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Modeling and verifying complex real-time systems are challenging research problems. The de
facto approach is based on Timed Automata, which are finite state automata equipped with
clock variables. Timed Automata are deficient in modeling hierarchical complex systems. In this
work, we propose a language called Stateful Timed CSP and an automated approach for verifying

Stateful Timed CSP models. Stateful Timed CSP is based on Timed CSP and is capable of
specifying hierarchical real-time systems. Through dynamic zone abstraction, finite-state zone
graphs can be generated automatically from Stateful Timed CSP models, which are subject to

model checking. Like Timed Automata, Stateful Timed CSP models suffer from Zeno runs, i.e.,
system runs which take infinitely many steps within finite time. Unlike Timed Automata, model
checking with non-Zenoness in Stateful Timed CSP can be achieved based on the zone graphes.
We extend the PAT model checker to support system modeling and verification using Stateful

Timed CSP and show its usability/scalability via verification of real-world systems.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Model Checking;

D.4.7 [Organization and Design]: Real-time systems and embedded systems; D.2.1 [Require-
ments/Specifications]: Tools

General Terms: Algorithms, Languages, Verification

Additional Key Words and Phrases: Stateful Timed CSP, Zone Abstraction, Non-Zenoness, PAT

1. INTRODUCTION

The correctness of safety-critical computer-based systems is crucial. Real-world
systems often depend on quantitative timing. Modeling and verification of real-time
systems are challenging research topics which have important practical implications.
The choice of language for real-time system modeling is an important factor in the
success of the entire system analysis or development. The language should cover
facets of the requirements and the model should reflect a system intuitively and
exactly (up to abstraction of irrelevant details). It should have a semantic model
suitable to study the behaviors of the system and to establish the validity of desired
properties.
Many languages have been proposed to model real-time systems, e.g., algebra

of timed processes [Nicollin and Sifakis 1994], Timed CCS [Yi 1991], Timed C-
SP [Schneider 2000], etc. The most popular one is Timed Automata [Alur and

1This article is a significant extension of [Sun et al. 2009]. In [Sun et al. 2009], Stateful Timed
CSP is proposed to model and verify (with zone abstraction) hierarchical real-time systems. This
article extends [Sun et al. 2009] with complete concrete/abstract operational semantics; formal

proof of all theorems; additional examples models and verification case studies. Most importantly,
we solve the problem of verification with non-Zenoness assumption.
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Dill 1994; Lynch and Vaandrager 1996] and its variant Timed Safety Automa-
ta [Henzinger et al. 1994]. Timed Automata are finite state automata equipped
with real-valued clocks. They are powerful as they allow explicit representation of
real-time through the manipulation of clock variables. Real-time constraints are
captured by clock constraints on system transitions, setting or resetting clocks, etc.
Verification tools for Timed Automata based models have proven to be successful,
e.g., Uppaal [Larsen et al. 1997], KRONOS [Bozga et al. 1998].
Models based on Timed Automata often have a simple structure. For instance,

the input models of the popular Uppaal checker are networks of Timed Automata
with no hierarchy [Larsen et al. 1997]. While a simple structure may lead to ef-
ficient model checking, it may not be ideal as designing and verifying hierarchical
complex real-time systems are becoming an increasingly urgent task due to the
widespread applications and increasing complexity of real-time systems. High-level
requirements for real-time systems are often stated in terms of deadline, timeout,
and timed interrupt [Lai and Watson 1997; Dong et al. 1999; Lindahl et al. 2001]. In
practice, system requirements are often structured into phases, which are then com-
posed in many different ways. Unlike Statecharts equipped with clocks [Harel and
Gery 1997] or timed process algebras [Nicollin and Sifakis 1994; Yi 1991; Schnei-
der 2000], Timed Automata lack high-level compositional patterns for hierarchical
design. Users often need to manually cast high-level requirements into a set of
clock variables with carefully calculated clock constraints. This process is tedious
and error-prone. On the other hand, real-time system modeling based on timed
process algebras often suffers from lack of language features (e.g., shared variables)
or automated tool support.
In this work, we propose an alternative approach to model and verify real-time

systems. In particular, we make the following technical contributions.

—We propose a language named Stateful Timed CSP to model hierarchical real-
time systems. Stateful Timed CSP extends Timed CSP [Schneider 2000] with
language constructs to manipulate data structures and data operations in order
to support real-world applications. More importantly, it supports a rich set of
timed process constructs to capture timed system behavior patterns, e.g., delay ,
deadline, timeout , timed interrupt , etc.

—We develop a fully automatic method to model check Stateful Timed CSP mod-
els. Different from Timed Automata, Stateful Timed CSP relies on implicit
clocks. For instance, a process which has a deadline is intuitively written as
P deadline[d ]. Intuitively speaking, an implicit clock starts ticking once process
P is activated (i.e., P has the control and is ready to perform some action) and
P must terminate when its reading is d . As a result, abstraction and verification
techniques designed for Timed Automata are not directly applicable. Inspired
by the previous work on zone abstraction [Dill 1989], we propose dynamic zone
abstraction. The idea is to dynamically create/prune clocks (only if necessary) to
capture constraints introduced by the timed process constructs. We prove that
dynamic zone abstraction produces an abstract model, i.e., a zone graph, which
is both finite-state and property preserving, so that it is subject to temporal logic
based model checking or refinement checking.

—We develop an approach to verify Stateful Timed CSP models with the assump-
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tion of non-Zenoness, i.e., infinitely many steps always take infinite time. Zeno
executions are unrealistic for obvious reasons and therefore must be ruled out
during verification. In the setting of Timed Automata, it is non-trivial to decide
if a run of the zone graph corresponds to a non-Zeno run [Tripakis 1999; Her-
breteau et al. 2010]. We show that the zone graph in our setting can be used to
decide non-Zeno runs so that we can verify Stateful Timed CSP models with the
assumption of non-Zenoness.

—Lastly, we enhance the PAT model checker [Sun et al. 2009] with the techniques
and show its usability via modeling of complex systems as well as automated
verification of real-world and benchmark systems.

The remainder of the article is organized as follows. Section 2 presents relevant
definitions. Section 3 presents the syntax and operational semantics of Stateful
Timed CSP. Section 4 presents dynamic zone abstraction. Section 5 discusses how
to perform model checking with the assumption of non-Zenoness. Section 6 discuss-
es our implementation in the PAT model checker. Section 7 reviews related work.
Section 8 concludes the work and discusses future research direction.

2. PRELIMINARIES

Let R+ denote the set of non-negative real numbers. Throughout the article, τ
denotes an unobservable event; X denotes the special event of process termination;
ϵ ∈ R+ denotes the event of idling for exactly ϵ time units; Σ denotes the set of
observable events such that τ ̸∈ Σ and X ∈ Σ; Στ = Σ ∪ {τ}. Furthermore, the
following naming convention is adopted: e ∈ Σ denotes an observable event; a ∈ Στ

denotes an observable event or τ ; x ∈ Στ ∪ R+.

Definition 2.1. A labeled transition system (LTS) is a tuple L = (S , init ,Στ ,T )
where S is a set of states; init ∈ S is an initial state and T : S ×Στ ×S is a labeled
transition relation.

L is finite if and only if S is finite. Without loss of generality, we assume that an
LTS is always reduced so that every s ∈ S is reachable from init . We write s

x→ s ′

to denote (s, x , s ′) ∈ T when T is clear from the context. An event a is enabled at

state s if there exists s ′ such that s
a→ s ′. State s is a deadlock state if and only if

there is no enabled events at s. A run of L is a sequence of alternating states/events

⟨s0, a0, s1, a1, · · ·⟩ such that s0 = init and si
ai→ si+1 for all i . The run is complete if

it is an infinite sequence or the last state in the sequence is a deadlock state. The
set of complete runs of L is written as runs(L).

Definition 2.2. A timed transition system (TTS) is a tuple T = (S , init ,R+ ∪
Στ ,T ) such that S is a set of states; init ∈ S is an initial state; T : S×(R+∪Στ )×S
is a labeled transition relation.

There are two kinds of transitions in T , i.e., event transitions s
a→ s ′ and time

transitions s
ϵ→ s ′. For simplicity, we write s

ϵ,a→ s ′ or (s, (ϵ, a), s ′) ∈ T to denote

that there exists s0 such that s
ϵ→ s0

a→ s ′. State s is a deadlock state if and only

if there does not exist ϵ, a and s ′ such that s
ϵ,a→ s ′. A run of T is a sequence ρ of

the form ⟨s0, (ϵ0, a0), s1, (ϵ1, a1), · · ·⟩ such that s0 = init and si
ϵi ,ai→ si+1 for all i .
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The run is complete if it is an infinite sequence or the last state in the sequence is
a deadlock state. Given ρ, we say that ⟨s0, a0, s1, a1, · · ·⟩ is an un-timed run of T .
The set of complete un-timed runs of T is written as runs(T ). In the following, we
focus only on complete runs and refer them simply as runs.

Definition 2.3. A run ρ = ⟨s0, (ϵ0, a0), s1, (ϵ1, a1), · · ·⟩ is non-Zeno if and only
if the following is satisfied.

—If ρ is infinite, then (ϵi + ϵi+1 + · · ·) for all i is unbounded.

—If ρ is finite, assume s is the last state in ρ, there exists ϵ > n such that s
ϵ→ s ′

for all n ∈ R+.

A run is Zeno if and only if it is not non-Zeno. That is, a run is Zeno if and only
if it contains infinitely many steps taken in a finite time interval or it reaches a
deadlock state where time elapsing is bounded. For obvious reasons, Zeno runs are
unrealistic. A TTS is non-empty if and only if it allows at least one non-Zeno run.

Definition 2.4. A time-abstract bi-simulation relation between a TTS T =
(St , initt ,Στ ×R+,Tt) and an LTS L = (Su , initu ,Στ ,Tu) is a relation R ⊆ St×Su

satisfying the following condition.

C1: If (s0, s1) ∈ R and (s0, (ϵ, a), s
′
0) ∈ Tt for some ϵ and a, then there exists s ′1

such that (s1, a, s
′
1) ∈ Tu and (s ′0, s

′
1) ∈ R;

C2: If (s0, s1) ∈ R and (s1, a, s
′
1) ∈ Tu for some s ′1, then there exists some ϵ and

s ′0 such that (s0, (ϵ, a), s
′
0) ∈ Tt and (s ′0, s

′
1) ∈ R;

C3: (initt , initu) ∈ R.

T time-abstract bi-simulates L, written as T ≈ L, if and only if there exists a time-
abstract bi-simulation relation between them. The following result is immediate,
i.e., time-abstract bi-simulation preserves un-timed runs.

Proposition 2.5. T ≈ L ⇒ runs(T ) = runs(L). 2

3. SYNTAX AND OPERATIONAL SEMANTICS

In this section, we introduce Stateful Timed CSP, which is based on Timed CSP
extended with data structures as well as an enriched set of timed process constructs.

