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Abstract. Wireless sensor networks may be used to conduct critical tasks like
fire detection or surveillance monitoring. It is thus important to guarantee the
correctness of such systems by systematically analyzing their behaviors. Formal
verification of wireless sensor networks is an extremely challenging task as the
state space of sensor networks is huge, e.g., due to interleaving of sensors and
intra-sensor interrupts. In this work, we develop a method to reduce the state
space significantly so that state space exploration methods can be applied to a
much smaller state space without missing a counterexample. Our method ex-
plores the nature of networked NesC programs and uses a novel two-level partial
order reduction approach to reduce interleaving among sensors and intra-sensor
interrupts. We define systematic rules for identifying dependence at sensor and
network levels so that partial order reduction can be applied effectively. We have
proved the soundness of the proposed reduction technique, and present experi-
mental results to demonstrate the effectiveness of our approach.

1 Introduction

Sensor networks (SNs) are built based on small sensing devices (i.e., sensors) and de-
ployed in outdoor or indoor environments to conduct different tasks. Recently, SNs have
been applied in more areas like military surveillance, environment monitoring, theft de-
tection, and so on [2]. Many of them are carrying out critical tasks, failures or errors
of which might cause catastrophic loss of money, equipments and even human lives.
Therefore, it is highly desirable that the implementation of SN systems is reliable and
correct.

In order to develop reliable and correct SNs, a variety of approaches and tools have
been proposed. Static analysis of SNs (e.g., [3]) is difficult, given their dynamic nature.
Therefore, most of the existing approaches rely on state space exploration, e.g., through
simulation [15], random walk [17], or model checking [13,19,20,23,4,5,17]. Although
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some of the tools were able to detect and reveal bugs, all of them face the same chal-
lenge: the huge state space of SNs. In practice, a typical sensor program might consist
of hundreds/thousands of lines of code (LOC), which introduces a state space of tens
of thousands, considering only concurrency among internal interrupts. As a result, ex-
isting tools usually cover only a fraction of the state space and/or take a long time.
For instance, the work in [4,5] is limited to a single sensor, whereas the approaches
in [13,19,17,25] work only for small networks. We refer the readers to Section 6 for a
detailed discussion of related works.

In this work, we develop a method to significantly reduce the state space of SNs
while preserving important properties so that state space exploration methods (like
model checking or systematic testing) become more efficient. Our targets are SNs
developed in TinyOS/NesC, since TinyOS/NesC is widely used for developing SNs.
TinyOS [7] provides an interrupt-driven execution model for SNs, and NesC (Network-
Embedded-System C) [10] is the programming language of TinyOS applications.

Our method is a novel two-level partial order reduction (POR) which takes ad-
vantage of the unique features of SNs as well as NesC/TinyOS. Existing POR meth-
ods [11,6,9,24,12] reduce the state space of concurrent systems by avoiding unnecessary
interleaving of independent actions. In SNs, there are two sources of “concurrency”.
One is the interleaving of different sensors, which would benefit from traditional POR.
The other is introduced by the internal interrupts of sensors. An interrupt can occur
anytime and multiple interrupts may occur in any sequence, producing numerous states.
Applying POR for interrupts is highly nontrivial because all interrupts would modify
the task queue and lead to different orders of scheduled tasks at run time. Our method
extends and combines two different POR methods (one for intra-sensor interrupts and
one for inter-sensor interleaving) in order to achieve better reduction. We remark that
applying two different POR methods in this setting is complicated, due to the interplay
between inter-sensor message passing and interrupts within a sensor (e.g., a message
arrival would generate interrupts).

Our method preserves both safety properties and liveness properties in the form of
linear temporal logic (LTL) so that state space exploration methods can be applied to
a much-smaller state space without missing a counterexample. Our method works as
follows. First, static analysis is performed to automatically identify independent action-
s/interrupts at both inter-sensor and intra-sensor levels. Second, we extend the Cartesian
semantics [12] to reduce network-level interleaving. The original Cartesian POR algo-
rithm treats each process (in our case, sensor) as a simple sequential program. How-
ever, in our work, we have to handle the internal concurrency among interrupts for each
sensor and thus the Cartesian semantics of SNs is developed. The interleaving among
interrupts is then minimized by the persistent set technique [6].

We formally prove that our method is sound and complete, i.e., preserving LTL-
X properties [6]. The proposed method has been implemented in the model checker
NesC@PAT [25] and experiment results show that our method reduces the state space
significantly, e.g., the reduced state space is orders of magnitudes smaller. We also
approximated the reduction ratio obtained by a related tool T-Check [17] under POR
setting and the data show that our two-level POR achieves much better reduction ratio
than T-Check’s POR algorithm, as elaborated in Section 5.
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(a) TinyOS Execution Model

1 vo id handler dev ( ){
2 / / update s ta tus o f dev ;
3 . . .
4 / / schedule the
5 / / complet ion event
6 post dev compl task ( ) ;
7 }
8
9 / / complet ion task

10 task vo id dev compl task ( ){
11 / / event implemented
12 / / by programmers
13 s i g n a l dev done event ( ) ;
14 }

(b) Abstract Interrupt Handler

1 event vo id Boot . booted ( ){
2 c a l l Read . read ( ) ;
3 post send task ( ) ;
4 }
5 event vo id Read . rdDone ( i n t v ){
6 value += v ;
7 }
8 task vo id send task ( ){
9 busy = t rue ;

10 c a l l Send . send ( count ) ;
11 }
12 event vo id Send . sendDone ( ){
13 busy = f a l s e ;
14 }
15 event vo id Receive . rece ive ( ){
16 count ++;
17 post send task ( ) ;
18 }

(c) Example Code
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(d) State Graph of Event Boot .booted

Fig. 1. Interrupt-driven Features

2 Preliminaries

In this section, we present the interrupt-driven feature of TinyOS/NesC and the formal
definitions of SNs. For details on how to generate a model from NesC programs, readers
are referred to [25], which defines small step operational semantics for NesC.

In NesC programs, there are two execution contexts, interrupt handler and task
(a function), described as asynchronous and synchronous, respectively [10]. An inter-
rupt handler can always preempt a task if interrupts are enabled. In TinyOS execution
model [14], a task queue schedules tasks for execution in a certain order. In our work,
we model the task scheduler in the FIFO order, which is the default setting of TinyOS
and is widely used. As shown in Fig. 1(a), the execution of a task could be preempted
by interrupt handlers. An interrupt handler accesses low-level registers and enqueues a
task to invoke a certain function at a higher level of application code. In our approach,
we treat interrupt handlers as black boxes, as we assume that the low-level behaviors
of devices work properly. Variables are used to represent the status of a certain device
and thus low-level functions related to interrupt handlers are abstracted, as shown by



the pseudo code in Fig. 1(b). The execution of an interrupt handler is modeled as one
action. Different ordering of interrupt handler executions might lead to different orders
of tasks in the task queue, making the state space complex and large. In our model after
a task is completed, all pending interrupt handlers are executed before a new task is
loaded for execution. This approximation reduces concurrency between tasks and in-
terrupts and is yet reasonable since devices usually respond to requests within a small
amount of time like the executing period of a task.

