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Abstract

UML state machine is widely used in modeling the dynamic behavior of object-oriented

designs in industry. But UML state machine specification, which is maintained by Ob-

ject Management Group(OMG), is documented in natural language instead of formal

language. The inherited ambiguity of natural language may introduce inconsistencies

to the resulting state machine model. Formalizing UML state machine specification

will solve the ambiguity problem and provide a uniformed view to software designers

and developers. It also provides a foundation for automatic verification of UML state

machine models, which can help to find software design vulnerabilities at an early stage

and reduce the development cost. In this report, we are going to provide a thorough

survey of existing work related to formalizing UML state machine semantics and auto-

matic validation of UML state machine model dynamic behavior. We also discuss the

shortcomings of existing approaches and propose our own solution for this problem.
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1 Introduction

UML state machine specification, published and managed by Object Management Group

(OMG) [4], is an object-oriented variation of Harel Statechart [33]. UML state machine

has become a standard for modeling dynamic behaviors of object-oriented designs in

industry. It is inevitable for errors to exist in the models since modeling is a human-

intensive activity. Detecting such errors in the modeling phase will dramatically reduce

the cost in the software development cycle. But there is a pending problem left open for

years, i.e. the informal natural language description of UML specification introduces a

lot of ambiguities and inconsistencies. To make things worse, the inconsistencies between

the natural language descriptions are tedious for manual detection and are hard to be

verified automatically due to its informal nature.

There are some work done in the literature to formally define UML state machine

semantics[54, 44, 27, 39, 47, 37, 11]. But all of those approaches just provide a for-

malization for a subset of UML state machine. Further, most of those approaches are

not meant for building an automatic verification tools, and some of the semantic do-

mains they used such as Abstract State Machine(ASM), are not suitable for automatic

verification.

Another kind of related work explores a translation approach[45, 40, 42, 41, 43, 25,

22, 13, 55] in which a UML state machine model is translated into languages used by

Model checkers. Model checking is then conducted on these translated models. But

we notice that translation based approaches suffer from four drawbacks. Firstly, it is

hard to trace back to the original model if a bug is detected in the translated model.

Secondly, the translation may introduce more redundant behaviors which slows down

the verification process. Thirdly limited by the translated language, most approaches

consider quite restrictive subsets of the UML syntax defined by OMG [6]. Lastly and the

most importantly, it is hard to verify whether the translation procedure and verification

results are correct or not since it is done in an unsystematic and informal way. Due to

the above four drawbacks, translation approaches are less reliable.

We have also done a survey on the available tools to automatically verify UML state

machines. To the best of our knowledge, there are no tools available to directly support

model checking UML state machines. This also motivates us to formally define and

implement the operational semantics of UML state machine to bridge the gap.

The rest of this report is organized as follows. Section 2 and Section 3 discuss for-

malization approaches and translation approaches separately. In Section 4, we surveyed
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the existing tools which support formal verification of UML state machines. We ana-

lyzed UML behavior state machine specifications [6] thoroughly and discuss our own

understanding in Section 5. In Section 6, we proposed our formalization for UML v2.4.1

state machine. Future work is discussed in Section 7 and Section 8 concludes the report.
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2 Formalizing UML behavior state machine semantics

Formalizing UML behavior state machine semantics is the most related work we are

interested in. Different approaches use different semantic domains. Since our purpose

is to support automatic verification of UML state machine, especially model checking

instead of other forms of formal verification, such as theory proving, we will focus on

the formalization of UML state machine into those semantic domains related to model

checking, such as Kripke structure, petri nets. We categorize our survey based on the

formal formats used as semantic domains.