3.1 Syntax and Informal Semantics

A Stateful Timed CSP model (hereafter a model) is a tuple S = (Var , initG ,P)
where Var is a finite set of finite-domain global variables, initG is the initial valu-
ation of the variables and P is a timed process. A variable can be of a pre-defined
type like Boolean, integer, array of integers or any user-defined data type2. Process
P models the control logic of the system using a rich set of process constructs.
A process can be defined by the grammar presented in Figure 1. For simplicity, we
assume that P is not parameterized.
Process Stop does nothing but idling. Process Skip terminates, possibly after

idling for some time. Process e → P engages in event e first and then behaves
as P . Note that e may serve as a synchronization barrier, if combined with parallel

2Refer to PAT user manual on how to define a type in C# or Java.
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P = Stop – in-action

| Skip – termination

| e → P – event prefixing

| a{program} → P – data operation prefixing

| if (b) {P} else {Q} – conditional choice

| P | Q – general choice

| P \X – hiding

| P ; Q – sequential composition

| P ∥ Q – parallel composition

| Wait [d ] – delay*

| P timeout [d ] Q – timeout*

| P interrupt [d ] Q – timed interrupt*

| P within[d ] – timed responsiveness*

| P deadline[d ] – deadline*

| Q – process referencing

Fig. 1. Process constructs

composition. In order to seamlessly integrate data operations, we allow sequential
programs to be attached with events. Process a{program} → P performs data
operation a (i.e., executing the sequential program whilst generating event a) and
then behaves as P . The program may be a simple procedure updating data variables
(written in the form of a{x := 5; y := 3}) or a complicated sequential program3.
A conditional choice is written as if (b) {P} else {Q}. Process P | Q offers an
(unconditional) choice between P and Q4. Process P ; Q behaves as P until P
terminates and then behaves as Q immediately. P \X hides occurrences of events
in X . Parallel composition of two processes is written as P ∥ Q , where P and
Q may communicate via event synchronization (following CSP rules [Hoare 1985])
or shared variables. Notice that if P and Q do not communicate through event
synchronization, then it is written as P ||| Q , which reads as ‘P interleave Q’. A
process may be given a name, written as P =̂ Q , and then referenced through its
name. Recursion is allowed by process referencing. Additional process constructs
(e.g., while or periodic behaviors) can be defined using the above.
In addition, a number of timed process constructs (marked with * in Figure 1)

are designed to capture common real-time system behavior patterns. Let d ∈ R+.
Process Wait [d ] idles for exactly d time units. In process P timeout [d ] Q , the
first observable event of P shall occur before d time units elapse (since process
P timeout [d ] Q is activated). Otherwise, Q takes over control after exactly d
time units. In process P interrupt [d ] Q , if P terminates before d time units,
P interrupt [d ] Q behaves exactly as P . Otherwise, P interrupt [d ] Q behaves as P
until d time units and then Q takes over. In contrast to P timeout [d ] Q , P may
engage in multiple observable events before it is interrupted. Process P within[d ]
must react within d time units, i.e., an observable event must be engaged by process

3The detailed syntax for the sequential program can be found in PAT user manual.
4For simplicity, we omit external and internal choices [Hoare 1985] in the discussion.
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P within d time units. Urgent event prefixing [Davies 1993], written as e � P , is
defined as (e → P) within[0], i.e., e must occur as soon as it is enabled. In process
P deadline[d ], P must terminate within d time units, possibly after engaging in
multiple observable events. Notice that a timed process construct is always associ-
ated with an integer constant d which is referred to as its parameter.
In the following, we apply Stateful Timed CSP to model two systems so as to

show that it is expressive enough to capture both benchmark real-time systems and
hierarchical real-time systems.

Example Let δ and ϵ be two constants such that δ < ϵ. Fischer’s mutual exclusion
algorithm is modeled as a model (V , vi ,Protocol). V contains two variables turn
and counter . The former indicates which process attempted to access the critical
section most recently. The latter counts the number of processes accessing the
critical section. Initial valuation vi maps turn to -1 (which denotes that no process
is attempting initially) and counter to 0 (which denotes that no process is in the
critical section initially). Process Protocol is defined as follows.

Protocol =̂ Proc(0) ||| Proc(1) ||| · · · ||| Proc(n)
Proc(i) =̂ if (turn = −1) { Active(i) } else { Proc(i) }
Active(i) =̂ (update.i{turn := i} → Wait [ϵ]) within[δ];

if (turn = i) {
cs.i{counter := counter + 1} →
exit .i{counter := counter − 1; turn := −1} → Proc(i)

} else {
Proc(i)

}

where n is a constant representing the number of processes. Process Proc(i) models
a process with a unique integer identify i . If turn is -1 (i.e., no other process is
attempting), Proc(i) behaves as specified by process Active(i). In process Active(i),
firstly turn is set to be i (indicating that the i -process is now attempting) by
action update.i . Note that update.i must occur within δ time units (captured by
within[δ]). Next, the process idles for ϵ time units (captured by Wait [ϵ]). It then
checks whether turn is still i . If so, it enters the critical section and leaves later.
Otherwise, it restarts from the beginning.
Quantitative timing plays an important role in this algorithm to guarantee mutual

exclusion, i.e., mutual exclusion is not guaranteed if δ ≥ ϵ. In order to verify mutual
exclusion, one way is to show that counter ≤ 1 is always true. We remark that
the event names for variable updates (e.g., update.i and cs.i and exit .i) not only
improves readability but also allows an alternative way of verification, i.e., through
trace refinement checking. 2

Example A pacemaker is an electronic implanted device which functions to reg-
ulate the heart beat by electrically stimulating the heart to contract and thus to
pump blood throughout the body. Quantitative timing is crucial to pacemaker.
Common pacemakers are designed to correct bradycardia, i.e., slow heart beats.
A pacemaker mainly performs two functions, i.e., sensing and pacing. Sensing is
to monitor the heart’s natural electrical activity, helping the pacemaker to gather
information on the heart beats and react accordingly. Pacing is when a pacemak-
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er sends electrical stimuli, i.e., tiny electrical signals, to heart through a pacing
lead, which starts a heartbeat. A pacemaker can operate in many different modes
according to the implanted patient’s heart problem. A mode of the pacemaker is
typically modeled as of the following form: Heart ∥ Sensing ∥ Pacing where Heart
models normal or abnormal heart condition; Sensing and Pacing model the two
functions. In the following, we present a simplified model of the simplest mode,
i.e., the sense Atrial, pace Atrial, in Trigger (AAT) mode.
The model contains one variable SA, which is a flag indicating whether it is

necessary to monitor atria (1 for necessary). Initially, SA is 0. The process is AAT
which is defined as follows.

AAT =̂ Heart || Sensing || Pacing(LRI )
Sensing =̂ if (SA = 1) {

pulseA → senseA� Sensing
}
else {

pulseA → Sensing
}

Pacing(X ) =̂ (senseA → paceA{SA := 0} → Skip) timeout [X ] HelpPacing ;
Wait [URI ];
(enableSA{SA := 1}� Pacing(LRI −URI ))

HelpPacing =̂ (stimu → paceA{SA := 0} → Skip) deadline[0]

where URI and LRI are two constants representing upper and lower rate inter-
val, i.e., the fastest and slowest a normal heart can beat. For simplicity, we skip
the details of process Heart . Informally speaking, process Heart generates two
events pulseA (i.e., atrium does a pulse) and pluseV (i.e., ventricle does a pulse)
periodically for a normal heart or with one of them missing once a while for an ab-
normal heart. Process Sensing monitors heart pacing by synchronizing with Heart
on pulseA. If SA is 1, it engages in event senseA immediately once pulseA occurs.
Initially, process Pacing awaits for event senseA. If senseA occurs before X time
units, action paceA occurs (and SA is set to 0 so that sensing is paused for a while).
If senseA is missing for X time units, timeout happens and process HelpPacing is
invoked. HelpPacing models the process of the pacemaker generating an electrical
stimuli (captured by event stimu) and then performing action paceA. Note that
HelpPacing must terminate before 0 time unit (captured by deadline[0]), which
means that it must immediately perform event stimu and action paceA. Next,
Wait [URI ] occurs and later sensing is turned on again for the next circle.
At the top level, the pacemaker model is a choice of 16 different modes. Each

mode is a parallel composition of the three components. Each component may have
internally hierarchies due to complicated sensing and pacing behaviors. We skip
the details (refer to [Barold et al. 2004]). The complete pacemaker model can be
found at [Sun et al. ]. 2

3.2 Formal Operational Semantics

In order to define the operational semantics of Stateful Timed CSP, we define the
notion of a configuration to capture the global system state during the system exe-
cution, which is defined as a concrete configuration. This terminology distinguishes
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the notion from the state space abstraction and abstract configurations which will
be introduced later. A concrete system configuration is a pair (V ,P) where V is a
variable valuation function and P is a process. For simplicity, an empty valuation
is written as ∅. A transition of the system is in the form (V ,P)

x→ (V ′,P ′) where
x ∈ Στ ∪ R+, i.e., a transition is labeled with an event in Στ or a number in R+.
The operational semantics is defined systematically by associating a set of firing

rules with each and every process construct. The firing rules associated with the
timed process constructs are presented as examples in Figure 2.

—Rules wait1 and wait2 define the semantics ofWait [d ]. Rule wait1 states that the
process may idle for an arbitrary amount of time ϵ such that ϵ ≤ d . Afterwards,
Wait [d ] becomes Wait [d−ϵ] and the variable valuation is unchanged. Rule wait2
states that the process becomes Skip via a τ -transition whenever d is 0.

—Rules to1 to to4 define P timeout [d ] Q . Rule to1 states that if an observable event
e can be engaged by P , changing (V ,P) to (V ′,P ′), then (V ,P timeout [d ] Q)
becomes (V ′,P ′) so that Q is discharged. That is, P has performed an observable
event before timeout occurs. Rule to2 states that if d is 0, Q takes over control
by a τ -transition. Rule to3 states that if P performs a τ -transition, then Q
and timeout operator remain (since an observable event is yet to be performed).
Rule to4 states that if P may idle for less than or equal to d time units, so does
P timeout [d ] Q .

—Rules ti1 to ti4 define P interrupt [d ] Q . Rule ti1 states that if event a (which
may be observable or τ , but not X) can be engaged by P , changing (V ,P)
to (V ′,P ′), then (V ,P interrupt [d ] Q) can perform a as well. In contrast to
rule to1, the interrupt operator remains. Intuitively, it states that before P is
interrupted, P behaves freely. Rule ti2 states that if P may idle for less than
or equal to d time units, so does P interrupt [d ] Q . Rule ti3 states that if P
terminates before being interrupted, then the whole process terminates. Rule ti4
states that if d is 0, Q takes over control by a τ -transition.

—Rules wi1 to wi3 define P within[d ]. Rule wi1 states that if an observable event
e occurs, then within is discharged, as the requirement is fulfilled. In contrast,
rule wi2 states that if instead event τ occurs, then within remains. Rule wi3
state if P can idle for ϵ time units, so does P within[d ] as long as ϵ ≤ d .

—Rules dl1, dl2 and dl3 define P deadline[d ]. P deadline[d ] requires P to termi-
nate (marked by X) before d time units. Rule dl1 states that P can do whatever
it can before the deadline is expired. Rule dl2 states that if P terminates, then
deadline is discharged. Rule dl3 states if P can idle for ϵ time units, so does
P deadline[d ] as long as ϵ ≤ d .

The rest of the rules are similarly defined (refer to [Sun et al. 2009]). We remark
the rules are an extension of the operational semantics in [Schneider 1995]. While
the rules in [Schneider 1995] are designed for Timed CSP, our rules handle data
states as well as timed process constructs like within and deadline.
The following can be established immediately.