The NesC language is an event-oriented extension of C that adds new concepts such
as call , signal , and post . The semantics of call (e.g., lines 2 and 10 in Fig. 1(c)) and
that of signal are similar to traditional function calls, invoking certain functions (either
commands or events). The keyword post (like lines 3 and 17 in Fig. 1(c)) is to enqueue
a given task. Thus the task queue could be modified during both synchronous and asyn-
chronous execution contexts. In other words, the task queue is shared by tasks and
interrupt handlers. Fig. 1(c) illustrates a fragment of a NesC program, which involves
messaging and sensing and is the running example of this paper. The command call
Read .read()/Send .send() invokes the corresponding command body that requests the
sensing device/messaging device to read data/to send a packet, which will later trigger
the completion interrupt rd /sd to post a task for signaling event Read .rdDone/Send .se-
ndDone . We remark that rv is used to denote the interrupt of a packet arrival, and trd ,
tsd , and trv are the tasks posted by interrupt handlers of rd , sd and rv , respectively.
With the assumption that a packet arrival interrupt is possible at any time, the state
graph of event Boot .booted is shown in Fig. 1(d), where each transition is labeled with
the line number of the executed statement or the triggered interrupt, and each state is
numbered according to the task queue. The task queues of different state numbers are
illustrated in Fig. 1(d) as well. For example, after executing call Read .read() (line 2)
the task queue still remains empty, while after executing the interrupt handler rv which
enqueues its completion task trv and the task queue becomes 〈trv 〉 (i.e., state 6).

The formal definitions of SNs are given in [25]. They are summarized below only
to make the presentation self-contained.

Definition 1 (Sensor Model). A sensor model S is a tuple S = (A,T ,R, init ,P)
where A is a finite set of variables; T is a queue which stores posted tasks in FIFO
order; R is a buffer that keeps incoming messages sent by other sensors; init is the
initial state of S; and P is a program composed by the running NesC program M and
interrupting devices H , i.e., P = M 4 H .

Definition 1 formally describes a sensor which runs NesC programs. Let S be a
sensor. A state C of S is a tuple (V ,Q ,B ,P) where V is the current valuation of
variables declared by the NesC programs of S; Q is a sequence of tasks scheduled in
the task queue; B is the sequence of packets in the message buffer; and P is the running
program. In this work, we use V (C ), Q(C ), B(C ) and P(C ) to denote the variable
valuation, task queue, message buffer and running program of a state C , respectively.

A sensor transition t is defined as C
α→s C ′, where C (C ′) is the state before and

after executing the action α, represented as C ′ = ex (C , α). We define enable(C ) to be
the set of all actions enabled at state C , i.e., enable(C ) = {α | ∃C ′ ∈ C,C α→ C ′}.
Further, ex (C , α) (whereα ∈ enable(C )) denotes the state after executingα at state C .
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∑
S (or simply

∑
if S is clear) denotes the set of actions of S. We define itrQ(S) ⊆

∑
as the set of hardware request actions and sd(S) as the set of actions involving packet
transmission. Tasks(S) (or simply Tasks if S is clear) denotes the set of all tasks
defined in S. For a given NesC program, we assume that

∑
and Tasks are finite.

Definition 2 (Sensor Network Model). A sensor network model N is defined as a
tuple (R, {S0, · · · ,Sn}) whereR is the network topology, and {S0, · · · ,Sn} is a finite
ordered set of sensor models, with Si (0 6 i 6 n) being the i th sensor model.

A state C of a sensor network is defined as an ordered set of states {C1, · · · ,Cn}
where Ci (1 6 i 6 n) is the state of Si , denoted by C[i ]. A sensor network transition T
is defined as C α

↪→ C′ where C (C′) is the state before (after) the transition, represented
as C′ = Ex (C, α). In the following of this paper, a state of a sensor is referred to as a
local state, whereas a state of a sensor network is called a global state or simply a state.

3 Two-level Independence Analysis

Inside a sensor, the interleaving between an interrupt handler and a non-post action can
be reduced, since interrupt handlers only modify the task queue and non-post actions
never access the task queue. For example, in Fig. 1(d), the interleaving between line 2
and rv can be ignored. Moreover, for post statements and interrupt handlers, their inter-
leaving could be reduced if their corresponding tasks access no common variables. For
example, trd only accesses variable value which is never accessed by trv , so the inter-
leaving between interrupt handlers rd and rv at state 1 can be alleviated. In Fig. 1(d),
dashed arrows and shadow states stand for transitions and states that can be pruned.



Therefore, it is important to detect the independence among actions inside a sensor,
referred to as local independence.

Among a sensor network, each sensor only accesses its own and local resources,
unless it sends a message packet, modifying some other sensors’ message buffers. In-
tuitively, the interleaving of local actions of different sensors can be reduced without
missing critical states. This observation leads to the independence analysis at the net-
work level, referred to as global independence .

Consider a network with two sensors S1 and S2 implemented with the code shown
in Fig. 1(c). Applying partial order reduction at both network and sensor levels, we
are able to obtain a reduced state graph as shown in Fig. 2. States are numbered with
the task queues of both sensors. For example, state 2.1 shows that the task queue of
S1 is 〈tst , trd〉 and 〈tst〉 for S2. In this example, interleaving between the two sensors
is only allowed when necessary, like at the shadow states labeled with 2.0 and 4.0.
The sub-graph within each dashed rectangle is established by executing actions from
only one sensor, either S1 or S2. In each sub-graph, local independence is applied to
avoid unnecessary interleaving among local actions. Dashed arrows indicate pruned
local actions. For example, rectangle P23 is constructed by removing all shadow states
and dashed transitions in Fig. 1(d). The corresponding complete state space of this graph
consists of around 200 states, whereas the reduced graph contains fewer than 20 states.

The shape of the reduced state graph might be different according to the property
being checked. For example, if the property is affected by the value of the variables
busy and value of the example in Fig. 1(d), then the interleaving between rd and rv
can not be avoided. Therefore, we need to investigate local and global independence
w.r.t. a certain property, and in the following of this paper, the concepts of indepen-
dence, equivalence and so on are discussed w.r.t. a certain property ϕ. We present the
definitions of local independence and global independence in Section 3.1 and 3.2, re-
spectively, both with rules for identifying them.

3.1 Local Independence

In a sensor, an action may modify a variable or the task queue. Local independence is
defined by the effects on the variables and the task queue. In the following, the concepts
of actions, tasks, and task queues are w.r.t. a given sensor S .

Definition 3 (Local Independence). Given a local state C ,α1, α2 ∈
∑

, andα1, α2 ∈
enable(C ). Actions α1 and α2 are said to be local-independent, denoted by α1 ≡LI α2,
if the following conditions are satisfied:

1. ex (ex (C , α1), α2) =v ex (ex (C , α2), α1);
2. Q(ex (ex (C , α1), α2)) ' Q(ex (ex (C , α2)), α1).

In the above definition, =v denotes that two local states share the same valua-
tion of variables, message buffer, and the same running program. That is, if C1 =
(V1,Q1,B1,P1), C2 = (V2,Q2,B2,P2), then we have C1 =v C2 iff V1 = V2 ∧B1 =
B2 ∧P1 = P2. If only the first condition in Definition 3 is satisfied, α1 and α2 are said
to be variable-independent, denoted by α1 ≡VI α2. The relation ' will be covered in
Definition 6. Let Wα and Rα be the set of variables written and only read by an action
α, respectively.



Lemma 1. ∀α1, α2 ∈
∑
. Wα1

∩ (Wα2
∪ Rα2

) = Wα2
∩ (Wα1

∪ Rα1
) = ∅ ⇒

α1 ≡VI α2. 2

Lemma 1 [1] shows that two actions are variable-independent if the variables modified
by one action are mutually exclusive with those accessed (either modified or read) by
the other. For example, αl6 ≡VI αl13, where αl6(αl13) refers to the action executing
the statement at line 6 (13) of Fig. 1(c). Furthermore, we can conclude that a non-post
action in the synchronous context is always local-independent with any action in the
asynchronous context [1]. This is shown in Lemma 2.