2.1 Labeled Transition System as Semantic Domain

Some researchers choose to use LTS as the semantic domain and make it seamless to

combine with the automatic model checking of UML state machines since most model

checkers use LTS to represent the search space of a system. [44] and [54] are represen-

tative approaches in this direction. Latella et al. [44] are among the pioneers who begin

to focus on formalizing UML statecharts(instead of Harel statechart [33]) semantics and

the semantic domain their formalization adopted was Kripke structure. They use a s-

lightly modified variant of Extended Hierarchical Automata(EHA) as an intermediate

model and map the UML-statecharts into an EHA. The hierarchical structure of UML

statecharts and EHA make the translation structured and intuitive. Then they define

the operational semantics for EHA in the domain of LTS, i.e. using LTS to express the

dynamic semantics of EHA. This approach covers a quite restricted subset of UML state

machine structures, no pseudostates (exclusive of initial pseudostate) are considered, no

actions associated with states, i.e. entry/exit/do action, deferred events, are considered

and the triggering events are restricted to signal and call events without parameters.

Although this work provides a promising direction of formalizing UML state machine

dynamic behaviors, it is far from the described goal, i.e. automatically model checking

UML state machines, since even very basic structures commonly used by system de-

signers such as final state, completion events and entry/exit actions are not supported.

A more serious problem may be that EHA cannot express the meaning of local transi-

tions as is defined by OMG UML state machine specifications. This is explained and

illustrated in Appendix A.

[54] also formalized a partial set of UML statecharts, which partially based on the

work proposed in [44]. But it supports some more features such as history mechanisms,

entry and exit actions compared to [44]. The syntax used in this work is called UML-
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statechart terms, which is inductively defined on three kinds of terms, i.e. Basic term,

Or-term and And-term. All of them contain basic information about a state such as

a unique ID, entry and exit actions, and sub-terms(for Or-term and And-term) which

contains the hierarchical information of a UML state machine. UML-statecharts terms

basically represent static information about UML-statecharts vertices. Inter-level tran-

sitions are captured by explicitly specifying source restriction and target determinator

in an Or-term, this notation follows the idea of Latella et al [44]. The dynamic behavior

of UML-statecharts is represented by Configurations. A configuration captures the com-

plete current status of a given UML-statecharts term, i.e. the hierarchical structure is

considered and all currently active substates within the given term are computed. The

definition of semantics takes three stages. The first stage is to define extra operations

which are imposed by entry/exit actions and history mechanisms considered in this pa-

per. Based on those defined operations, auxiliary semantics(five SOS rules) are defined

to process a single input event. The auxiliary semantics is defined as a mapping from

a UML state machine to a LTS. Each state in the LTS is a UML-statecharts term. A

semantic transition is defined to proceed a single input event. Last, Complete semantics

is given based on auxiliary semantics and a Kripke structure, i.e. the semantic domain of

the complete semantics is Kripke structure. Instead of represent a UML state machine

into an EHA, Beeck [54] chooses to use a UML-statechart term as the syntax domain

of a UML state machine. A UML-statechart term also has the power of expressing

hierarchical information as EHA does, it is more flexible than EHA since there are no

restrictions about the source and target of a transition, thus transition t3, t5 in Figure

A.1 can be expressed in a UML-statechart term. One limitation of this approach is that

too few features are considered, though more than that supported by [44], and we will

see in our proposed approach in Section 6 that adding those features are not trivial.

Kwon proposed another approach [43] which utilizes Kripke Structure as the semantic

domain and aimed at model checking UML state machines. Similar to [54], Kwon uses

Term, which represent state hierarchy in the form of subterms as field in Term, as the

syntax domain of UML state machine. But Kwon [43] use the conditional rewrite rules

to represent the transition relation in a UML state machine(while Breeck [54] explicitly

defined 5 SOS rules). Then the semantics of UML state machines is defined as a Kripke

Structure. This paper [43] also provides a translation from the defined Kripke Structure

to the input language of SMV Model checker. We will discuss it in more detail in

Section 3.
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All the work we surveyed above consider only a single statechart and leave alone the

interactions between different statecharts. Nevertheless, they provide a good direction

by utilizing Kripke structure as the semantics domain.