Proposition 3.1. (1) If (V ,P)
ϵ→ (V ′,P ′), then V ′ = V . (2) If (V ,P)

ϵ0→
(V ′,P ′) and (V ′,P ′)

ϵ1→ (V ′′,P ′′), then (V ,P)
ϵ0+ϵ1→ (V ′′,P ′′). 2
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ϵ ≤ d
[ wait1 ]

(V ,Wait [d ])
ϵ→ (V ,Wait [d − ϵ])

[ wait2 ]

(V ,Wait [0])
τ→ (V ,Skip)

(V ,P)
e→ (V ′,P ′)

[ to1 ]

(V ,P timeout [d ] Q)
e→ (V ′,P ′)

[ to2 ]

(V ,P timeout [0] Q)
τ→ (V ,Q)

(V ,P)
τ→ (V ′,P ′)

[ to3 ]

(V ,P timeout [d ] Q)
τ→ (V ′,P ′ timeout [d ] Q)

(V ,P)
ϵ→ (V ,P ′), ϵ ≤ d

[ to4 ]

(V ,P timeout [d ] Q)
ϵ→ (V ,P ′ timeout [d − ϵ] Q)

(V ,P)
a→ (V ′,P ′), a ̸= X

[ ti1 ]

(V ,P interrupt [d ] Q)
a→ (V ′,P ′ interrupt [d ] Q)

(V ,P)
ϵ→ (V ,P ′), ϵ ≤ d

[ ti2 ]

(V ,P interrupt [d ] Q)
ϵ→ (V ,P ′ interrupt [d − ϵ] Q)

(V ,P)
X→ (V ′,P ′)

[ ti3 ]

(V ,P interrupt [d ] Q)
X→ (V ′,P ′)

[ ti4 ]

(V ,P interrupt [0] Q)
τ→ (V ,Q)

(V ,P)
τ→ (V ′,P ′)

[ wi2 ]

(V ,P within[d ])
τ→ (V ′,P ′ within[d ])

(V ,P)
e→ (V ′,P ′)

[ wi1 ]

(V ,P within[d ])
e→ (V ′,P ′)

(V ,P)
ϵ→ (V ,P ′), ϵ ≤ d

[ wi3 ]

(V ,P within[d ])
ϵ→ (V ,P ′ within[d − ϵ])

(V ,P)
a→ (V ′,P ′)

[ dl1 ]

(V ,P deadline[d ])
a→ (V ′,P ′ deadline[d ])

(V ,P)
X→ (V ′,P ′)

[ dl2 ]

(V ,P deadline[d ])
X→ (V ′,P ′)

(V ,P)
ϵ→ (V ,P ′), ϵ ≤ d

[ dl3 ]

(V ,P deadline[d ])
ϵ→ (V ,P ′ deadline[d − ϵ])

Fig. 2. Concrete firing rules where e ∈ Σ and a ∈ Στ
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Intuitively speaking, (1) states that time transitions do not modify variables and
(2) states that consecutive time transitions can be accumulated.

Definition 3.2. Let S = (Var , initG ,P) be a model. The concrete semantics
of S, denoted as TS , is a TTS (S , init ,Σ∪R+,T ) such that S is a set of reachable
concrete system configurations; init = (initG ,P) is the initial configuration; and T

satisfies ((V ,P), x , (V ′,P ′)) ∈ T if and only if (V ,P)
x→ (V ′,P ′).

4. DYNAMIC ZONE ABSTRACTION

TS always has infinitely many states, even when all variables have finite domains.
For instance, assume S = (∅, true,P) where there is no variable and P is defined
as P =̂ (a → (P | c → Skip)); (b → Stop), it can be shown that the set of traces
trace(TS) constitutes an irregular language [Hoare 1985]. We thus restrict ourselves
to a subset of models, which we refer as regular Stateful Timed CSP models. A
Stateful Timed CSP model S is regular if and only if P is a process expression
constituted by finitely many process constructs, for every reachable configuration
(V ,P) of TS5. Given a regular model S, there may still be infinitely many states in
TS because parameters of timed process constructs in a process (e.g., d in Wait [d ])
can take infinitely many different values. Intuitively, the constants capture the
reading of the implicit clocks associated with the processes. In the following, we
abstract the exact value of the constants by dynamic zone abstraction so as to
generate a finite-state abstraction.

4.1 From Implicit Clocks to Explicit Clocks

In Stateful Timed CSP, clocks are implicitly associated with timed process con-
structs. A clock starts ticking once a timed process becomes activated. Before
applying zone abstraction, we associate clocks with time processes explicitly so as
to differentiate parameters associated with different timed process constructs. In
theory, each timed process construct is associated with a unique clock. Nonethe-
less, multiple timed processes may be activated at the same time during system
execution and therefore can be associated with the same clock. For instance, as-
sume that a process P is defined as: P =̂ (Wait [5]; Wait [3]) interrupt [6] Q . There
are three implicit clocks, one associated with Wait [5] (say t1), one with Wait [3]
(say t2) and one with P (because of interrupt [6], say t3). Because Wait [5] and
P are activated, clock t1 and t3 have started. In contrast, clock t2 starts only
when Wait [5] terminates. It is obvious that t1 and t3 always have the same read-
ing and thus one clock is sufficient. It is known that the fewer clocks, the more
efficient real-time model checking could be [Bengtsson and Yi 2003]. In order to
minimize the number of clocks, clocks are introduced at runtime and are shared
by as many processes as possible. In the following, we show how to systematically
associate clocks with timed processes. Intuitively, a clock is introduced if and only

5This definition adopts the the idea of finite-state processes for Timed CSP as defined in [Ouaknine

and Worrell 2002]. Formally, a Timed CSP process is a finite-state process if there are only finitely
many states reachable via transitions labeled with events or 1 (i.e., a time transition which takes
1 time unit) [Ouaknine and Worrell 2002]. It is possible to extend their definition to the setting

of Stateful Timed CSP. Nonetheless, formally establishing that a ‘finite-state process’ can only
reach finite process expressions is tedious and not the focus of this work.
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A(Stop, t) = Stop – A1

A(Skip, t) = Skip – A2

A(e → P , t) = e → P – A3

A(a{program} → P , t) = a{program} → P – A4

A(if (b) {P} else {Q}, t) = if (b) {P} else {Q} – A5

A(Wait [d ], t) = Wait [d ]t – A6

A(P timeout [d ] Q , t) = A(P , t) timeout [d ]t Q – A7

A(P interrupt [d ] Q , t) = A(P , t) interrupt [d ]t Q – A8

A(P within[d ], t) = A(P , t) within[d ]t – A9

A(P deadline[d ], t) = A(P , t) deadline[d ]t – A10

A(Wait [d ]t′ , t) = Wait [d ]t′ – A11

A(P timeout [d ]t′ Q , t) = A(P , t) timeout [d ]t′ Q – A12

A(P interrupt [d ]t′ Q , t) = A(P , t) interrupt [d ]t′ Q – A13

A(P within[d ]t′ , t) = A(P , t) within[d ]t′ – A14

A(P deadline[d ]t′ , t) = A(P , t) deadline[d ]t′ – A15

A(P | Q , t) = A(P , t) | A(Q , t) – A16

A(P \X , t) = A(P , t) \X – A17

A(P ; Q , t) = A(P , t); Q – A18

A(P ∥ Q , t) = A(P , t) ∥ A(Q , t) – A19

A(P , t) = A(Q , t) if P =̂ Q – A20

Fig. 3. Clock activation

if one or more timed processes have just become activated. Let Q denote the set
of processes associated with explicit clocks. For simplicity, we write Wait [d ]t (or
P timeout [d ]t Q , P interrupt [d ]t Q , P within[d ]t , P deadline[d ]t) to denote that
the process is associated with clock t . Given a process P and a clock t , we define
function A to return the corresponding process in Q. Figure 3 presents the detailed
definition. Intuitively speaking, A1 to A5 state that if a process is un-timed and
none of its sub-processes is activated, then it is unchanged. A6 to A10 state that
if a process is timed, then it is associated with t and function A is applied to its
activated sub-processes at the same time. Note that if a timed process has already
been associated with a clock t ′, then it will not be associated with the new clock.
This is captured by A11-A15, where Wait [d ]t′ denotes that Wait [d ] is associated
with clock t ′. If a sub-process is activated, then function A is applied recursively,
as captured by A7-10,12-19. The last rule A20 states that if P is defined as Q ,
then A(P , t) can be obtained by applying A to Q .
Given a process P ∈ Q, we can obtain the set of clocks associated with P or any

sub-process of P . For instance, the clocks associated with P timeout [d ]tQ contain
t and the clocks associated with P . Notice that there is no clock associated with
Q because it is not activated. The set is written as cl(P).

4.2 Zones

The concrete firing rules presented in Figure 2 capture quantitative timing through
parameters of the timed processes. Inevitably, there are infinitely many constant
values. In the setting of Timed Automata, it has been shown that zone abstraction
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allows efficient model checking [Dill 1989; Behrmann et al. 1999; Bengtsson and Yi
2003]. Zone abstraction for Timed Automata, however, cannot be readily adopted
due to the difference between Stateful Timed CSP and Timed Automata. In the
following, we review necessary background on zones and zone operations before
presenting how to apply zone abstraction to Stateful Timed CSP models.
A zone is the conjunction of multiple primitive constraints over a set of clocks.

A primitive constraint is of the form t ∼ d where t is a clock, d is a constant and
∼ is either, ≥, = or ≤. Intuitively, a zone is the maximal set of clock valuations
satisfying the constraint. Given a clock valuation v , we write v ∈ D to denote that
v is in zone D . A zone is empty if and only if the constraint is unsatisfiable. We
write cl(D) to denote the clocks of D . A zone can be equivalently represented as
a DBM (short for Difference Bound Matrices [Dill 1989; Behrmann et al. 1999]).
Let t1, t2, · · · , tn denote n clocks and t0 denote a dummy clock whose value is
always 0. A DBM representing a constraint on the clocks contains n + 1 rows,
each of which contains n + 1 elements. Entry (i , j ) in the matrix, denoted by D i

j ,

represents the upper bound on difference between clock ti and tj , i.e., ti − tj ≤ D i
j .

A DBM thus represents the constraint: ti − tj ≤ D i
j for all clock ti and tj such that

0 ≤ i ≤ n and 0 ≤ j ≤ n. The bound on difference between ti and tj is captured

by: −D j
i ≤ ti − tj ≤ D i

j . Because t0 is always 0, we have −D0
i ≤ ti ≤ D i

0 which is
the bounds of clock ti .
In the following, we briefly introduce the relevant zone operations/properties and

its corresponding DBM implementation. Interested readers are referred to [Dill
1989; Behrmann et al. 1999; Bengtsson and Yi 2003] for details.