Lemma 2. ∀α ∈
∑syn

, α′ ∈
∑asyn

. α 6∈
∑pt ⇒ α ≡LI α

′. 2

Inside a sensor, interrupt handlers might run in parallel, which produces different orders
of tasks in the task queue. Given a task t , Ptask(t) denotes the set of tasks posted by a
post statement in t or an interrupt handler of a certain interrupt request in t . Formally,
Ptask(t) = {t ′ | ∃α ∈ t . α = post(t ′) ∨ (α ∈ itrQ(S) ∧ t ′ = tsk(ih(α)))},
where post(t) is a post statement to enqueue task t ; ih(αiq) denotes the corresponding
interrupt handler of a device request αiq , and tsk(αih) denotes the completion task of
αih . In the code in Fig. 1(c), Ptask(trv ) = {tst}, due to the post statement in line 17.
As for tst (lines 8 to 11), it has a request for sending a message (line 10), the interrupt
handler of which will post the task tsd , and thus Ptask(tst) = {tsd}.

Since more tasks can be enqueued during the execution of a previously enqueued
task, we define Rtask(t) to represent all possible tasks enqueued by a given task t and
the tasks in its Ptask set in a recursive way. Formally, Rtask(t) = {t} ∪ Ptask(t) ∪
(∪t′∈Ptask(t)Rtask(t ′)). Since Tasks is finite, for every task t , Rtask(t) is also finite
and thus could be obtained statically at compile time. In Fig. 1(c), since Ptask(tsd) =
∅, we have Rtask(tsd) = {tsd}. Similarly, we can obtain that Rtask(tst) = {tst , tsd}
and Rtask(trv ) = {trv , tst , tsd}. Let R(ϕ,S) be the set of variables of S accessed by
the property ϕ. Let Ŵ (t) be the set of variables modified by any task in Rtask(t). We
say that t is a ϕ-safe task, denoted by t ∈ safe(ϕ,S) iff (Ŵ (t) ∩ R(ϕ,S)) = ∅.

Definition 4 (Local Task Independence). Let ti(j ) ∈ Tasks be two tasks. ti and tj
are said to be local-independent, denoted by ti ≡TI tj , iff (ti ∈ safe(ϕ,S) ∨ tj ∈
safe(ϕ,S)) ∧ ∀ t ′i ∈ Rtask(ti), t

′
j ∈ Rtask(tj ). ∀αi ∈ t ′i , αj ∈ t ′j . αi ≡VI αj .

Though interrupt handlers and post statements might modify the task queue con-
currently, we observe that task queues with different orders of tasks might be equiva-
lent. Based on Definition 4, we define the independence relation of two task sequences,
which is used to further define equivalent task sequences.

Definition 5 (Task Sequence Independence). Let Qi = 〈ti0, · · · , tim〉,Qj = 〈tj0, · · ·
, tjn〉(m,n > 0) be two task sequences, where tiu(0 ≤ u ≤ m), tjv (0 ≤ v ≤ n) ∈
Tasks . Qi and Qj are said to be sequence-independent, denoted by Qi ≡SI Qj , iff
∀ ti ∈ (∪mk=0Rtask(tik )), tj ∈ (∪nk=0Rtask(tjk )). ti ≡TI tj .

Let q1
aq2 be the concatenation of two sequences q1 and q2. A partition P of a task

sequence Q is a list of task sequences q0, q1, · · · , qm such that Q = q0
a q1

a · · · qm ,



and for all 0 6 i 6 m , qi 6= 〈〉 (qi is called a sub-sequence of Q). We use part(Q)
to denote the set of all possible partitions of Q . Given a partition P of Q such that
Q = q0

a q1
a · · ·a qn , Swap(Q , i) = q0

a · · · qi+1
a qi

a · · ·a qn denotes the task
sequence obtained by swapping two adjacent sub-sequences (i.e., qi and qi+1) of Q .

Definition 6 (Task Sequence Equivalence). Two task sequences Q and Q ′ are equiv-
alent (Q ' Q ′) iff Q0 = Q ∧ ∃m > 0. Qm = Q ′ ∧ (∀ 0 ≤ k < m. (∃ ik . Qk+1 =
Swap(Qk , ik ) ∧ qk

ik
≡SI qk

ik+1)) where qk
i is the i th sub-sequence of Qk .

The above definition indicates that if a task sequence Q ′ can be obtained by swap-
ping adjacent independent sub-sequences of Q , then Q ' Q ′. Given two local states C
and C ′, we said that C is equivalent to C ′, denoted by C ∼= C ′, iff C =v C ′ ∧Q(C ) '
Q(C ′). Further, two local state sets C, C′ are said to be equivalent, denoted by C � C′,
iff ∀C ∈ C. ∃C ′ ∈ C′. C ∼= C ′ and vice versa. We explore the execution of task
sequences starting at a local state which is the completion point of a previous task,
i.e., a local state with the program as (X 4 H ) [25]. This is because that only after a
task terminates can a new task be loaded from the task queue for execution. The case
when B(C ) 6= 〈〉 is related to network communication, and is ignored here but will be
covered in global independence analysis in Section 3.2.

Lemma 3. Given C = (V ,Q , 〈〉,X 4 H ) and C ′ = (V ,Q ′, 〈〉,X 4 H ), let
exs(Qi ,Ci) be the set of final local states after executing all tasks of Qi starting at
local state Ci . Q ' Q ′ ⇒ exs(Q ,C ) � exs(Q ′,C ′). 2

Lemma 3 shows that executing two equivalent task sequences from v -equal local
states will always lead to equivalent sets of final local states, as proved in [1]. Given an
action α, we use ptsk(α) to denote the set of tasks that could be enqueued by executing
α. With the above lemma, the rule for deciding local independence between actions can
be obtained by Lemma 4 [1].

Lemma 4. Given C , α1, α2 ∈ enable(C ), (α1 ≡VI α2 ∧ ∀ t1 ∈ ptsk(α1), t2 ∈
ptsk(α2). t1 ≡TI t2)⇒ α1 ≡LI α2. 2

3.2 Global Independence

SNs are non-blocking, i.e., the execution of one sensor never blocks others. In addition,
a sensor accesses local resources most of the time, except when it broadcasts a message
to the network and fills in others’ message buffers. At the network level, we explore
the execution of each sensor individually, and only allow interleaving among sensors
when an action involving network communication is performed. Let N be a sensor
network with n sensors S1,S2 · · · Sn and C be a global state. We use EnableT (C) to
denote the set of enabled tasks at C. Given t ∈ Tasks(Si), t ∈ EnableT (C)⇔ C[i ] =
(V , 〈t , · · · 〉,B ,X 4 H ). Ex (C, t) represents the set of final states after executing task
t (and interrupt handlers caused by it) starting from C. For two global states C1 and
C2, we say that C1 and C2 are equivalent (C1 ∼= C2) iff ∀ 1 ≤ i ≤ n. C1[i ] ∼= C2[i ].
Similarly, we say that two sets of global states Γ and Γ ′ are equivalent (i.e., Γ � Γ ′)
iff ∀ C ∈ Γ. ∃ C′ ∈ Γ ′. C ∼= C′ and vice versa.