2.2 Abstract State Machine as Semantic Domain

Another branch of related approaches[15, 16, 18] in formalizing UML state machine

adopts Abstract State Machine(ASM) as the semantic domain. ASM can offer the

most general notion of state in the form of structures of arbitrary data and operations

which can be tailored to any desired level of abstraction. Function update, which is

less abstract but is more close to the nature flow of the dynamic behavior of UML

state machines, is used to represent operations. On the other hand, the notion of multi-

agent(distributed) ASMs can naturally reflect the interaction between objects. Although

this is a little unrelated to model checking UML state machines, as compared with those

approaches using LTS[44, 54, 43] as semantic domains, these approaches always cover

more features of UML state machines, thus provide some ideas about solving ambiguities

and semantic variant points in UML state machines. These approaches also consider

interactions between objects instead of a single object considered by [44, 54, 43]. So we

are going to briefly survey these approaches.

Börger et al. [15, 16, 18] are among the pioneers in formalizing UML state machines

into ASMs, which contains a collection of states and a collection of rules(conditional,

update, Do-forall etc) which updates those states. [15] is the first piece of work in this

direction. UML static structures are represented as states and transitions which be-

longs to the abstract sets STATE and TRANSITION. Simple states, composite state,

orthogonal composite state and final state, initial and history pseudostates are consid-

ered. Transitions are further partitioned into External transitions, Internal transitions

and Completion transitions. The syntax domain of UML state machine is multi-sorted

first-order structures, i.e. sets with relations and functions. Agents execute UML s-

tate machines using the ASM update rule. These ASM update rules are of the form

“if Condition then Updates”, where Updates is a set of function updates which are si-

multaneously executed when Condition is true. This approach covers most UML state

machine features, including deferred events, completion events and internal activities

associated with states which are mostly left out by other approaches. But pseudo s-

tates such as fork, join, junction, choice, terminate are not considered. In contrast, the

authors argue that these constructs can find their semantically equivalent constructs
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in their defined subset, where they use a transition from(resp. to) the boundary of a

orthogonal composite state to replace the join(resp. fork) pseudostate. But in terms

of join(resp. fork) pseudostate, we can decide which substates of the target orthogonal

composite state are going to be entered simultaneously, while this semantic meaning is

not expressible by the equivalent construct they provided.

[16] add concurrent behaviors in the context of event deferring and run-to-completion

to the the formalization in [15]. This is achieved by providing new submachines(subagents)

covering transitions from and to(cross the boundary of) orthogonal composite states.

[18] provides some further discussions about the ambiguities in the official semantics

of UML state machines[5] and their solutions. The work by Eörger et al.[15, 16, 18] covers

more features compared to those LTS approaches [44, 54, 43] and the formalization is

much easier to follow due to the similarities of ASM notations with pseudo code. But

no automatic verification has been done based on these work so far. We believe in the

importance of automatic verification on UML state machines and want to make the

work move further than just formalization on papers.

[22] is another approach which uses ASM as semantic domain to formalize UML

state machines. To be precise, the semantic domain they use is called extended ASM,

in which they extend the ASM to represent inter-level transitions with multiple transi-

tions which do not cross any boundary of states. This extension makes it easier to deal

with interruptions, it also makes the formalization procedure more structured and lay-

ered(Since inter-level transitions break the hierarchical structure of UML state machine

and such a decomposition of inter-level transitions into multiple transitions preserve such

an hierarchical structure). It shares similar idea with [15, 18] in other aspects of the

formalization, which maps a UML state machine directly to an ASM. Agents are used to

process executions of UML state machines. But [22] provides an Activity Agent, which

is responsible of modeling the execution of an activity associated with a node.(In [15], a

rule Generate Completion Event is used for this purpose.) The execution of agents are

divided into different modes, which indicates what kind of rules(operations) the current

agent should take.

Jin et al. [39] provides an approach which syntactically defines UML statecharts as

attributed graphs which are described by Graph Type Definition Language(GTDL). The

abstract syntax of the attributed graphs is also provided as a six-tuple, which specifies

vertices, Transitions, mapping from a transition to its source and target state respec-

tively, a container function which specifies state hierarchy and a mapping from attribute
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associated with a vertex/transition to its value. They further provide some constrains

in the form of predicates to specify the well-formedness rules of statecharts, which is

considered as the static semantics of a UML statecharts since the rules specifies how a

UML statecharts should be constructed. The semantic domain is defined as a Object