—Calculate canonical form: In theory, there are infinitely many different timing
constraints representing the same zone. For instance, the clock valuations for
0 ≤ t1 ≤ 3 ∧ 0 ≤ t1 − t2 ≤ 3 and 0 ≤ t1 ≤ 3 ∧ 0 ≤ t1 − t2 ≤ 3 ∧ t2 ≤ 1000
are exactly the same and hence they represent the same zone. Zones represented
as DBMs can be systematically compared if they are in their canonical forms.
A DBM is in its canonical form if and only if every entry D i

j is the tightest bound
on difference between clock ti and tj . An important property of DBM is that
there is a relatively efficient procedure to compute a unique canonical form. If
the clocks are viewed as vertices in a weighted graph and the clock difference as
the label on the edge connecting two clocks, the tightest clock difference is the
shortest path between the respective vertices. Floyd-Warshall algorithm [Floyd
1962] thus can be used to compute the tightest bound on clock differences and
hence the canonical form. The complexity of Floyd-Warshall algorithm is cubic
in the number of clocks.

—Check satisfiability: It is essential to check whether a zone is empty or not. A zone
is empty if and only if its DBM representation, in its canonical form, contains
an entry D i

i such that D i
i < 0. Intuitively, it means that clock ti is constrained

to satisfy ti − ti < 0, which is impossible. Furthermore, it can be shown that a
DBM in its canonical form represents an empty zone if and only if D0

0 is negative.

—Add clocks: Clocks may be introduced during system exploration as we have
shown in Section 4.1. Assume that the clock to be added is tk and the given
DBM is in its canonical form. Figure 4 shows how the DBM is updated with
entries for tk . For all i , D i

k is set to be D i
0 and Dk

i is set to be D0
i . Because tk
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t0 t1 · · · ti · · · tk−1 tk
t0 0 d0

1 · · · d0
i · · · d0

k−1 0

t1 d1
0 ∗ · · · * · · · * d1

0

· · · · · · · · · · · · · · · · · · · · · · · ·
ti d i

0 ∗ · · · ∗ · · · ∗ di
0

· · · · · · · · · · · · · · · · · · · · · · · ·
tk−1 dk−1

0 ∗ · · · ∗ · · · * dk−1
0

tk 0 d0
1 · · · d0

i · · · d0
k−1 0

Fig. 4. Add clock

is a newly introduced clock, it must be equivalent to t0. The resultant DBM is
canonical if the given DBM is.

—Prune clocks: In our setting, clocks may be pruned. Because entries in a canonical
DBM represent the tightest bounds on clock differences, pruning a clock ti is
simply to remove the i -row and i -column in the matrix. The remaining DBM
is canonical, i.e., the bounds can not be possibly tightened with less constraints.
Given a DBM D and a set of clocks C , we write D [C ] to denote the DBM
obtained by pruning all clocks other than those in C . In an abuse of notation,
we write D [t ] to denote the constraint on t .

—Delay: Given a zone D , D↑ denotes the zone obtained by delaying for an arbitrary
amount of time. D↑ is obtained by changing D i

0 to ∞ for all i such that i ≥ 1.

4.3 Abstraction

In the following, we present dynamic zone abstraction for Stateful Timed CSP,
which was initially proposed in [Sun et al. 2009]. Firstly, we define the notion of
abstract system configurations.

Definition 4.1. An abstract system configuration is a triple (V ,P ,D), where
V is a variable valuation; P is a process; and D is a zone.

In order to systematically apply zone abstraction, we define a set of abstract firing
rules. The abstract firing rules eliminate concrete ϵ-transitions all together and use
zones to ensure a process behaves correctly with respect to timing requirements.
To distinguish from concrete firing rules, an abstract firing rule is written in the
the form of (V ,P ,D)

x (V ′,P ′,D ′) where x ∈ Στ .
We first define a function idle which, given a process in Q, returns the zone in

which the process can idle. Figure 5 shows the detailed definition. Rules idle1 to
idle5 state that if the process is un-timed and none of its sub-processes is activated,
then function idle returns true, which means that the process may idle for an arbi-
trary amount of time. Rules idle6 to idle9 state that if sub-processes of the process
are activated, then function idle is applied to the sub-processes. For instance, if the
process is a choice (rule idle6) or a parallel composition (rule idle9) of P and Q ,
then the result is idle(P) ∧ idle(Q). Intuitively, this means that process P | Q (or
P ∥ Q) may idle as long as both P and Q can idle. Rules idle10 to idle14 define
the cases when the process is timed. For instance, process Wait [d ]t may idle as
long as t is less or equal to d . Lastly, idle15 defines the case for process referencing.
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idle(Stop) = true – rule idle1

idle(Skip) = true – rule idle2

idle(e → P) = true – rule idle3

idle(a{program} → P) = true – rule idle4

idle(if (b) {P} else {Q}) = true – rule idle5

idle(P | Q) = idle(P) ∧ idle(Q) – rule idle6

idle(P \X ) = idle(P) – rule idle7

idle(P ; Q) = idle(P) – rule idle8

idle(P ∥ Q) = idle(P) ∧ idle(Q) – rule idle9

idle(Wait [d ]t ) = t ≤ d – rule idle10

idle(P timeout [d ]t Q) = t ≤ d ∧ idle(P) – rule idle11

idle(P interrupt [d ]t Q) = t ≤ d ∧ idle(P) – rule idle12

idle(P within[d ]t ) = t ≤ d ∧ idle(P) – rule idle13

idle(P deadline[d ]t ) = t ≤ d ∧ idle(P) – rule idle14

idle(P) = idle(Q) if P =̂ Q – rule idle15

Fig. 5. Idling calculation

Figure 6 then exemplifies the abstract firing rules for the timed processes. The
rest of the rules are similarly defined (refer to [Sun et al. 2009]).

—Rule await defines the abstract semantics of Wait [d ]. In contrast to the concrete
semantics, there is only one abstract rule. It states that a τ -transition occurs
exactly when clock t reads d . Intuitively, D↑ ∧ t = d denotes the exact moment
when t reads d . Afterwards, the process becomes Skip.

—Rules ato1, ato2 and ato3 define the abstract semantics of P timeout [d ] Q . Rule
ato1 states that if a τ -transition transforms (V ,P ,D) to (V ′,P ′,D ′), then a
τ -transition may occur given (V ,P timeout [d ]t Q ,D) if zone D↑ ∧ D ′ ∧ t ≤ d
is not empty. Intuitively, this means that the τ -transition must occur before
timeout occurs. Similarly, rule ato2 ensures that the occurrence of an observable
event e from process P occurs only before timeout occurs. Rule ato3 states
that timeout results in a τ -transition when the reading of t is d . Constraint
D↑ ∧ t = d ∧ idle(P) ensures that process P may idle until timeout occurs.

—Rules ait1, ait2 and ait3 define the abstract semantics of P interrupt [d ] Q . Rule
ait1 states that a transition (other than process termination) originated from
P may occur only if t ≤ d , i.e., before interrupt occurs. Rule ait2 states that
interrupt results in a τ -transition when the reading of t is d . Rule ait3 states
that if P terminates before interrupt occurs, then the whole process terminates.

—Rules awi1 and awi2 define the abstract semantics of P within[d ]. Rule awi1
states that if a τ -transition occurs within d time units, then the resultant process
is of the form P ′ within[d ], which means that it is yet to perform some observable
event before d time units. Rule awi2 states that once an observable event occurs,
the within construct is removed.

—Rules adl1 and adl2 define the abstract semantics of P deadline[d ]. Rule adl1
ensures that all transitions of P must occur within d time units. Rule adl2 states
that if P terminates (by engaging in X), then deadline is removed.
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[ await ]

(V ,Wait [d ]t ,D)
τ (V ,Skip,D↑ ∧ t = d)

(V ,P ,D)
τ (V ′,P ′,D ′)

[ ato1 ]

(V ,P timeout [d ]t Q ,D)
τ (V ′,P ′ timeout [d ]t Q ,D↑ ∧ D ′ ∧ t ≤ d)

(V ,P ,D)
e (V ′,P ′,D ′)

[ ato2 ]

(V ,P timeout [d ]t Q ,D)
e (V ′,P ′,D↑ ∧ D ′ ∧ t ≤ d)

[ ato3 ]

(V ,P timeout [d ]t Q ,D)
τ (V ,Q ,D↑ ∧ t = d ∧ idle(P))

(V ,P ,D)
a (V ′,P ′,D ′), a ̸= X

[ ait1 ]

(V ,P interrupt [d ]t Q ,D)
a (V ′,P ′ interrupt [d ]t Q ,D↑ ∧ D ′ ∧ t ≤ d)

[ ait2 ]

(V ,P interrupt [d ]t Q ,D)
τ (V ,Q ,D↑ ∧ t = d ∧ idle(P))

(V ,P ,D)
X (V ′,P ′,D ′)

[ ait3 ]

(V ,P interrupt [d ]t Q ,D)
X (V ′,P ′,D↑ ∧ D ′ ∧ t ≤ d)

(V ,P ,D)
τ (V ′,P ′,D ′)

[ awi1 ]

(V ,P within[d ]t ,D)
τ (V ′,P ′ within[d ]t ,D↑ ∧ D ′ ∧ t ≤ d)

(V ,P ,D)
e (V ′,P ′,D ′)

[ awi2 ]

(V ,P within[d ]t ,D)
e (V ′,P ′,D↑ ∧ D ′ ∧ t ≤ d)

(V ,P ,D)
a (V ′,P ′,D ′), a ̸= X

[ adl1 ]

(V ,P deadline[d ]t ,D)
a (V ′,P ′ deadline[d ]t ,D↑ ∧ D ′ ∧ t ≤ d)

(V ,P ,D)
X (V ′,P ′,D ′)

[ adl2 ]

(V ,P deadline[d ]t ,D)
X (V ′,P ′,D↑ ∧ D ′ ∧ t ≤ d)

Fig. 6. Abstract Firing Rules

Using the abstract firing rules, we can generate an abstract LTS which captures
the abstract semantics of a model.

Definition 4.2. Let ⟨t1, · · ·⟩ be a sequence of clocks. Let S = (Var , initG ,P) be
a model. The time-abstract semantics of S, denoted as LS , is an LTS (S , init ,Στ ,T )
such that S is a set of valid abstract system configurations; init = (initG ,P , true) is
the initial abstract configuration and T is the smallest transition relation such that:
for all (V ,P ,D) ∈ S, if t is the first clock in the sequence which is not in cl(P), and

if (V ,A(P , t),D ∧ t = 0)
a (V ′,P ′,D ′), ((V ,P ,D), a, (V ′,P ′,D ′[cl(P ′)])) ∈ T.

Because of zone abstraction, LS is also referred to as a zone graph. Informally, LS is
constructed as follows. Given an abstract configuration (V ,P ,D), firstly, a clock t
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which is not currently associated with P is picked. The abstract configuration
(V ,P ,D) is transformed to (V ,A(P , t),D ∧ t = 0), i.e., timed processes which
just become activated are associated with t and D is conjuncted with t = 0. Then,
an abstract firing rule is applied to get a target configuration (V ′,P ′,D ′) such
that D ′ must not be empty (otherwise, the transition is infeasible). Lastly, clocks
which are not in cl(P ′) are pruned from D ′ since those clocks are irrelevant to the
behavior of P ′. Note that for all (V ,P ,D) ∈ S , cl(P) = cl(D). The construction
of LS is illustrated in the following example.

Example Assume that a model S = (∅, true,P) such that

P =̂ (a → Wait [5]; b → Stop) interrupt [3] c → P

Intuitively, event b never occurs because interrupt always occurs first. The left part
of Figure 7 shows the LS (the right part depicts the equivalent model under the
form of a Timed Automaton, which will be explained in Section 5). Notice that
transitions are labeled with the clock which is associated with the just activated
timed processes, an event and a set of clocks which are pruned from the zone after
the transition. The initial configuration is c0 = (∅,P , true).