Definition 7 (Global Independence). Let ti ∈ Tasks(Si) and tj ∈ Tasks(Sj ) such
that Si 6= Sj . Tasks ti and tj are said to be global-independent, denoted by ti ≡GI tj ,
iff ∀ C ∈ Γ. ti , tj ∈ EnableT (C) ⇒ ∀Ci ∈ Ex (C, ti). ∃ Cj ∈ Ex (C, tj ). Ex (Ci , tj ) �
Ex (Cj , ti) and vice versa .

A data transmission would trigger a packet arrival interrupt at the receivers and thus
is possible to interact with local concurrency inside sensors. In the following, Sends(S)
denotes the set of tasks that contain data transmission requests, and Rcvs(S) denotes
the set of completion tasks of packet arrival interrupts.

Given t ∈ Tasks(S), t is considered as rcv-independent, denoted by t ⊂RI S, iff
∀ tr ∈ Rcvs(S), tp ∈ Posts(t). tr ≡TI tp . A rcv-independent task never posts a task
local-dependent with the completion task of any packet arrival interrupts. Thus, we can
ignore interleaving such tasks with other sensors even if there exists data transmission.
We say that t is a global-safe task of S, i.e., t ⊂GI S, iff t ⊂RI S. If t 6⊂GI S, then
t is global-unsafe. The following theorem indicates that a global-safe task is always
global-independent with any task of other sensors [1].

Theorem 1. ∀ t1 ∈ Tasks(Si), t2 ∈ Tasks(Sj ). Si 6= Sj , t1 ⊂GI Si ⇒ t1 ≡GI t2. 2

4 SN Cartesian Partial Order Reduction

In this section, we present our two-level POR, which extends the Cartesian vector ap-
proach [12] and combines it with a persistent set algorithm [11].

4.1 Sensor Network Cartesian Semantics

Cartesian POR was proposed by Gueta et. al. to reduce non-determinism in concurrent
systems, which delays unnecessary context switches among processes [12]. Given a
concurrent system with n processes and a state s , a Cartesian vector is composed by n
prefixes, where the i th (1 ≤ i ≤ n) prefix refers to a trace executing actions only from
the i th process starting from state s . For SNs, sensors could be considered as concurrent
processes and their message buffers could be considered as “global variables”.

It has been shown that Cartesian semantics is sound for local safety properties [12].
A global property that involves local variables of multiple processes (or sensors) is
converted into a local property by introducing a dummy process for observing involved
variables. In our case, we avoid this construction by considering global property in the
Cartesian semantics for SNs. Let Gprop(N ), or simply Gprop since N is clear in this
section, be the set of global properties defined for N . Given an action α ∈ Tasks(S)
and a global property ϕ ∈ Gprop, α is said to be ϕ-safe, denoted by α ∈ safe(ϕ), iff
Wα ∩ R(ϕ) = ∅ where Wα is the set of variables modified by α and R(ϕ) is the set
of variables accessed by ϕ. If α 6∈ safe(ϕ), then α is said to be ϕ-unsafe.

In order to allow sensor-level nondeterminism inside prefixes, we redefine Prefix
as a “trace tree” rather than a sequential trace. Let Prefix (S) be the set of all prefixes
of sensor S, Prefix (S, C) be the set of prefixes of S starting at C, and first(p) be the
initial state of a prefix p. A prefix is defined as follows.



Definition 8 (Prefix). A prefix p ∈ Prefix (S) is defined as a tuple (trunk , branch),
where trunk = 〈C0, α1, C1, · · · , αm−1, Cm〉 ∧ m ≥ 0 ∧ ∀ 1 ≤ i < m. αi ∈∑
S ∧ Ci

αi
↪→ Ci+1, and branch ⊆ Prefix (S, Cm), being a set of prefixes of S.

Let p ∈ Prefix (S) and p = (ptr , {pb1, pb2, · · · , pbm}). We define tr(p) to de-
note the trunk of prefix p before branching prefixes (i.e., tr(p) = ptr ), and br(p)
to denote the set of branching prefixes of p (i.e., br(p) = {pb1, pb2, · · · , pbm}). In
Fig. 2, the dashed rectangles p11, p12 and p13 are prefixes of S1, and p21, p22 and
p23 are prefixes of S2. More specifically, tr(p23) = 〈(4.0), α2, (4.0)〉 and br(p23) =
{〈(4.0), α3, (4.1), αrd , · · · 〉, 〈(4.0), αrv , (4.6), α3, · · · 〉}. Given a prefix p ∈ Prefix (S),
the following notations are defined:

• The set of states in p: states(p) = {C0, · · · , Cm} ∪ (∪sp∈br(p)states(sp)).
• The set of leaf prefixes of S: LeafPrefix (S) = {lp | ∀ lp ∈ Prefix (S). br(lp) =

∅}. Given lp ∈ LeafPrefix (S), l̂ast(lp) denote the last state of lp.
• The set of tree prefixes of S: TreePrefix (S) = Prefix (S)− LeafPrefix (S).
• The set of leaf prefixes of p: p ∈ LeafPrefix (S) ⇒ leaf (p) = p ∧ p ∈

TreePrefix (S)⇒ leaf (p) = ∪bp∈br(p)leaf (bp).
• The set of final states of p: p ∈ LeafPrefix (S) ⇒ last(p) = {l̂ast(p)} ∧ p ∈

TreePrefix (S)⇒ last(p) = ∪bp∈br(p)last(bp).
• Subsequent prefixes A: ∀ lp ∈ LeafPrefix (S). lp A p ≡ l̂ast(lp) = first(p).
• Concatenation of leaf prefixes ̂ : ∀ p1 = 〈C0, α0, · · · , Ck 〉, p2 = 〈Ck , αk , Ck0 , αk0 ,
· · · , Ckm 〉.p1 ̂ p2 = 〈C0, α0, · · · , Ck , αk , Ck0 , · · · , Ckm 〉.

We also define tasks(p) (acts(p)) to denote the set of tasks (actions) executed in p.
Moreover, lastT (p) (lastAct(p)) denotes the set of last tasks (actions) executed in p.

Definition 9 (SN Cartesian Vector). Given a global property ϕ ∈ Gprop, a vector
(p1, · · · , pi , · · · , pn) ∈ Prefixn is a sensor network Cartesian vector for N w.r.t. ϕ
from a state C if the following conditions hold:

1. pi ∈ Prefix (Si , C);
2. ∀ t ∈ tasks(pi). t 6⊂GI Si ⇒ t ∈ LastT (pi);
3. ∀α ∈ acts(pi). α 6∈ safe(ϕ)⇒ α ∈ lastAct(pi).

According to Definition 9, a vector (p0, p1, · · · , pn) from C is a valid sensor net-
work Cartesian vector (SNCV) if for every 0 ≤ i ≤ n , pi is a prefix of Si and each
leaf prefix of pi ends with a ϕ-unsafe action or a global-unsafe task as defined in Sec-
tion 3.2. Furthermore, we define the corresponding inference rules of SNCVs [1]. In
Fig. 2, if value, busy 6∈ R(ϕ), then (p11, p21) is a valid SNCV from the initial state.

4.2 Two-level POR Algorithm

In this section, we present the two-level POR algorithm. The main idea is to explore the
state space by the sensor network Cartesian semantics and to perform reduction during
the generation of SNCVs. First, we present the top-level state exploration algorithm,
which could be invoked in existing verification algorithms directly without changing
the verification engine. Second, we show the algorithms for SNCV generation, as well
as algorithms for producing a sensor prefix.



