πj � φ
πi � φUψ ⇔ ∃ j ≥ i • πj � ψ ∧

∀ k | i ≤ k ≤ j − 1 • πj � φ

The simplicity of writing formulae concerning events as in
the above example is not purely a matter of aesthetics. It
may yield gains in time and space (refer to examples in [2]).
A model satisfies φ if and only if every infinite execution
of LV

P satisfies φ. We refer the readers to [19] for details
on temporal logic model checking (with or without fairness
constraints) of CSP# models.

4. Case Studies

In this section, we complete the case study of the multi-
lift model. Our modeling is related to the previous lift sys-
tem models presented in [12]. In addition, we demonstrate
how to write critical system properties as assertions.

Figure 5 shows the rest of the model. In particular, line
23 defines the rest of the variables (which are used in Fig-
ure 2). Lines 24 to 34 model users’ behavior in the lift sys-
tem. At line 24, the behavior of three users is defined as
the interleaving of each user, where ||| x : {i ..j}@P(x) =
P(i) ||| · · · ||| P(j). Behavior of a user is specified as pro-
cess aUser at line 25. Each user may initially be at any
floor. This is captured using indexed external choice. The
user pushes a button (for traveling upwards or downwards,
specified as ExternalPush(pos)) and then waits for the lift
to come (specified as Waiting(pos)).

A case statement, which is a syntactic sugar for
multiple if-then-else statements, is used in process
ExternalPush(pos). We remark that the conditions in the
case statement are evaluated in the order until one which
evaluates to be true is found. Otherwise, the default branch
is taken. In the example, if the user is at the ground floor
or the top one, only one direction to travel can be re-
quested. Otherwise, the user may choose either to go
upwards or downwards. Lines 27 to 30 capture how the ex-
ternal requests are updated.

The user then waits until a lift opened its door at the
user’s floor (captured by condition doorOpen[i] == pos)
and then enters the lift. We remark that this model allows
users to enter the lift with the wrong traveling direction
(which may happen in real world). After making an in-
ternal request, the user may exit when the door is opened
again at his/her destination floor. The lift system is mod-
eled as the interleaving of users and multiple lifts at line 35.
Initially, the lifts are residing at the ground floor, ready to
travel upwards. In this example, we demonstrate how vari-
able updates and compositional operators may be used to-
gether seamlessly to capture system behavior.

Once we have a model, we may use PAT to simulate its
behaviors. Alternatively, we may write assertions about crit-
ical system properties and invoke the PAT model checkers to
examine the model in order to find counterexamples. In par-
ticular, line 36 asserts that the lift system is deadlock-free.
Line 37 and 38 define propositions which are used to con-
stitute the temporal logic formula defined at line 39, which
has been discussed in Section 3.3.

5. Conclusions

In this work, we propose a mixing of high-level speci-
fication languages with low-level procedural codes for the
purpose of efficient system analysis, in particular, model
checking. A multi-lift system is used to illustrate the lan-
guage. We remark that CSP# has been applied to model
and verify a variety of systems, ranging from recently pro-
posed distributed algorithms, concurrent programming al-
gorithms to real-world systems like the pacemaker system.
Previously unknown bugs have been discovered. Further-

23. var index ; var result [NoOfLift];
24. Users() =||| x : {0..2}@aUser();
25. aUser() = [] pos : {0..NoOfFloor − 1}@(ExternalPush(pos); Waiting(pos));
26. ExternalPush(pos) = case {
27. pos == 0 : pushup.pos{extUpReq [pos] = 1} → Skip
28. pos == NoOfFloor − 1 : pushdown.pos{extDownReq [pos] = 1} → Skip
29. default : pushup.pos{extUpReq [pos] = 1} → Skip []
30. pushdown.pos{extDownReq [pos] = 1} → Skip
31. };
32.Waiting(pos) = [] i : {0..NoOfLift − 1}@([doorOpen[i] == pos]enter .i →
33. []x : {0..NoOfFloor − 1}@(push.x{intRequests[i][x] = 1} →
34. [doorOpen[i] == x]exit .i .x → User()));
35. LiftSystem() = Users() ||| (||| x : {0..NoOfLift − 1}@Lift(x , 0, 1));
36. #assert LiftSystem() deadlockfree;
37. #define pr1 extUpReq [0] > 0;
38. #define pr2 extUpReq [0] == 0;
39. #assert LiftSystem() |= 2(pr1 ⇒ 3pr2) && 23moving .0

Figure 5. CSP# model of the lifts system

more, we formally define the semantic models for CSP#,
which facilitates PAT to perform sound and complete sys-
tem verification. One future research direction is to continue
our previous works on verifying real-time systems [6, 5] by
introducing clock variables in CSP# and extend PAT to han-
dle simple real variables.

References

[1] S. D. Brookes, A. W. Roscoe, and D. J. Walker. An Opera-
tional Semantics for CSP. Technical report, 1986.