Mapping Automata(OMA [36]), which is a variant of ASM. Given the abstract syntax(of

the attributed graph) of a well-formed statechart, they first ”compile” it into OMA al-

gebraic structures, which specifies ”advanced static semantics” of a UML statecharts

by taking pseudostates into account. Based on OMA algebraic structures, two rules,

viz initialization rule and run-to-completion rule are defined to describe the dynamic

behaviour of a UML statecharts. The syntax and semantics provided by this approach,

benefiting from the highly compatibility of the abstract syntax of attributed graph with

UML statecharts, are more intuitive and easy to follow. But it supported a limited

subset of UML state machine features and does not even include concurrent composite

states as well as choice vertex.

Seen from the number of works, ASM is more preferred by researchers than LTS in

formalizing UML state machine semantics. The reason may be that the update rules

of ASM are more suitable to express the complex and cumbersome semantics of UML

state machines. That is also the reason that ASM based approaches always consider

more features of UML state machine than LTS based approaches. We survey the ASM

related work here because there are some semantic formalization of UML state machine

features worth consultation. But ASM is not very related to automatic verification and

there are also few tool support, so we would not adopt it as semantic domain in our

work.

2.3 Petri Nets as Semantic Domain

Petri nets is a mathematical modeling language with formal semantics. Colored Petri

Net(CPN) [38] is a special case of Petri net in which the tokens identifies attributes(types).

It is less intuitive than Petri net, but scale better to large problems than Petri net since

allowing tokens to have an associated attribute dramatically increases the expression

power.

Some approaches [20, 31, 12, 11] in literature adopt (Colored)Petri Nets as semantic

domain to formalize UML state machines. Robert et al. [31] presents an approach which

use colored Petri Nets to model and validate the behavior characters of concurrent object

architectures modeled by UML. The authors discussed how to map active/negative ob-
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jects as well as message communications into CPN. Synchronous as well as asynchronous

communications are discussed in message communications. Though not specifically deal-

ing with UML state machines, this paper provide a general idea of transforming UML

diagrams to Petri Nets.

Luciano et al. [12] propose another approach to formalize UML with high-level Petri

Nets, i.e. Petri Nets whose places can be refined to represent composite places, and Class

Diagrams, State Diagrams and Interaction Diagrams are considered. Customization

rules are provided for each diagram. But the authors does not provide details about

those customization rules, instead, they illustrate the steps with the Hurried Philosopher

Problem, which extends the dining philosopher problem by allowing new philosophers

to be temporarily invited at the table. The analysis and validation are also discussed,

especially how to represent the properties, such as absence of deadlocks, fairness etc, in

UML as well as how to translate them into Petri Net representations.

Christine et al. [20] propose a similar approach which formalize UML state machines

in hierarchical colored Petri Nets. They provide a detailed pseudo algorithm for the

formalization procedure. They map simple states of UML state machine into Petri Net

places and composite states of UML state machine into Composite Petri Net places.

Transitions in UML state machines are mapped to arcs in Petri Nets and corresponding

triggering events are properly labeled. An extra place called Events is modeled with an

event place in Petri Nets, with each type of event assigned different color type. Entry

and exit actions of UML state machines are modeled with an arc in Petri Nets which

labeled with proper event type and ends in the event place. Though the mapping from

UML state machine to HCPN is clearly expressed compared to [12], a very limited

subset of UML state machine features are supported, only the very basic features such

as simple state, composite state, transitions, triggering event and entry/exit actions are

discussed. How to type the events and how to deal with concurrency invocations of a

concurrent composite state are not discussed.

Étienne et al [11]. extend the work by Christine [20] and supports a larger subset

of UML state machine features, including state hierarchy, internal/external transitions,

entry/exit/do activities, history pseudostates, etc. They also discussed the type of token.

But concurrent composite states are still out of the scope of this work and most other

pseudostates are also not considered.

Petri Nets is used in modeling work flow in industry. It is more rigorous benefiting

from its mathematical supporting. But it is always hard for non-experts to understand
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and it suffers from state explosion problem. People always prefer not to use it as the

modeling language of software systems.