Algorithm 1 State Space Generation
GetSuccessors(C, p, ϕ)
1: list ← ∅
2: if Next(p, C) 6= ∅ then
3: list ← Next(p, C)
4: else
5: scv ← GetNewCV (C, ϕ)

6: for all i ← 1 to n do
7: list ← list ∪ {Next(scv [i ], C)}
8: end for
9: end if

10: return list

• State Space Generation. Given a state C, a prefix p (C ∈ states(p)) and a global
property ϕ, the state space of N is explored via a corresponding SNCV, as shown
in Algorithm 1. In this algorithm, GetNewCV (C, ϕ) generates a new SNCV from
C, which will be explained later. The relation Next : Prefix (S) × Γ → P(Γ )
traverses a prefix to find a set of successors of C. Formally, Next(p, C) = {C′ |
∃α ∈ acts(p), C α

↪→ C′}. The function ConcatTree extends a leaf prefix with
another prefix as its branch, defined as ConcatTree(lp ∈ LeafPrefix (S), sp ∈
Prefix (S)). Formally, if lp A sp, after executing ConcatTree(lp, sp), we have
lp′ = (lp, {sp}). We remark that ConcatTree(lp, sp) has a side effect in lp by
updating it with the resultant prefix of the combination.

• SNCV Generation. Algorithm 2 is dedicated to SNCV generation, i.e., the method
GetNewCV . In this algorithm, visited is the set of final states of prefixes that
have been generated, and workingLeaf is the stack of leaf prefixes to be further
extended. Concurrency at network level is minimized by lines 7 and 18, where
the relation Extensible : Prefix (S) × {S1, · · · ,Sn} × Gprop → {True,False}
is defined as Extensible(p,S, ϕ) ≡ ∀ t ∈ lastT (p), α ∈ lastAct(p). t ⊂GI

S ∧ α ∈ safe(ϕ) ∧ α 6∈ sd(S). In other words, a prefix is further extended
(lines 15 to 21) only if it has not executed a global-unsafe task, a ϕ-unsafe action
or a messaging action. The function GetPrefix (Si , C, ϕ) produces a prefix of Si by
executing actions and interrupt handlers of Si in parallel. At first, pi is initialized
by GetPrefix (Si , C, ϕ), and is then extended by recursively concatenating each of
its leaf prefixes with a new prefix obtained by GetPrefix (Si , C′, ϕ), as shown by
lines 12 to 22. If pi is inextensible, it is assigned to the i th element of the sensor
Cartesian vector scv (scv [i ]) by line 23.

• Sensor Prefix Generation. Algorithm 3 shows how a sensor S establishes a pre-
fix from C w.r.t. ϕ. Function ExecuteTask(t , p, ϕ, Cs,S) extends the initial prefix
p by executing actions in task t , until a ϕ-unsafe action or a loop is encountered.
Interrupt handlers are delayed as long as the action being executed is a non-post
statement, which is reasonable due to Lemma 1 and Lemma 4. A persistent set
approach has been adopted in both ExecuteTask and RunItrs to constrain inter-
leaving to happen only between local-dependent actions.

• Task Execution. In Algorithm 4, the following notations are used.
◦ Set Cs: the set of states that has been visited.
◦ Method GetAction(t , C): returns the enabled action of task t at state C.
◦ Method setPfx (C, p): assigns prefix p as the prefix that state C belongs to.

Initially, the currently enabled action α will be executed (lines 5 to 16). At this
phase, two cases are considered. The first is when α is a post statement, and inter-



Algorithm 2 Sensor Network Cartesian Vector Generation
GetNewCV (C, ϕ)

1: scv ← (

n︷ ︸︸ ︷
〈〉, · · · , 〈〉)

2: for all Si ∈ N do
3: visited ← {C}
4: workingLeaf ← ∅
5: pi ← GetPrefix (Si , C, ϕ)
6: for all lp ∈ leaf (pi) do
7: if Extensible(lp,Si , ϕ) and

l̂ast(lp) 6∈ visited then
8: workingLeaf .Push(lp)

9: visited = visited ∪ l̂ast(lp)
10: end if
11: end for
12: while workingLeaf 6= ∅ do

13: pk ← workingLeaf .Pop()

14: visited ← visited ∪ {l̂ast(pk )}
15: p′k ← GetPrefix (Si , l̂ast(pk ), ϕ)
16: ConcatTree(pk , p

′
k )

17: for all lp ∈ leaf (p′k ) do
18: if Extensible(lp,Si , ϕ) and

l̂ast(lp) 6∈ visited then
19: workingLeaf .Push(lp)
20: end if
21: end for
22: end while
23: scv [i ]← pi

24: end for
25: return scv

Algorithm 3 Prefix Generation
GetPrefix (S, C, ϕ)
1: p ← 〈C〉
2: t ← getCurrentTsk(C,S)
3: ExecuteTask(t , p, ϕ, {C},S)
4: if t is finished then
5: for all pi ∈ leaf (p) do
6: C′ ← l̂ast(pi)

7: irs ← GetItrs(C′,S)
8: p′i ← RunItrs(C′, itrs)
9: ConcatTree(pi , p

′
i)

10: end for
11: end if
12: return p

rupts dependent with α will be taken to run in parallel in order to preserve states
with different task queues. This is achieved by lines 5 to 9. The second case han-
dles all non-post actions, and the action will be executed immediately to obtain
the resultant prefix (lines 10 to 16). In this case, all interleaving between interrupts
and the action α is ignored, which is reasonable by Lemma 2. After the action α
completes its execution, the algorithm will return immediately if α is ϕ-unsafe or
t has no more actions to be executed. Otherwise, a new iteration of ExecuteTask
will be invoked at each final state of the prefix that has been currently established
(lines 22 to 29). Line 24 is to prevent the algorithm to be stuck by loops.

• Interleaving Interrupts. Algorithms 5 and 6 show how partial order reduction
could be applied at sensor level to alleviate interleaving caused by concurrency
among tasks and interrupts. The idea is motivated by the observation that the only
shared resource among interrupt handlers and normal actions is the task queue. By
Lemma 2, there are two kinds of concurrency to be considered, i.e. the concurrency
between a post statement, and the concurrency between any two interrupt handlers.
Algorithm 5 (RunItrs) establishes a prefix for the sensor S from a state C by in-
terleaving actions in the set itrs using a persistent set approach. Here, itrs would
be a set of interrupt handlers plus at most one post action. Algorithm 6 (Persistent
Set) establishes a persistent set from a given set of actions itrs . If itrs contains a



Algorithm 4 Task Execution
ExecuteTask(t , lp, ϕ, Cs,S)
1: {let α be the current action of t}
2: α← GetAction(t , C)
3: C ∈ l̂ast(lp)
4: {only post actions need to

interleave interrupts}
5: if α← post(t ′) then
6: itrs ← GetItrs(S, C)
7: {interleave α and interrupts itrs}
8: p ← RunItrs(C, itrs ∪ {α},S)
9: lp ← (lp, {p})

10: else
11: {non-post actions run independently}
12: C′ ← ex (C, α)
13: tmp ← 〈C, α, C′〉
14: setPfx (C′, tmp)
15: lp ← (lp, {tmp})

16: end if
17: lps ← leaf (lp)
18: {stop executing t when t terminates or

a non-safe action is encountered}
19: if α 6∈ safe(ϕ) or terminate(t , α) then
20: return
21: end if
22: for all lp′ ∈ lps do
23: {extend lp only if there is no loop in it}
24: if l̂ast(lp′) 6∈ Cs then
25: Cs ′ ← Cs ∪ states(lp′)
26: {continue to execute t to extend lp′}
27: ExecuteTask(t , lp′, ϕ, Cs ′,S)
28: end if
29: end for