—Starting with c0, we apply A to P with t1 to get

c1 = (∅, (a → Wait [5]; b → Stop) interrupt [3]t1 c → P , t1 = 0)

Next, we can apply either rule ait1 or ait2. Apply rule ait1, we get

c2 = (∅, (Wait [5]; b → Stop) interrupt [3]t1 c → P , 0 ≤ t1 ≤ 3)

Applying rule ait2 to c1, we get c3 = (∅, c → P , t1 = 3). Note that clock t1 is
irrelevant after the transition. After pruning t1, we get c4 = (∅, c → P , true).

—Starting with c2, we apply A to (Wait [5]; b → Stop) interrupt [3]t1 c → P with
t2 to get

c5 = (∅, (Wait [5]t2 ; b → Stop) interrupt [3]t1 c → P , 0 ≤ t1 ≤ 3 ∧ t2 = 0)

Next, we can apply rule ait1 or ait2. Applying rule ait1 to c5, we get zone
(0 ≤ t1 ≤ 3 ∧ t2 = 0)↑ ∧ 0 ≤ t1 ≤ 3 ∧ t2 = 5). By DBM operations, this zone
can be shown to be empty and therefore this transition is invalid. Intuitively,
this is because (0 ≤ t1 ≤ 3 ∧ t2 = 0)↑ is equivalent to 0 ≤ t1 − t2 ≤ 3. Apply rule
ait2 to c5, we get

c7 = (∅, c → P , t1 ≥ 0 ∧ t2 ≥ 0 ∧ t2 ≤ 5 ∧ t1 = 3)

Note that both clocks are irrelevant and therefore can be pruned. The resultant
configuration is c4.

—Starting with c4, apply the rule for event prefixing, i.e., c may occur at any time
in the future (refer to ruleaev in [Sun et al. 2009]) to obtain the transition to c0.
Note that t1 is available and thus reused. 2

4.4 Stateful Timed CSP vs. Timed Automata

An obvious question is: what is the relationship between Stateful Timed CSP and
Timed Automata? In the following, we show that Stateful Timed CSP is equiva-
lent to Closed Timed Safety Automata with τ -transitions. In the original theory of
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C0 C2 C4t1,a,{} t2,tau,{t1,t2}t1,c,{t1}
t1,tau,{t1} S0 S2 S4[t1<=3]    a{t2} [t1=3]   tau{t1}c{t1}

[t1=3]   tau{t1}
Fig. 7. An abstract LTS and its Timed Automaton equivalent

Timed Automata [Alur and Dill 1994], a Timed Automaton is a finite-state Büchi
automaton extended with clocks. Büchi accepting conditions are used to enforce
progress properties. Timed Safety Automata was introduced in [HNSY94] to spec-
ify progress properties using local invariant conditions instead. In the following,
we focus on Timed Safety Automata and refer them simply as Timed Automata
following the literature. A Timed Automaton is closed if it has only closed invariant
and enabling clock constraints.
In [Ouaknine and Worrell 2002], it has been shown that finite-state Timed CSP

processes are equivalent to closed Timed Automata with τ -transitions. Because
Stateful Timed CSP is an extension of Timed CSP, it thus implies that Stateful
Timed CSP is at least as expressive as closed Timed Automata. Stateful Timed
CSP extends Timed CSP in two ways: shared variables and process constructs
within and deadline. Firstly, it has long been known (see [Hoare 1985] and [Roscoe
2001], for example) that one can model a finite domain variable as a finite-state
process parallel to the one that uses it. The user processes then read from, or write
to, the variable by event synchronization. Secondly, it can be shown that deadline
and within can be translated to state invariants in Timed (Safety) Automata. For
instance, we have shown in [Dong et al. 2008] that deadline can be captured using
clocks and state invariants, i.e., if a process must terminate before d , then every
configuration before the process terminates is labeled with invariant x ≤ d where x
is clock which starts when P is activated. This implies that regular Stateful Timed
CSP is equivalent to closed Timed Automata with τ -transitions.
This result does not imply that Stateful Time CSP is not useful. Stateful Timed

CSP has advantages over Timed CSP as it offers ease of modeling with the ‘syntactic
sugars’. Furthermore, there are useful properties about Stateful Timed CSP which
are not satisfied by Timed Automata in general. Firstly, it can be shown that
every clock is bounded from above in Stateful Timed CSP (see the definition of
idle in Figure 5 and abstract firing rules in Figure 6), which implies that unlike
Timed Automata, zone normalization [Rokichi 1993] is not essential in our setting.
Secondly, the number of clocks used in our graph is often less than that of the
corresponding Timed Automaton model, as shown in Section 6. Lastly, unlike
Timed Automata, model checking with non-Zenoness based on the zone graphs is
feasible, as we show in the following section.

5. MODEL CHECKING WITH NON-ZENONESS

In this section, we show that Stateful Timed CSP models can be model checked
based on the abstract semantics. In order to apply model checking techniques, we
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first establish that LS is finite given any model S.

Theorem 5.1. LS is finite for any regular model S.

Proof By definition, LS is finite if and only if there are only finitely many abstract
configurations. The number of abstract configurations is bounded by #V ×#P ×
#D where #V denotes the number of variable valuations; #P denotes the number
of processes; and #D denotes the number of zones. We show all of them are finite.

—#V is finite: All variables have finite domains by assumption.

—#P is finite: Notice that P is constituted by process names, events, the associ-
ated clocks and parameters of the timed process constructs. Because processes
are not parameterized6, process names and events are finite. By assumption,
every reachable process is constituted by only finitely many process constructs.
Because clocks are associated with timed process constructs, it implies that for
every abstract configuration (V ,P ,D), cl(P) is finite. By reusing clocks (as in
Definition 4.2), it implies that only finitely many clocks are necessary. Lastly, no-
tice that all abstract firing rules preserve parameters of timed process constructs
and therefore the possible values for parameters is finite. Finally, #P is finite.

—#D is finite: It is straightforward to show that every clock is bounded from above.
It implies that every entry of D (in its canonical form) is bounded. Further, every
entry of D is an integer constant and therefore #D must be finite. 2

The next theorem shows that LS preserves a large class of interesting properties.

Theorem 5.2. TS time-abstract bi-simulates LS for any model S.

Proof Let LS = (Sa , inita ,Στ ,Ta) and TS = (Sc , initc ,R+∪Στ ,Tc). By definition,
we need to find a time abstract bi-simulation relation R between Sa and Sc . We de-
fineR as follows. For all (Vc ,Pc) ∈ Sc and (Va ,Pa ,D) ∈ Sa , ((Vc ,Pc), (Va ,Pa ,D)) ∈
R if and only if Vc = Va and Pc is abstracted by Pa with D . Pc is abstracted by
Pa with D if and only if the following two conditions are satisfied.

—Pc differs from Pa only by the parameters of the timed process constructs and
the fact that Pa is associated with clocks, whereas Pc is not.

—For every timed process construct of Pc , let d be the associated parameter; let
d ′ be the constant associated with the corresponding construct in Pa . If the
construct is not associated with a clock in P , then d = d ′. If the construct is
associated with clock t in Pa , then t = d ′ − d satisfies D [t ].

For instance, if Pc = Wait [3]; Wait [5] and P = Wait [4]t ; Wait [5], then P with
zone t ≤ 4 abstracts Pc . Next, we show that C1, C2 and C3 of Definition 2.4 are
satisfied by R. C3 is proved trivially. C1 and C2 are proved by structural induc-
tion, which are exemplified using two cases where Pc is Wait [d ] or P timeout [d ] Q .
Notice that the first step of Definition 4.2 is to apply A to Pa . Let the resultant
process be P ′

a and the result zone be D ′.

—If Pc isWait [d ] and ((Vc ,Pc), (Va ,Pa ,Da)) ∈ R, P ′
a isWait [d ′]t such that t = d ′

satisfies D ′
a [t ]. We first show that C1 is satisfied. By rule Wait1 and Wait2,

6It is clear that this assumption can be relaxed to allow finite domain parameters.
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(Vc ,Wait [d ])
d,τ→ (Vc ,Skip). By rule await , (Va ,P

′
a ,D

′
a)

τ (Va ,Skip,D
↑
a ∧

t = d) and thus (Va ,P
′
a ,D

′
a)

τ (Va ,Skip,D
′) ∈ Ta where D ′ = true (since

cl(Skip) = ∅). It is trivial to show (Vc ,Skip) ≈ (Va ,Skip, true). Further,
((Vc ,Skip), (Va ,Skip, true)) ∈ R. Similarly, we can show that C2 is satisfied.

—If Pc is P timeout [d ] Q , then P ′
a is P ′ timeout [d ]t Q such that P is abstracted

by P ′ with D ′. Assume (Vc ,P)
ϵ,e→ (V1,P1) for some ϵ ≤ d . By rule to4 and

to1, (Vc ,Pc)
ϵ,e→ (V1,P1). By induction hypothesis, (Va ,P

′,D ′)
e (V1,P

′
1,D

′
1)

such that ((V1,P1), (V1,P
′
1,D

′
1)) ∈ R and (V1,P1) ≈ (V1,P

′
1,D

′
1). By rule ato2,

(Va ,P
′
a ,D

′)
e (V1,P

′
1,D

′
1 ∧ D↑ ∧ t ≤ d). By assumption, ϵ ≤ d and thus

it is easy to show that P ′
1 with D ′

1 ∧ D↑ ∧ t ≤ d abstracts P1. Thus, C1 is

satisfied. If (Va ,P
′,D ′)

e (V1,P
′
1,D

′
1), (Va ,P

′
a ,D

′)
e (V1,P

′
1,D

′
1 ∧ D↑ ∧

t ≤ d) by rule ato2. Because D ′
1 ∧ D↑ ∧ t ≤ d is not empty by definition,

the transition (Va ,P
′,D ′)

e (V1,P
′
1,D

′
1) must satisfy t ≤ d and therefore it

must occur within D ′
1[t ]−D ′[t ] time units. By induction hypothesis, there exists

ϵ ≤ D ′
1[t ]−D ′[t ] such that (Vc ,Pc)

ϵ,e→ (V1,P1) and (V1,P
′
1,D

′
1) ≈ (V1,P1). By

rules to4 and to1, (Vc ,Pc)
ϵ,e→ (V1,P1). It can be shown that P ′

1 with D ′
1 ∧ D↑ ∧

t ≤ d abstracts P1 and thus, C2 is satisfied in the case. Similarly, we prove the

case where (Vc ,P timeout [d ] Q)
ϵ,τ→ (V1,P1 timeout [d ] Q) for some ϵ ≤ d or

(Vc ,P timeout [d ] Q)
d,τ→ (V1,Q).