2.4 Other Semantic Domains

There are some other approaches which use different semantic domains from our surveyed

category, but they are also representative and provide useful information for our own

work. We discuss these approaches in this subsection.

[27] uses core state machine as the semantic domain for UML state machines. Core

state machine is a 7-tuple including states, do actions, deferred events, transitions, ini-

tial state, set of variables and initial variable assignment. History is explicitly described

by a mapping from a region to its direct substate. A csm-configuration w.r.t. a core

state machine M is defined as a 9-tuple and is used to describe dynamic behaviour of

a core state machine. [27] firstly formalize both syntax and semantics of the core s-

tate machine and then provides five steps(in natural language, including many informal

”rules” specifying how the transformation should be conducted.) to transform a UML

state machine into core state machine. This paper considered more UML state ma-

chine features, and accordingly more rules need to be defined since more scenarios may

present. 14 configuration steps are provided on the core state machine, which forms

the dynamic semantics of it. The transformation steps from UML statecharts to core

state machine is also provided. But the steps are not formally stated, instead of using a

structured(hierarchical) representation, as has been introduced in[44, 54], only natural

language descriptions with an example illustration are given. Further, the translation

is very complex since a lot of auxiliary vertices need to be added, such as enter/exit

vertex. In this sense, it is less promising to be automatically verified. This approach

does not explicitly model the event dispatching and generating either.

There are other approaches [47, 46, 25, 37] whose semantic domains are not known

as formal structures.

[47] is an early work to formalize all features of UML statecharts diagrams. This ap-

proach takes two steps to complete the formalization. They First transform the structure

of a UML state machine into a term rewriting system where the hierarchical structure of

UML statecharts are rewritted into hierarchical terms. The resulting UML statemachine

is a 13-tuple. The semantic domain of a UML statemachine is defined as a hypothetical

machine(with the form of pseudo code), which has an event queue, an event dispatch

mechanism and an event processor. A run-to-completion step is capable of dispatching
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and executing events on its event queue until the current state configuration stabilizes.

In-between, the run-to-completion step will also take care of deferred events, history

information, call events, entry/exit actions and completion events. (Actually, [47] im-

plement the run-to-completion(RTC) algorithm with a loop, which considers the whole

lifecycle of a UML statecharts instead of a single run-to-completion step as is defined in

UML superstructure specifications[6]). A large subset of features are considered com-

pared to approaches using EHAs[44, 54], including deferred events, completion events

and call events etc. But the authors still leave some features such as join, fork, junction,

choice vertices unspecified and instead, claiming that these pseudostates can be replaced

with extra transitions.

Jens et al. [37] provide a very comprehensive analysis about UML 2.0 behavioral state

machine, including discussions about detailed semantics of each feature and the ambi-

guity statements. They also has a separate paper [28], which discussed 29 undeclared

points in UML2.0 state machine specifications. This approach covers almost all features

of UML2.0 state machines, except for junction and choice vertices, which are considered

as syntax sugar and are said can be easily represented by separate transitions. Termina-

tion pseudostates and completion events are also left out unconsidered. Syntax of each

construct in UML state machine is represented by tuples capturing the components of

each construct. The hierarchy of states is captured by the path/name of the states, thus

prefixing operation on strings is used to decide whether a state is enclosed within a re-

gion and vice versa. The semantics are defined in the form of rules/operations on states

or transitions along the process of a run-to-completion step. configurations/history con-

figurations and functions compute successor configurations/history configurations are

defined. They are capable to enumerate a run-to-completion step of UML state ma-

chine move. An auxiliary function is defined to collect all actions generated in that

run-to-completion step and put them in the event pool. The first contribution of [37] is

the semantics which covers most UML state machine constructs. But they contributes

more on the analysis of the whole procedure of defining formal semantics and the de-

tailed discussion about the semantics of UML 2.0. In term of the formal semantics they

had defined, though achieves a high coverage, share the same defect with their other

work [27], i.e. there are no final semantic steps to model the execution of the whole

state machine and the complex formulas and symbols presented in the papers [37, 27]

are hard to follow.