Algorithm 5 Interleaving Interrupts
RunItrs(C, itrs,S)
1: if itrs ← ∅ then
2: return 〈〉
3: end if
4: p ← 〈C〉
5: {pis is the persistent set of itrs}
6: pis ← GetPerSet(itrs, C,S)
7: {interleave dependent actions}
8: for all α ∈ pis do
9: C′ ← ex (C, α)

10: lp ← 〈C, α, C′〉
11: setPfx (C′, lp)

12: {only allow interleaving if α is not a
post}

13: if α ∈
∑iq then

14: s ← RunItrs(C′, pis − {α},S)
15: lp ← (lp, {s})
16: end if
17: {add lp as a new branch to p}
18: p ← (tr(p), br(p) ∪ {lp})
19: end for
20: return p

post action, then this post action will be chosen as the first action of the persistent
set to return; otherwise, an action will be chosen randomly to start generating the
persistent set (lines 2 to 10). After that, the persistent set will be extended by iter-
atively adding actions from itrs that are dependent with at least one action in the
persistent set.

4.3 Correctness

In the following, we show that the above POR algorithms work properly and are sound
for model checking global properties and LTL-X properties. Lemmas 5 and 6 assure the
correctness of the functions invoked in Algorithm 3, which are proved in [1].

Lemma 5. Given a state C where C[i ] = (V ,Q ,B ,X 4 H ), RunItrs(C,Get-Itrs(C′,Si))
terminates and returns a valid prefix of Si . 2



Algorithm 6 Persistent Set
GetPerSet(itrs, C,S)
1: {choose an α to start with}
2: if ∃α′ ∈ itrs. α 6∈

∑iq then
3: {there exists a post in itrs ,

then we should start from the post}
4: α← α′

5: else
6: if α′ ∈ itrs then
7: {choose an α form itrs randomly}
8: α← α′

9: end if
10: end if

11: pset ← {α}
12: work ← {α}
13: while work 6= ∅ do
14: α← work .Pop()
15: {find new dependent actions of α from

itrs}
16: αs ← DepActions(α, itrs − pset)
17: pset ← pset ∪ αs
18: work ← work ∪ αs
19: end while
20: return pset

Lemma 6. Given t ∈ Tasks(S), t ∈ EnableT (C) andϕ, ExecuteTask(t , 〈C〉, ϕ, {C})
extends 〈C〉 by executing actions in t and enabled interrupt handlers, until t terminates
or a ϕ-unsafe action or a loop is encountered. 2

Based on Lemma 5 and 6, we can show the correctness of Algorithm 2 in generating
a prefix for a given state and a property, as shown in the following theorem.

Theorem 2. Given S, C and ϕ, Algorithm 3 terminates and returns a valid prefix of S
for some SNCV.
Proof By Lemma 6, after line 3 p is a valid prefix of S. If lines 5 to 10 are not executed,
then p is immediately returned. Suppose lines 5 to 10 are executed, and at the beginning
of the i th iteration of the “for” loop p is a valid prefix. Let p̂ be the updated prefix after
line 9, and then leaf (p̂) = (leaf (p) − pi) ∪ leaf (p′i) since pi has been concatenated
with p′i . By Lemma 5, p′i is a valid prefix and thus p̂ is a valid prefix. Therefore, at the
beginning of the (i + 1)th iteration, p is a valid prefix. By Lemmas 6 and 5, both lines
3 and 8 terminate. Further, we assume that variables are finite-domain, and thus the size
of leaf (p) is finite assuring that the “for” loop terminates. 2

Theorem 3. For every state C, Algorithm 2 terminates and returns a valid sensor net-
work Cartesian vector.
Proof We prove that at the beginning of each iteration of the “while” loop (lines 12
to 22) in Algorithm 2 the following conditions hold for any i (1 ≤ i ≤ n):

1. pi ∈ Prefix (Si , C);
2. workingLeaf = {p ∈ leaf (pi) | Extensible(p,Si , ϕ) ∧ l̂ast(p) 6∈ visited}.

By line 5, it is immediately true that first(pi) = C. Since ConcatTree never changes
the first state of a given prefix, first(pi) = C holds for all iterations. Since pi is extended
by GetPrefix (Si , l̂ast(pk ), ϕ) (line 15), which only executes actions of Si , thus pi ∈
Prefix (Si) always holds. Intuitively, condition 1 holds for all iterations. Condition 2
can be proved by induction, as the following.

At the first iteration, by lines 6 to 11, we can immediately obtain that workingLeaf =

{lp ∈ leaf (pi) | Extensible(lp,Si , ϕ) ∧ l̂ast(lp) 6∈ visited} and condition 2 holds.



Suppose that at the beginning of the mth iteration, condition 2 holds with workingLeaf =
wm , pi = pm . After executing line 13, we can obtain that workingLeaf = wm −{pk}.
By lines 15 to 21, wokingPrefix = (wm−{pk})∪{lp ∈ leaf (p′k ) | Extensible(lp,Si , ϕ)
∧ l̂ast(lp) 6∈ visited} (1). Let p̂k be the new value of pk after executing line 16, by
the definition of ConcatTree, we have p̂k = (pk , p

′
k ) and thus leaf (p̂k ) = leaf (p′k )

(2). Consequently, we have leaf (pi) = (leaf (pm) − {pk}) ∪ leaf (p̂k ), since the leaf
prefix pk has been extended to be a tree prefix p̂k . Since wm = {p ∈ leaf (pm) |
Extensible(p,Si , ϕ) ∧ l̂ast(p) 6∈ visited}, with (1) and (2), we can obtain that
at the beginning of the (m + 1)th iteration condition 2 holds. By the definition of
Extensible , we can conclude that ∀ t ∈ tasks(pi), α ∈ acts(pi). t 6⊂GI Si ⇒ t ∈
LastT (pi) ∧ (α 6∈ safe(ϕ) ∨ α ∈ sd(Si))⇒ α ∈ lastAct(pi) holds when the while
loop terminates. Thus the Cartesian vector generated by Algorithm 2 is valid.

Further, by the definition of Extensible we can conclude that ∀ t ∈ tasks(pi), α ∈
acts(pi). t 6⊂GI Si ⇒ t ∈ LastT (pi) ∧ (α 6∈ safe(ϕ) ∨ α ∈

∑sd
) ⇒ α ∈

lastAct(pi) holds when the while loop terminates. Thus the Cartesian vector generated
by Algorithm 2 is valid. As for termination, we assume that all variables are finite-
domain and thus the state space is finite. On one hand, the function GetPrefix (S, C, ϕ)
always terminates and returns a valid prefix, which has been proved in Theorem 2. On
the other hand, Algorithm 2 uses visited to store states that have been used to generate
new prefixes, and by lines 7 and 18 a state is used at most once to generate a new prefix,
and termination guaranteed. 2

Let ϕ be a property and ψ be the set of propositions belonging to ϕ. In the following,
we discuss the stuttering equivalent relation of different objects w.r.t. ψ and the notation
is simplified as stuttering equivalent when ψ is clear.