Other cases can be proved to satisfy C1 and C2 similarly. We thus conclude that
R is a time-abstract bi-simulation between TS and LS so that TS and LS are time-
abstract bi-similar. 2

By Theorem 5.2, properties which are preserved by time-abstract bi-simulation are
preserved by LS and therefore can be model checked based on LS . In the follow-
ing, we take one class as an example and briefly discuss how it can be supported.
Properties concerning both states and events of infinite runs can be specified in
SE-LTL [Chaki et al. 2004], which is a linear temporal logic constituted by not
only atomic state propositions but also events. SE-LTL is particularly interesting
because Stateful Timed CSP is both state-based and event-based. SE-LTL prop-
erties can be model checked using an on-the-fly automata-based approach [Vardi
and Wolper 1986]. Given an SE-LTL formula ϕ, a Büchi automaton B equivalen-
t to the negation of ϕ can be built using the approach presented in [Gastin and
Oddoux 2001]. The synchronous product of LS and B, which is also a Büchi au-
tomaton, is then computed. A run of the product is accepting if and only if its
projection in B is accepting. The problem of model checking S against ϕ without
non-Zenoness assumption is thus reduced to the standard emptiness problem of
Büchi automata [Vardi and Wolper 1986; Holzmann 2003].
Model checking with non-Zenoness is more complicated. A Stateful Timed CSP

model may contain Zeno runs. For instance, given a model (∅,∅,P deadline[1])
where P =̂ a → P | b → Skip. If property ‘eventually event b occurs’ is veri-
fied without non-Zenoness, then a counterexample with infinitely many a events
will be generated. A close look reveals that the counterexample is Zeno since in-
finitely many a events must occur within 1 time unit. We thus need a method
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to check whether a run is Zeno or not. By Theorem 5.2, for every concrete run
ρ = ⟨s0, (ϵ0, a0), s1, (ϵ1, a1), · · ·⟩ of TS , there is a corresponding π = ⟨s0, a0, s1, a1, · · ·⟩
in runs(LS). We say that ρ is an instance of π or equivalently π abstracts ρ. If π
fails certain property, then ρ can be presented as a concrete counterexample. It is
possible that all instances of π are Zeno so that they are not considered as realistic
counterexamples. An abstract run π is Zeno if and only if all instances of π are Zeno.
Otherwise, π is non-Zeno. Because Zeno runs are unrealistic, system verification
must be performed with the assumption of non-Zenoness, i.e., to verify properties
against only non-Zeno runs. In the setting of Timed Automata, it has been shown
that it is highly nontrivial to decide if an abstract run is non-Zeno or not. The rea-
son is that zone abstraction for Timed Automata fails pre-stability [Tripakis 1999].
The following shows that zone graphs in our setting satisfies pre-stability.

Lemma 5.3. Let S be a model. Let (V ,P ,D)
a (V ′,P ′,D ′) be a transition of

LS . For all (V ,Q) such that (V ,P ,D) abstracts (V ,Q), there is (V ′,Q ′) such

that (V ′,P ′,Q ′) abstracts (V ′,Q ′) and ϵ ∈ R+ such that (V ,Q)
ϵ,a→ (V ′,Q ′).

Proof By the proof of Theorem 5.2, ((V ,Q), (V ,P ,D)) ∈ R and therefore the
lemma holds by definition. 2

Remark The reason why our zone graph satisfies pre-stability is related to the
characteristics of LS , as we explain in the following. Notice that LS can be system-
atically translated into an equivalent Timed Automaton. Let AS denote the Timed
Automaton. Every state (V ,P ,D) of LS is translated into a state of AS . Recall
that a transition from a state (V ,P ,D) of LS is generated by associating a fresh t

with P ; applying a firing rule so that (V ,A(P , t),D ∧ t = 0)
a (V ′,P ′,D ′) and

lastly pruning unused clocks from D ′. For each such transition, a corresponding
transition is introduced in AS such that it is labeled with event a and clock con-
straint D ′. Furthermore, all incoming transitions to the state (V ,P ,D) is labeled
with a set of resetting clocks {t}. For instance, the right part of Figure 7 shows
the generated Timed Automaton of the zone graph shown on the left.
The following is true about AS (but not Timed Automata in general): for every

clock t , assume ϕi and ϕj are two constraints on t associated with two transitions
along any path starting and ending with a transition resetting t , then a valuation
of t which satisfies ϕi can always satisfy ϕj by letting time elapse. This can be
proved by looking at the abstract firing rules and Definition 4.2. When a clock t
is introduced, it is associated with a maximum set of timed process constructs,
which results in a maximum set of constraints of the form t ≤ d or t = d . Later,
when timed process constructs are discharged through transitions, there are less
and less constraints on t . This justifies that a clock cannot go too far and not be
able to satisfy a feasible transition later, which is why pre-stability is satisfied in
our setting. Intuitively, it is because every clock acts as a count-down clock which
cannot be modified or reset before it is expired. 2

A transition of LS is sometimes written in the form (V ,P ,D)
t,a,X (V ′,P ′,D ′)

such that t is the introduced clock; a is the event and X is the set of pruned clocks.
Because a clock is introduced for every transition, through D ′[t ], we can infer the
time needed for the transition to occur. The transition is instantaneous if and
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only if D ′ ⇒ t = 0. Next, we establish a necessary and sufficient condition to check
whether an abstract run is Zeno or not based on Lemma 5.3. Because LS is finite, an
infinite run π of LS must visit a finite set abstract configurations, denoted as inf (π),
infinitely often. Let loopCLK (π) denote the set {x | ∀(V ,P ,D) ∈ inf (π). x ∈
cl(D)}, i.e., the clocks which are present in every abstract configuration which is
visited infinitely often.

Theorem 5.4. Let S be a model; π be a run of LS . π is non-Zeno if and only
if loopCLK (π) = ∅ and not all infinitely visited transitions are instantaneous. 2

Proof Let ρ be a run of TS and π be the corresponding abstract run of LS .

ρ = s0
ϵ0,a0→ s1

ϵ1,a1→ · · · si
ϵi ,ai→ · · ·

π = c0
t0,a0,X0 c1

t1,a1,X1 · · · ci
ti ,ai ,Xi · · ·

Only-if : We show that if ρ is non-Zeno, then loopCLK (π) = ∅. Assume that
ti ∈ loopCLK (π). By definition, ϵi + ϵi+1 + · · · is unbounded. Therefore, the
reading of ti becomes unbounded. Because ti is never pruned, there must be some
constraints on t in every Dm such thatm ≥ i . According to the abstract firing rules,
the constraint must be of the form tm = n or tm ≤ n where n is a constant. Be-
cause tm is unbounded, we derive that tm > n and reach contradiction. Therefore,
loopCLK (π) = ∅. Furthermore, because ρ is non-Zeno, ϵi + ϵi+1 + · · · + ϵi+k > 0
and thus there must be a transition which is not instantaneous.
If : We show that if loopCLK (π) = ∅ and there is at least one infinitely often visit-
ed transition that is not instantaneous, then π is non-Zeno. By Lemma 5.3, strictly
positive number of time units can elapse at a transition which is not instantaneous.
Because loopCLK (π) = ∅, every clock is pruned (and re-introduced) before taking
the transition again. Let ρ be a run which takes the transition repeatedly with
a non-zero delay. By [Alur and Dill 1994], ρ is progressive as all clocks are reset
(which is equivalent to pruned and re-introduced) infinitely often and strictly posi-
tive infinitely often. Therefore, ρ is non-Zeno. 2

The next theorem follows immediately. Intuitively speaking, it allows us to solve the
emptiness problem of Stateful Timed CSP using methods based on finding maximal
strongly connected components (SCC). Given a set of states scc constituting an
SCC, let loopCLK (scc) denotes the set {x | ∀(V ,P ,D) ∈ scc. x ∈ cl(D)}.

Theorem 5.5. Let S be a model. TS is non-empty if and only if there exists
a reachable maximal SCC scc in LS such that loopCLK (scc) = ∅ and not all
transitions connecting two states in scc are instantaneous.

Proof (Only-if) Let π be a non-Zeno run of TS . Let scc be the set of states consti-
tuting the maximal SCC which contains all states and transitions visited infinitely
often by π. If π is non-Zeno, loopCLK (π) = ∅ and therefore loopCLK (scc) = ∅.
Furthermore, the transition which is not instantaneous in π is contained in scc. (If)
Let scc be the maximal SCC which satisfies the condition. A run which traverses
through every state and transition of scc is non-Zeno by Theorem 5.4. 2

Given an SE-LTL formula ϕ, a Büchi automaton B equivalent to the negation of
ϕ, model checking with non-Zenoness assumption is to construct the product of
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B and LS and then search for an accepting run of the product whose projection
on LS is non-Zeno. By Theorem 5.5, it is equivalent to searching for a particular
maximal SCC scc. Therefore, the problem can be solved by an algorithm which
has a complexity linear in the number of transitions in the product (e.g., based on
Tarjan’s algorithm for finding SCCs).

6. EVALUATION

System modeling and verification using Stateful Timed CSP have been implement-
ed in the PAT model checker [Sun et al. 2009]. PAT is a self-contained environment
for system modeling, simulation and verification. It has an extensible architecture
which allows quick realization of new techniques for modeling, abstraction or veri-
fication. Interested readers are referred to [Liu et al. 2010]. The model checker for
Stateful Timed CSP is built as one self-contained module in PAT, which supports
SE-LTL model checking and refinement checking7. In the following, we evaluate
Stateful Timed CSP in two aspects, system modeling and verification.

6.1 Modeling

We illustrate system modeling in Stateful Timed CSP using a multi-lift system.
The system is chosen for two reasons. Firstly, the system is hierarchical, real-timed
and rich in data states, which nicely demonstrates language features of Stateful
Timed CSP. Secondly, the lift system is a standard case study used to demon-
strate the expressive power of various specification techniques and languages. The
user requirements and behaviors of the system are intuitively clear and therefore
the readers can focus on the modeling. Though inspired by [Mahony and Dong
1998], our model is different from [Mahony and Dong 1998] in many aspects, e.g.,
our model uses shared variables, whereas [Mahony and Dong 1998] relies mostly
on processes and channels communication; our model implements data operations
using executable programs, whereas data operations are abstract in [Mahony and
Dong 1998]; and probably most importantly, our model is model checkable where-
as [Mahony and Dong 1998] is not.
The lift system consists of a building, multiple lifts and a central controller. In

the following, we present the lift system model incrementally in bottom-up man-
ner, beginning with models of the primitive components, which are then used to
compose complex components. Notice that the language supported by PAT is s-
lightly different from the previously presented notations for user’s convenience. For
instance, synchronous/asynchronous channels and constant definitions are support-
ed. In the lift system model, the following constants are relevant: NoOfFloors (the
number of floors); NoOfLifts (number of lifts); Off of value 0; Up of value 1; Down
of value -1; and Both of value 2.
A building consists of multiple floors and each floor is equipped with one button

panel on the wall so that a user can make an external request to traveling upwards
or downwards. A button can be pushed at any time. Once pushed, the button is on
until the requested service is provided. The status of the button (or equivalently the
external requests) is maintained in an array FloorButtons of length NoOfFloors.
Each variable in the array has four possible values: Off (i.e., it is not on), Up

7Readers are recommended to download PAT at [Sun et al. ] and try out the RTS module.
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(i.e., upward traveling has been requested), Down (i.e., downward traveling down-
ward has been requested) or Both (i.e., both directions have been requested). The
following models the building.