[2] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. State/Event-Based Software Model Checking. In
IFM’04: Proc. of the 4th Inter. Conf. on Integrated Formal
Methods, volume 2999 of LNCS, pages 128–147, 2004.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In CAV’02: Proc. of the 14th Inter. Conf. on Com-
puter Aided Veri., pages 359–364, 2002.

[4] E. W. Dijkstra. Programming: From Craft to Scientific Dis-
cipline. In International Computing Symposium 1977, pages
23–30, 1977.

[5] J. S. Dong, P. Hao, S. C. Qin, J. Sun, and Y. Wang. Timed au-
tomata patterns. IEEE Transsactions on Software Engineer-
ing, 34(6):844–859, 2008.

[6] J. S. Dong, P. Hao, J. Sun, and X. Zhang. A Reasoning
Method for Timed CSP Based on Constraint Solving. In
ICFEM’06.

[7] C. Fischer. CSP-OZ: a combination of object-Z and CSP. In
FMOODS’97.

[8] C.A.R. Hoare. Communicating Sequential Processes. Inter-
national Series in Computer Science. Prentice-Hall, 1985.

[9] G. J. Holzmann. The Model Checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5):279–295, 1997.

[10] S. Y. Liu, A. J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba.
SOFL: A Formal Engineering Methodology for Industrial
Applications. IEEE Transactions on Software Engeering,
24(1):24–45, 1998.

[11] B. Mahony and J. S. Dong. Timed Communicating Object
Z. IEEE Transactions on Software Engineering, 26(2):150–
177, February 2000.

[12] B. P. Mahony and J. S. Dong. Network Topology and a Case
Study in TCOZ. In ZUM’98.

[13] R. Milner. A Calculus of Communicating Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1982.

[14] A. W. Roscoe. The Theory and Practice of Concurrency.
Prentice-Hall, 1997.

[15] A. W. Roscoe. Compiling Shared Variable Programs into
CSP. In Proceedings of PROGRESS workshop 2001, 2001.

[16] A. W. Roscoe. On the expressive power of CSP refinement.
Formal Aspects of Computing, 17(2):93–112, 2005.

[17] S. Schneider. An Operational Semantics for Timed CSP. In-
formation and Computation, 116(2):193–213, 1995.

[18] J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Revis-
ited: Introducing a Process Analysis Toolkit. In ISOLA’08.

[19] J. Sun, Y. Liu, J. S. Dong, and H. Wang. Specifying
and Verifying Event-based Fairness Enhanced Systems. In
ICFEM’08, pages 318–337, 2008.

[20] J. Woodcock and A. Cavalcanti. The Semantics of Circus. In
ZB 2002, volume 2272 of LNCS, pages 184–203, 2002.

Appendix: Operational Semantics where e ∈ Σ; eτ ∈ Σ ∪ {τ}; x ∈ Σ ∪ {X} and ∗ ∈ Σ ∪ {τ,X}

[skip]
(V ,Skip) X→ (V ,Stop)

(V ,P) e→ (V ′,P ′), e ∈ X [hide1]
(V ,P \X) τ→ (V ′,P ′)

(V ,P) x→ (V ′,P ′), x 6∈ X [hide2]
(V ,P \X) x→ (V ′,P ′ \X)

(V ,P) eτ→ (V ′,P ′) [seq1]
(V ,P ; Q) eτ→ (V ′,P ′; Q)

(V ,P) X→ (V ′,P ′) [seq2]
(V ,P ; Q) τ→ (V ′,Q)

(V ,P) x→ (V ′,P ′) [ch1]
(V ,P 2 Q) x→ (V ′,P ′)

(V ,Q) x→ (V ′,Q ′) [ch2]
(V ,P 2 Q) x→ (V ′,Q ′)

(V ,P) τ→ (V ′,P ′) [ch3]
(V ,P 2 Q) x→ (V ′,P ′ 2 Q)

(V ,Q) τ→ (V ′,Q ′) [ch4]
(V ,P 2 Q) τ→ (V ′,P 2 Q ′)

[non1]
(V ,P u Q) τ→ (V ,P)

[non2]
(V ,P u Q) τ→ (V ,Q)

(V ,P) x→ (V ′,P ′) [int1]
(V ,P ||| Q) x→ (V ′,P ′ ||| Q)

(V ,Q) x→ (V ′,Q ′) [int2]
(V ,P ||| Q) x→ (V ′,P ||| Q ′)

(V ,P) X→ (V ′,P ′), (V ,Q) X→ (V ′,Q ′) [int3]
(V ,P ||| Q) X→ (V ′,P ′ ||| Q ′)

(V ,P) ∗→ (V ′,P ′) [inter1]
(V ,P 4 Q) ∗→ (V ′,P ′ 4 Q)

(V ,Q) e→ (V ′,Q ′) [inter2]
(V ,P 4 Q) e→ (V ′,Q ′)

(V ,Q) τ→ (V ′,Q ′) [inter3]
(V ,P 4 Q) τ→ (V ′,P 4 Q ′)