Let L(C) be the valuation of the truth values of ψ in state C. Given two traces
σ = C0, α0, C1, α1, · · · , Ci , αi , · · · and σ′ = C′0, α′0, C′1, α′1, · · · , C′i , α′i , · · · , they are
referred to as stuttering equivalent, i.e., σ ≡stψ σ′, iff L(C0) = L(C′0) and for every
integer set M = {m0,m1, · · · ,mi} (i ≥ 0), there exists another integer set P =
{p0, p1, · · · , pi}, such that m0 = p0 = 0 ∧ for all 0 ≤ k < i , there exists nk , qk > 0
such that mk+1 = mk + nk ∧ L(Cmk

) = L(Cmk+1) = · · · = L(Cmk+(nk−1)) 6=
L(Cmk+1

)∧pk+1 = pk +qk ∧L(Cmk
) = L(C′pk

) = L(C′pk+1) = · · · = L(C′pk+(qk−1))∧
L(C′pk+1) = L(Cmk+1

), and vice versa.
Let exc(C,S) be the set of traces obtained by executing only actions from S follow-

ing the original semantics. Given a prefix p, we define traces(p) to be the set of traces
that could be obtained by p. Formally, traces(p) = p ∈ LeafPrefix ∧ traces(p) =
{tr(p)} ∨ {σ | ∃ bp ∈ br(p). σ′ ∈ traces(bp) ⇒ σ = tr(p) + σ′}, where “+” con-
catenates two traces. Lemma 7 illustrates that Algorithm 3 returns a prefix of traces
stuttering equivalent to those generated by the original semantics. It shows that for all
possible local interleaving from C for a certain sensor S , the sensor prefix obtained by
GetPrefix contains the same sequences of valuations for the set of propositions ψ of
the property ϕ. We refer interested readers to [1] for the proof of this lemma.

Lemma 7. Given a state C, let p = GetPrefix (S, C, ϕ) be the prefix obtained by Al-
gorithm 3. For all σ ∈ exc(C,S), there exists σ′ ∈ traces(p) such that σ ≡stψ σ

′, and
vice versa. 2



Two transition systems T and T ′ are said to be stuttering equivalent w.r.t. ϕ iff
C0 = C′0 where C0(C′0) is the initial state of T (T ′), and for every trace σ in T there exists
a trace σ′ in T ′ such that σ ≡stψ σ

′, and vice versa. In the following, we prove that the
transition system obtained by the two-level POR approach is stuttering equivalent with
the transition system obtained by the original sensor network semantics.

Theorem 4. Given a sensor network N = (R, {S0, · · · ,Sn}), let T be the transition
system of N by the original semantics and let T ′ be the transition system obtained
after applying the two-level partial order reduction w.r.t. ϕ overN . Then T ′ and T are
stuttering equivalent w.r.t. ϕ.

Proof Let ψ be the set of propositions contained in ϕ, and let C0, C′0 be the ini-
tial state of T , T ′, respectively. It is immediately true that C0 = C′0 because both
T and T ′ are obtained from the initial state of N . We will prove that for any trace
σ = C0, α0, · · · , αm , Cm+1 from T , there exists a trace σ′ = C′0, α′0, · · · , α′m , C′m+1 in
T ′ such that σ ≡stψ σ

′. This will be proved by induction in the number of updating the
valuation of ψ in a certain trace σ.

Base Case: if the number of updating the valuation of ψ in σ is zero, then we have
L(C0) = · · · = L(Cm+1). Since C0 belongs to T ′, then let σ′ = C′0 and σ′ ≡stψ σ.

Induction Step: suppose that when the number of updating the valuation of ψ in σ
is x , there exits σ′ = C0, α′0 · · ·α′n , Cm+1 such that σ ≡stψ σ

′, and it also holds for the
case when there are (x + 1) changes in the valuation of ψ in σ.

Let αk1 , αk2 , · · · , αkx be the actions in σ such that αki 6∈ safe(ϕ) for all 1 ≤ i ≤ x .
Suppose that there exist l1, · · · , lx such that for all 1 ≤ i ≤ x , 0 ≤ li ≤ n ∧ αki ∈∑
Sli

. Suppose that αki is the last extendable action from a task tki ∈ Tasks(Sli ) such
that tki 6⊂GI Sli (1) where each ki is ordered as follows. Given two last extendable
actions αka ∈

∑
Sla

, αkb ∈
∑
Slb

(la 6= lb), if αka is a Send action and αkb ∈ t ,
t 6⊂GI Slb then there exists α′kb which is a receive interrupt handler in Sla . If a < b′ < b
then kb < ka , otherwise ka > kb . The same reasoning is applied when αkb is Send
action and αka ∈ t , t 6⊂GI Sαka

. If αka and αkb are both Send actions or they belong
to a task t 6⊂GI Slb then ka > kb if a > b and vice verse.

By independence of global actions two consecutive actions αs−1 ∈ ΣSl
, αs 6∈

ΣSl
can be permuted for all 0 ≤ s ≤ k0 and the trace 〈· · · , Cs−1, αs−1, Cs ,αs ,

Cs+1,· · · 〉 is equivalent to the trace 〈· · · ,C′s−1,αs ,C′s ,αs+1,C′s+1,· · · 〉. It is possible to
get a trace σk0 = C0, α′0, · · · , αk0 , C′k0 such that for 0 ≤ j ≤ k0, αj ∈ ΣSl

. Let cv =
(p0, · · · pl , · · · , pn) = GetNewCV (C0). By Algorithm 2, Theorem 3 and Lemma 7,
there exits a trace σ′k0 ∈ traces(pl) such that σ′k0 = C0, α′′0 , · · · , C′′k0 and σk0 ≡stϕ

σ′. Repeating this for all ki in (1) and by transitivity of stuttering [18] we get that
σkx = C0, · · · , αk0 , · · · , αkx , Ckx+1 ≡stϕ σ′kx = C0, · · · , α′k0 , · · · , α

′
kx
, Ckx+1. Per-

muting again · · · , Cs−1, αs−1, Cs , αs , Cs+1, · · · , for all kx ≤ s ≤ kx+1 and by Algo-
rithm 2, Theorem 3, and Lemma 7 σi = C0, · · · , αk1 , · · · , αkx+1

, Ckx+1+1 ≡stϕ σ
′
i =

C0, · · · , α′k1 , · · · , α
′
kx+1

, C′kx+1+1 and the number of changes in the valuations of ψ is
(x + 1). By I.H. and transitivity of stuttering σ ≡stψ σ

′. 2

It has been shown that if two structures T , T ′ are stuttering equivalent w.r.t. an LTL-
X property ϕ, then T ′ |= ϕ if and only if T |= ϕ [6]. Therefore, our method preserves
LTL-X properties.



App
(LOC / sensor) Property Size#State #Trans Time(s) OH(ms) #States

wo POR POR Ratio
Anti-theft
(3391)

Deadlock free 3 1.2M 1.2M 791 95 >2.3G < 6× 10−4

2(theft⇒3alert) 1.3M 1.4M 2505 108 >4.6G < 3× 10−4

Trickle
(332) 3AllUpdated

2 3268 3351 3 2 111683 3× 10−2

3 208K 222K 74 3 >23.7M < 8× 10−3

4 838K 947K 405 4 >5.4G < 2× 10−4

5 13.3M 15.7M 8591 5 >1232.2G < 1× 10−5

Table 1. Experiment Results with NesC@PAT

5 Experiments and Discussion

We implemented our approach in NesC@PAT [25], a domain-specific model checker
for sensor networks implemented using NesC programs. Static analysis is conducted
at compile time to identify the global and local independence relations among actions
and tasks, and then Algorithm 1 is adopted for state space exploration. In this section,
we first evaluate the performance of the two-level POR method using a number of real-
world SN applications. Then a comparison between our POR and the POR implemented
in T-Check [17] is provided, since T-Check provides verification of TinyOS/NesC pro-
grams with a POR algorithm. All necessary materials for re-running the experiments
can be obtained from [1].