1. Press(floor , direction) =̂ request .floor .direction{
2. if (FloorButtons[floor ] = None){
3. FloorButtons[floor ] := direction
4. }
5. else if (FloorButtons[floor ] ̸= direction){
6. FloorButtons[floor ] := Both
7. }
8. } → Skip
9. TopFloor =̂ Press(NoOfFloors − 1,Down); TopFloor
10. GroundFloor =̂ Press(0,Up); GroundFloor
11. MiddleFloor(n) =̂ (Press(n,Down) | Press(n,Up)); MiddleFloor(n)

12. Building =̂ TopFloor ∥ GroundFloor ∥ (||NoOfFloors−2
x=1 MiddleFloor(x ))

Lines 1 to 8 define process Press(floor , direction) which models the process of press-
ing a floor button, where parameters floor and direction denote the requesting floor
and traveling direction respectively. Notice that direction has two possible values:
Up (1) or Down (-1). Event request .floor .direction is the event of a user pressing a
button at the floor to travel in the direction. It is associated with a program (from
line 2 to 7), which stores the request in the FloorButtons array. Line 9 models the
top floor, where only traveling downwards is possible. Line 10 models the ground
floor where only traveling upwards is possible. Line 11 models a middle floor, where
traveling in both directions are possible. Lastly, line 12 models the building, which
is a parallel composition of all floors. Notice that process Building is not real-timed
since requests can arrive at any time.
Each lift consists of four components, i.e., a door for allowing access to and from

the lift, a shaft for transporting the lift, an internal queue for determining the lift
itinerary and a controller to coordinate the behaviors of the other components. The
following is a model of the door.

Door =̂ open → (Cycle; close → Skip) deadline[maxTime]; Door
Cycle =̂ toOpen → opened → conf �Wait [minTime]; Closing
Closing =̂ (closed → Skip) interrupt (sensor → toOpen → opened → Closing)

Process Cycle models the process of opening the door and later closing it. It is
initiated in process Door by the receipt of an open signal from the lift controller
and completed by sending a close signal. That is, events open and close must be
synchronized by the door and lift controller. Event conf is a signal from the door
to the lift controller to indicate that the door has been opened and thus relevant
external/internal service requests can be removed. After waiting for minTime time
units after the door is opened, a signal close is sent to indicate that the door is to
be closed. Process Closing models the process of closing the door. If an interrupt is
detected through event sensor before the door is closed , the door is re-opened and
later closed again. Notice that the door has many timing properties. For instance,
signal conf must occur immediately because of� and the deadline in process Door
states that a door can not remain opened forever.
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Shaft(i) =̂ move?[id = i ]id .n.dir → Wait [n ∗movingTime + delayTime];
arrive � Shaft(i)

The above models the shaft. Notice that move is a synchronous channel, which
acts like a pair-wise synchronizing event. The question mark denotes that this is
a channel input. The variables id , n and dir are place-holders for the received
data. In particular, id indicates the intended lift; n is the number of floor to move
across; and dir is the direction of movement. Condition id = i constrains that only
channel inputs satisfying the condition are received. Intuitively, it means that the
shaft only picks up messages with the matching identity. The feature is adopted
from the Promela language [Holzmann 2003]. It can be shown that our results in
this work remain valid with channels. After receiving the input, the shaft starts
moving and later signals arrival through synchronizing event arrive. Notice that
movingTime is a constant denoting the time needed to travel across one floor and
delayTime is a delay caused by the initial acceleration and final braking of the lift.
Inside each lift, there is a button panel so that a user can make an internal request

to travel to a particular floor. The panel buttons are in one-to-one correspondence
with the floor numbers. The internal requests (or equivalently the status of the
internal panel buttons) are maintained in an array IntReq , which has dimension
NoOfLifts×NoOfFloors. Entry IntReq [i ][j ] = true if and only if there is an internal
request in i -lift for j -floor.

InternalQ(i) =̂ intReq .0{IntReq [i ][0] := 1} → InternalQ(i) |
intReq .1{IntReq [i ][1] := 1} → InternalQ(i) | · · · |
intReq .(NoOfFloors − 1){IntReq [i ][NoOfFloors − 1] := 1} → InternalQ(i)

The above models the internal queue of requests. The process generates all possible
internal requests using choices. Note that the removal of internal requests is not
modeled as a part of the above process but rather in the lift controller process,
which is shown below.

LiftCtrl(i ,fl , dir) =̂ check !fl .dir .call(GetDesInt , IntReq ,fl , dir ,NoOfFloors, i)
→ check?des → case {

des = fl : open → conf → ClearReq(i ,fl , dir);
close → LiftCtrl(i ,fl , dir)

des > fl : move!(des − fl).Up → arrive → open →
conf → ClearReq(i , des,Up); close → LiftCtrl(i , des,Up)

0 ≤ des < fl : move!i .(fl − des).Down → arrive → open →
conf → ClearReq(i , des,Down); close → LiftCtrl(i , des,Down)

default : Wait [delayTime]; LiftCtrl(i ,fl , dir)
}

The three parameters denote the lift identity, its current floor and direction re-
spectively. Process LiftCtrl starts with sending a compound message on channel
check to the central controller, indicating that it is ready to serve a request. The
message consists of: fl which is the floor that the lift is at; dir which is the traveling
direction; and the floor which the lift is traveling to. The latter is computed based
on the internal requests using an externally defined function. In PAT, external C#
libraries are allowed in Stateful Timed CSP models so that the models are simplified
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by encapsulating complicated data operations. In this example, call is a reserved
keyword for invoking an external function; the function name is GetDesInt ; and
the rest are inputs to method GetDesInt . The function returns the next internally
requested floor in the traveling direction if one exists, or the nearest internal request
in the opposite direction, or -1 if there is no internal request8.
The central controller is responsible for assigning external requests to specific

lifts, which is modeled as follows.

Controller =̂ check?fl .dir .des →
check !call(GetDesExt ,FloorButtons,fl , dir , des,NoOfFloors) → Controller

Upon receiving the message from a lift, the central controller checks the pool of
external requests (which are stored in FloorButtons) and decides whether to assign
an external request to the lift. Function GetDesExt checks if there is an external
request along the way for the lift. If there is, it sends the new destination on channel
check to the lift. If the received des is -1, which means that there is no internal
request for the lift, then it assigns an external request on the lift’s current traveling
direction. If there is no request on the current direction, then it assigns a request
on the opposite direction. If there are no external requests, the message sent is -1.
Once the lift controller receives the new destination from the central controller, its

behaviors diverge, which are modeled using a ‘syntactic sugar’. Process case {c0 :
P0 c1 : P1 · · ·} is equivalent to if (c0){P0} else {if (c1) {P1} else {· · ·}}. That
is, the conditions c0, c1, · · · are evaluated one by one until one evaluates to true
and then the corresponding process is chosen. In particular, if there is an internal
request for the current floor or there is an external request from the current floor to
travel in the current direction (i.e., des = fl), then the door is opened to serve the
request. Otherwise, if the destination is above (below) the current floor, the shaft
is commanded to travel upwards for des − fl floors (downwards for fl − des floors)
and then the door is opened. Once the door is confirmed opened, by synchronizing
conf , the requests are cleared by ClearRequest , which is defined as follows.

ClearReq(i ,fl , dir) =̂ clearRequest{
IntReq [i ][fl ] := 0;
if (FloorButtons[fl ] = dir){FloorButtons[fl ] := None}
else{FloorButtons[fl ] := −1 ∗ dir}

} → Skip

Afterwards, the door is closed by signal event close and then the lift controller
restarts. If there are no internal requests or external requests (i.e., des = −1), then
the lift controller simply waits for some time and then restarts. Notice that in this
modeling, priority has been given to the internal requests. It is possible that a lift
system is designed otherwise.

Lift(i) =̂ (Shaft(i) ∥ Door ∥ LiftCtrl(i , 0,Up) ∥ InternalQ(i))

\{open, conf , close, arrive};
A lift is then modeled as the parallel composition of the shaft, the door and the lift
controller and the internal queue. Notice that the synchronizing events between the

8Details of the C# methods are skipped as they are less interesting.
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components are hidden from the environment. Lastly, the lifts are the interleaving
of all individual lifts and the lift system is composed of the interleaving of the lifts,
the central controller and the building.

Lifts() =̂|||NoOfLifts−1
i=0 Lift(i)

System() =̂ Lifts() ||| CentralController() ||| Building()

This model demonstrates how Stateful Timed CSP may be applied to model hi-
erarchical real-time systems step-by-step. The rich set of process constructs not
only allow us to capture real-time behaviors intuitively – without thinking about
the clocks, but also to build the system model incrementally from primitive system
components.

6.2 Verification

In the following, we evaluate efficiency of our method in order to show that it is
practically useful. Table I shows statistics of system verification using PAT. The

data are obtained with Intelr Xeonr CPU E5506 @2.13GHz and 32GB memory,
on a 64-bit Windows system. ‘-’ denotes that the experiment is aborted due to
out of memory or running more than 4 hours. The verified models include the
pacemaker model, the lift system, and benchmark real-time systems like Fischer’s
mutual exclusion algorithm, the railway control system [Yi et al. 1994], the CS-
MA/CD protocol [Bozga et al. 1998], and the Fiber Distributed Data Interface
(FDDI) [Larsen et al. 1997]. All models with configurable parameters are avail-
able at [Sun et al. ]. In the first column, the number after the model name is the
number of processes. All properties are verified with or without the assumption of
non-Zenoness. The verification time without non-Zenoness is shown in column Z
and the time with non-Zenoness is shown in column NZ . Notice that deadlock-
freeness with the assumption of non-Zenoness means that the system never reaches
a state where both time-transition and event-transition are impossible, which can
be checked based on the zone graphs. Column #St shows the number states in
the zone graphes. Column #Clock shows the maximum number of clocks created
during verification. Memory usage is skipped because PAT is based on C# with
dynamic garbage collection and therefore accurate memory usage is hard to obtain.
A number of observations can be obtained from the data. Firstly, PAT currently

handles in average 15K states per second (i.e., the total number of visited states –
not new states – divided by the total number of seconds), which is reasonable com-
pared to existing model checkers [Holzmann 2003; Roscoe et al. 1995; Larsen et al.
1997]. Secondly, model checking with non-Zenoness has little or no computational
overhead. Compared to other work on model checking with non-Zenoness [Tripakis
1999; Gómez and Bowman 2007; Herbreteau et al. 2010; Herbreteau and Srivathsan
2010], this is a clear advantage. Thirdly, for some models, the number of clocks
remains constant when the system size increases, e.g., the railway control system
and the CSMA/CD protocol. This is because clocks are shared as much as possible
in our approach.
In order to compare our method with the state-of-art real-time model checker, we

conducted experiments to compare performance of PAT and Uppaal. The results
are summarized in Table II, where column Uppaal(s) shows the verification time
using Uppaal, with all optimization techniques. Notice that Uppaal outperforms
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Model Property #St #Clock Z(s) NZ(s)