5.1 Enhancing NesC@PAT with Two-level POR

First, we used NesC@PAT to model check an anti-theft application and the Trickle al-
gorithm [16]. The anti-theft application is taken from the TinyOS distribution, in which
each sensor runs a NesC program of over 3000 LOC. The Trickle algorithm is widely
used for code propagation in SNs, and we adopted a simplified implementation to show
the reduction effects. For the anti-theft application, we checked if a sensor turns on its
theft led whenever a theft is detected, i.e., 2(theft⇒ 3alert). Deadlock checking was
also performed for anti-theft. As for the Trickle algorithm, we checked that eventually
all the nodes are updated with the latest data among the network, i.e., 3AllUpdated .

Verification results are presented in Table 1. Column OH shows the computational
overhead for static analysis, which is dependent on LOC, network size and the property
to be checked. This overhead is negligible (within 1 second) even for a large application
like Anti-theft. The second last column estimates the complete state space size and we
calculate the reduction ratio as POR ratio (=#State wt POR

#State wo POR). For safety properties,
#State wo POR is estimated as S1×S2 · · ·×Sn , where Si is the state space of the i th

sensor; as for LTL properties, it is further multiplied by the size of the Büchi automaton
of the corresponding LTL property. Note that this estimation of #State wo POR is
an under approximation since the state space of a single sensor is calculated without
networked communication. Therefore, the POR Ratio (both in Table 1 and 2) is also
an under approximation. Therefore, our POR approach achieves a reduction of at least
102-106. Further, the larger a network is, the more reduction it will achieve.



#Node
NesC@PAT T-Check

wt POR #State
wo POR Ratio #Bound wt POR #State

wo POR Ratio#State Exh Time(s) #State Exh Time(s)
2 3012 Y 2 52.3K 6× 10−2 20 4765 Y 1 106.2K ≈ 4× 10−2

3 120K Y 20 >11.8M < 1× 10−2 12 66.2K N 1 13.5M ≈ 5× 10−3

50 12.6M Y 283 NA NA

4 368K Y 58 >2.7G < 1× 10−4 10 56.7K N 1 41.8M ≈ 1× 10−3

50 420.7M Y 1291 NA NA

5 4.2M Y 638 >616G < 7× 10−6 8 85.2K N 1 17.4M ≈ 1× 10−3

50 NA N >12600 NA NA

Table 2. Comparison with T-Check

5.2 Comparison with T-Check

In this section, we compared the performance of our POR approach and that of T-Check,
by checking the same safety property for the Trickle algorithm, on the same testbed with
Ubuntu 10.04 instead of Windows XP. The safety property is to guarantee that each
node never performs a wrong update operation. We focused on reachability analysis as
T-Check lacks support of LTL. We approximated the POR ratio obtained by T-Check
by the number of states explored, i.e., POR Ratio ≈ #State wt POR

#State wo POR, because T-Check
adopts stateless model checking. Moreover, there is no way to calculate the complete
state space of a single sensor and thus it is difficult to estimate the complete state space
like what we did for NesC@PAT. Thus, we had to set small bounded numbers (around
10) in order to obtain the number of states explored by T-Check without the POR setting.
The results indicate that for small networks with two or three nodes, both approaches
gain similar POR ratio, but for larger networks with over four nodes, our approach
outperforms T-Check significantly. We present the comparison of both approaches in
Table 2, where Exh indicates if all states are explored. The POR method of T-Check
treats all actions within the same sensor as dependent , i.e., it only reduces inter-sensor
concurrency. Thus, our two-level approach would be able to obtain better reduction
since intra-sensor concurrency is also minimized. Another observation is that T-Check
explores more states per second, which is reasonable since T-Check does not maintain
all explored states. However, our approach is more efficient in state space exploration,
taking shorter time (102-103). This is mainly because T-Check may explore the same
path multiple times due to its stateless model checking.

6 Related Work

This work is related to tools/methods on exploring state space of SNs.
Approaches like SLEDE [13] and the work by McInnes [19] translate NesC pro-

grams into formal description techniques (FDT) like Promela (supported by SPIN) or
CSPM (supported by FDR) and use existing model checkers to conduct verification
tasks. Anquiro [20] translates Conitiki C code into Bogor models and uses BOGOR
to perform the verification. Anquiro [20] is built based on the Bogor model checking
framework [21,22], for model checking WSN software written in C language for Con-
tiki OS [8]. Source codes are firstly abstracted and converted to Anquiro-specific mod-
els, i.e., Bogor models with domain-specific extensions. Then Bogor is used to model



check the models against user-specified properties. Anquiro provides three levels of ab-
straction to generate Anquiro-specific models and state hashing technique is adopted to
reduce state space, and thus Anquiro is able to verify a network with hundreds of nodes
within half an hour. However, since many low-level behaviors are abstracted away, An-
quiro might not be able to detect certain bugs. Moreover, translation-based approaches
could cause inaccurate results due to the semantic difference between NesC and FDTs.
Hence, approaches for direct verifying NesC programs have been developed.

Werner et. al. studied the ESAWN protocol by producing abstract behavior mod-
els from TinyOS applications, and used CBMC to verify the models [23]. The original
ESAWN consists of 21000 LOC, and the abstract behavior model contains 4400 LOC.
Our approach is comparable to this approach, since we support SNs with thousands of
LOC per sensor. Werner’s work is dedicated to checking the ESAWN protocol and it
abstracts away all platform-related behaviors. Tos2CProver [4,5] translates embedded
C code to standard C to be verified by CBMC, and a POR approach is integrated. Our
work differs from this work in that Tos2CProver only checks single-node TinyOS ap-
plications instead of the whole network. T-Check [17] is built on TOSSIM [15] and
checks the execution of SNs by DFS or random walk to find a violation of safety prop-
erties. T-Check adopts stateless and bounded model checking and is efficient to find
bugs, and it helped to reveal several unknown bugs. However, T-Check might consume
a large amount of time (days or weeks) to find a violation if a large bounded number
is required due to the (equivalently) complete state space exploration. T-Check applies
POR at network level to reduce the state space and our approach complements it with a
more effective POR which preserves LTL-X.

This work is also related to research on partial order reduction in general. Ap-
proaches that using static analysis to compute a sufficient subset of enabled actions
for exploration are proposed, such as persistent/sleep set [11] and ample set [6] ap-
proaches. There are also dynamic methods which compute persistent sets of transitions
on the fly [9,24]. A Cartesian POR [12] was presented to delay context switches be-
tween processes for concurrent programs.

7 Conclusions

In conclusion, we proposed a two-level POR to reduce the state space of SNs signifi-
cantly, based on the independence of actions. We extended the Cartesian semantics to
deal with concurrent systems with multiple levels of non-determinism such as SNs.
POR was then achieved by static analysis of independence and the sensor network
Cartesian semantics. We also showed that it preserves LTL-X properties. We imple-
mented this two-level POR approach in the NesC model checker NesC@PAT and it had
significantly improved the performance of verification, by allowing sensor networks
with thousands of LOC in each sensor to be model checked exhaustedly, with a reduc-
tion ratio sometimes more than 106. One of our future directions is to apply abstraction
techniques like [20] to obtain an abstracted model before applying POR to support large
networks with hundreds of nodes, and another is to adopt BDD techniques to implement
symbolic model checking.
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