Pacemaker deadlock-free 463K 2 19 19

Lift (2floor; 2lift) deadlock-free 257K 4 81 83

Lift (3floor; 1lift) deadlock-free 14K 2 4 4

Lift (3floor; 2lift) deadlock-free 6M 4 2788 2770

Fischer*4 LTL 2K 4 < 1 < 1

Fischer*5 LTL 15K 5 1 1

Fischer*6 LTL 108K 6 14 14

Fischer*7 LTL 857K 7 289 289

Railway*4 LTL 1K 4 < 1 < 1

Railway*5 LTL 7K 4 < 1 1

Railway*6 LTL 74K 4 5 5

Railway*7 LTL 324K 4 39 37

Railway*8 LTL 2.6M 4 845 671

CSMA*5 deadlock-free 3K 5 < 1 < 1

CSMA*6 deadlock-free 10K 5 1 1

CSMA*7 deadlock-free 30K 5 4 3

CSMA*8 deadlock-free 82K 5 11 11

CSMA*9 deadlock-free 218K 5 34 33

CSMA*10 deadlock-free 565K 5 100 99

CSMA*11 deadlock-free 1.4M 5 294 287

CSMA*12 deadlock-free 3.6M 5 848 838

CSMA*13 deadlock-free 8.7M 5 2421 2358

FDDI*3 LTL 4K 5 < 1 < 1

FDDI*4 LTL 46K 6 9 9

FDDI*5 LTL 6.4M 7 1877 1876

FDDI*3 deadlock-free 3K 5 < 1 < 1

FDDI*4 deadlock-free 28K 6 6 5

FDDI*5 deadlock-free 3.5M 7 1000 989

Table I. Experiment results

PAT in many cases9. There are a number of reasons. Firstly, our zone graphs are
more complicated than those of Timed Automata. The nodes in our zone graphs,
i.e., the abstract configurations, are more complicated than those in Uppaal as an
abstract configuration consists of a process expression. The process expression can
not be abstracted as an array of numbers because the system structure in Stateful
Timed CSP varies through transitions. Furthermore, our zone graphes may contain
more nodes due to the extra τ -transitions introduced by the compositional process
constructs, e.g., the τ -transition generated by abstract firing rule ato3. Combined
with parallel composition, these τ -transitions may result in a large number of addi-
tional states. In hand-crafted Uppaal models, the τ -transitions are often removed
by carefully manipulating the clock guards or grouping clock guards and events
into the same transition. Removing the extra τ -transitions is highly nontrivial. In
fact, we believe that they are a price to pay in order to model hierarchical systems.
Secondly, PAT is slower than Uppaal simply because some effective optimization
techniques are currently missing. One particular example is extrapolation. The col-

9except the CSMA/CD protocol. The reason seemed to be that the original Uppaal model uses

a global variable to check whether a station should receive the message, whereas in PAT, it is
naturally modeled using a value passing channel, with guard conditions on accepting values.
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Model #Clocks Without Non-Zenoness

PAT Uppaal PAT(s) Uppaal(s) Uppaal+τ -o(s)

Fischer*5 5 5 1 < 1 696

Fischer*6 6 6 14 < 1 -

Railway*6 4 6 5 < 1 -

Railway*7 4 7 39 3 -

CSMA*6 5 7 1 1 -

CSMA*7 5 8 4 6 -

CSMA*8 5 9 11 34 -

CSMA*9 5 10 34 181 -

CSMA*10 5 11 100 1048 -

Table II. Experiment results

umn Uppaal+τ -o shows the verification time using Uppaal without extrapolation
(and with the same extra τ -transitions so that the models in PAT and Uppaal have
similar state spaces). The results show that PAT often outperforms Uppaal in this
setting. This suggests that PAT could be more efficient with similar optimizations
in place. One last thing to notice is that in all the experiments, PAT uses less
clocks than Uppaal. It remains our future work to explore this fact and Uppaal’s
powerful optimization techniques to improve PAT.
In summary, the reason why the current PAT implementation is useful is three-

fold. Firstly, Stateful Timed CSP is more suited to model hierarchical real-time
systems than Timed Automata. Secondly, PAT supports verification with non-
Zenoness with little or no extra cost. Lastly, PAT is still reasonably efficient and
supports an alternative way of specifying properties (e.g., in SE-LTL).

7. RELATED WORK

This work is related to research on real-time system modeling and verification.
Compositional specification for real-time systems based on timed process algebras
has been studied extensively. Examples include the algebra of timed processes
named ATP [Sifakis 1999; Nicollin and Sifakis 1994], the extension of CCS with
real time [Yi 1991] and Timed CSP [Reed and Roscoe 1986; Schneider 2000]. S-
tateful Timed CSP is an extension of Timed CSP. Different from timed process
algebras, Stateful Timed CSP integrates timed process constructs with complex
data variables/operations in order to model real-world systems. There has been a
related line of research on integrating timed process algebra with state-based spec-
ification languages [Mahony and Dong 2000; Butterfield et al. 2007]. One closely
related language is called TCOZ [Mahony and Dong 2000], which is an integration
of Timed CSP and Object-Z. In TCOZ, Object-Z is used to model data structures
and operations. Different from previous work on integrated formal specification,
Stateful Timed CSP is designed to be executable and model checkable. The key
difference is that concrete executable programs instead of pre/post-conditions are
used to specify data operations. As a modeling language for real-time systems,
Stateful Timed CSP is related to Timed Automata [Alur and Dill 1994]. Remotely
related modeling languages are Statecharts [Harel 1997] with clocks and timed Petri
nets [Ramchandani 1974], which are capable of modeling hierarchical systems with
real-time constraints.
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There have been many approaches on building verification support for timed
process algebras. Development of tool support for ATP was evidenced in [Nicollin
et al. 1992; Closse et al. 2001]. In [Yi et al. 1994], a constraint solving based
verification method was proposed to verify CCS + real time. In [Brooke 1999], a
theorem proving approach for Timed CSP was discussed. In order to avoid the
complexity of developing a model checker from scratch, a number of translation-
based approaches have been studied. In our previous work [Dong et al. 2004; 2008],
Timed CSP (as part of TCOZ models) is translated to Timed Automata so that
Uppaal can be applied. In [Dong et al. 2006], Timed CSP is encoded into a
constraint solver so as to verify reachability properties. These approaches share the
common problems with all translation-based approaches. That is, the target tool
Uppaal is not designed for Timed CSP and therefore features of Timed CSP may
not be effectively encoded or efficiently verified. For instance, every timed process
construct results in one fresh clock [Dong et al. 2006], which resulted in using more
clocks than necessary. Furthermore, reflecting verification results back to the level
of Timed CSP is not trivial. In [Ouaknine and Worrell 2002], it was proved that
through digitalization, Timed CSP models can be translated into CSP models and
verified by CSP model checkers like FDR [Roscoe et al. 1995]. Compared to zone
abstraction adapted in this work, digitalization becomes ineffective when a model
involves largely different constants associated with timed processes. There has been
little verification support for integration of Timed CSP with other languages. To
the best of our knowledge, the PAT model checker is the first dedicated verification
tool supporting verification of hierarchical complex real-time systems with data
structures/operations.

Research on verifying real-time systems have been focused on Timed Automata.
Several model checkers have been developed with Timed Automata or Timed Safety
Automata [Henzinger et al. 1994] being the core of their input languages [Larsen
et al. 1997; Bozga et al. 1998; Tasiran et al. 1996]. Zone abstraction was originally
introduced for Petri net [Berthomieu and Menasche 1983] and then adapted to the
framework of Timed Automata [Dill 1989]. Our zone abstraction is based on the
zone abstraction developed in [Yi et al. 1994; Dill 1989]. In contrast to approaches
based on Timed Automata, our approach is capable of modeling and verifying
hierarchical systems. This work is closely related to work on Hierarchical Timed
Automata [Jin et al. 2007; David et al. 2001; Dong et al. 2008]. In [Jin et al.
2007], formal definitions for Hierarchical Timed Automata and their composition
were defined. Furthermore, compositional verification based on Multiset-LTS are
discussed. Different from [Jin et al. 2007], our work offers an alternative approach
based implicit clocks.

This work is related to research on verification with non-Zenoness assumption.
Syntactic conditions for Timed Automata to be free from Zeno runs have been
identified in [Tripakis 1999; Gómez and Bowman 2007]. The conditions are often
sufficient only [Bowman and Gómez 2006]. In the setting of Timed Automata, it
has been shown that it is not possible to determine if a run can be instantiated to
a non-Zeno run given only zone graphs. The solution involving adding one extra
clock has been discussed in [Tripakis 1999; Tripakis et al. 2005; Tripakis 2009].
Recently, it has been shown that adding one clock may result in an exponentially
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larger zone graph [Herbreteau et al. 2010; Herbreteau and Srivathsan 2010]. The
remedy is to transform the zone graph into a guess zone graph and require that all
clocks which are bounded from above must be reset infinitely often during a run and
the run must visit a state such that the clocks can be strictly positive [Herbreteau
et al. 2010]. In this work, we show that zone graphs generated from Stateful Timed
CSP models are different as our zone graphs satisfy pre-stability and all clocks are
bounded from above. As a result, detecting Zeno runs based on zone graphs is
straightforward. In terms of tool support for model checking with non-Zenoness,
only Uppaal and KRONOS allow some form of non-Zenoness detection. Uppaal
relies on test automata [Aceto et al. 2003] and leads-to properties. The problem
with this approach is that it is sufficient-only. KRONOS supports an expressive lan-
guage for specifying properties, which allows encoding of a sufficient and necessary
condition for non-Zenoness. Checking for non-Zenoness in KRONOS is expensive.
In comparison, checking non-Zeneness in our setting has a negligible computational
overhead.

8. CONCLUSION

In this work, we develop a self-contained approach for model checking hierarchical
complex real-time systems. In particular, we propose a modeling language named
Stateful Timed CSP, which extends Timed CSP with data components as well as
additional timed process constructs. We developed a fully automatic method to
generate finite-state abstraction from Stateful Timed CSP models. We show that
the abstraction preserves interesting properties by proving that it is time-abstract
bi-similar to the original model. We then tackle the problem of non-Zenoness.
We show that it is possible to check non-Zenoness based on zone graphs so that
properties can be verified with the assumption of non-Zenoness. Lastly, our methods
are implemented in the PAT framework.
As for future work, because verification on CSP-based models has been tradi-

tionally based on refinement checking [Roscoe 2005], we are currently investigat-
ing how to check timed refinement relationship between two Stateful Timed CSP
models with the assumption of non-Zenoness. In addition, state space reduction
techniques like extrapolation, symmetry reduction and partial order reduction for
Stateful Timed CSP are to be studied.
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Gómez, R. and Bowman, H. 2007. Efficient Detection of Zeno Runs in Timed Automata. In 5th
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS).
Lecture Notes in Computer Science, vol. 4763. Springer, 195–210.

Harel, D. 1997. Some Thoughts on Statecharts, 13 Years Later. In 9th International Confer-
ence on Computer Aided Verification (CAV). Lecture Notes in Computer Science, vol. 1254.
Springer, 226–231.

Harel, D. and Gery, E. 1997. Executable Object Modeling with Statecharts. IEEE Comput-
er 30, 7, 31–42.

Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. 1994. Symbolic Model Checking
for Real-Time Systems. Information and Computation 111, 2, 193–244.

Herbreteau, F. and Srivathsan, B. 2010. Efficient On-The-Fly Emptiness Check for Timed
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Tripakis, S. 2009. Checking Timed Büchi Automata Emptiness on Simulation Graphs. ACM
Transactions on Computational Logic 10, 3, 1–19.

Tripakis, S., Yovine, S., and Bouajjani, A. 2005. Checking Timed Büchi Automata Emptiness
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