Jori and Tommi[25] proposed a similar approach with [37] in the form of semantic
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formalization. But less semantic variation points are considered. Instead, the authors

prefer to fix some semantic variation point, for example, fix the event pool as a queue.

In terms of supported features, choice pseudostates, which is not considered by most ap-

proaches, is discussed here. But other commonly considered constructs, such as history

pseudostate, is not included in their formalization.

Dániel [53] provide a different approach from all the previously mentioned work,

which is based on a combination of metamodeling and graph transformation. The for-

malization is rule-based, visual specification of sate machine semantics by means of

model transition systems, which organizes all the model transformation rules in a con-

trol flow graph(CFG) like control structure. They also use EHA as an intermediate

representation, as is done in [44] and modular model transformation rules are provid-

ed based on dynamic semantic steps(along the procedure of execute transitions) of an

UML state machine. At last, a model transition system, which organize all the model

transformation rules with an explicit CFG, is provided as the semantic domain of the

UML state machine. Another contribution of this paper is that the author encour-

ages the separation of dynamic attributes from static attributes of UML state machine.

Conflicts and priorities are considered derived static semantic concepts of UML state

machines in this paper. The separation of static with dynamic attributes may abstract

away from diagram specific features and focus on the dynamic behavior, which is the

core of semantics, of UML state machine.

2.5 Summary

In addition to all the papers surveyed above, Crane and Dingel [23] provide a compre-

hensive survey which covers some approaches we have survey here. They also categorize

all the surveyed approaches based on the underlying formalism of the approaches. But

we are focusing on those approaches which are related to automatic verification of UML

state machine. So our survey is more problem-specific compared to [23]. Among all

the surveyed approaches, approaches using ASM as semantic domain tend to support

more UML state machine features than the other approaches but are less related to

automatic verification. LTS-based approaches are most related to automatic verifica-

tion, specifically model checking, but always support less features compared to other

approaches due to the unstructured feature of UML state machine. We would like to fill

the gap by supporting more UML state machine features while using LTS as the formal

semantic domain in our formalization, so that model checking UML state machine can
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be properly handled. Table 1 provides the summarization of all the surveyed approach-

es in this section and discussed the corresponding advantages and disadvantages of the

corresponding semantic domain.

Semantic Domain Paper Advantage Disadvantage
LTS [44], [54], [43] Naturally coincide

with Model check-
ing tools

Hard to express the
complex semantics
of UML state ma-
chine

ASM [15], [16], [18], [22],
[39]

Suitable to express
the complex seman-
tics of UML state
machine

Few automatic tool
support

Petri Nets [20], [31], [12], [11] Rigorous mathe-
matical reasoning
support

Hard to understand
and use

Others [27], [47], [46], [25],
[37], [53], [25]

Flexible formaliza-
tion procedure

Less formal proof
of the rigorousness
of the underlying
semantic domain
used

Table 1: categorization of formalization approaches
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3 The Translating Approach

There are another branch of efforts which try to automatically verify UML state machine

by translating UML state machine into a description language of a Model checker such

as Spin, SMV, UPPAAL and then model checking various properties on the translated

model. [14] provide a good survey on this kind of approaches. But it focuses on many

variance of Harel statechart [33, 35, 34], such as RSML, UML. Our focus is just on

UML state machine, which is the object oriented variances of Harel statechart. In this

section, we are going to have a thorough survey on this kind of approaches according to

the Model Checker’s input language they adopted.

3.1 Approaches using Spin

Latella et. al are among the first few researchers who contribute to the formal verifi-

cation of UML state machines. They utilize Extended Hierarchical Automaton(EHA)

as an intermediate representation of UML state machine, then they define formal se-

mantics of EHA with Kripke structure as the semantics domain [44]. Based on this

formalization work [44], they proceed one step further to provide translations from UM-

L state machine diagrams to PROMELA, the input language of SPIN model checker in

[45]. The translation function takes an hierarchical automaton as input and generates

PROMELA code as output. This approach uses STEP PROMELA process to simulate

a run to completion step in UML state machine, which includes dispatch of events from

the environment; identify candidate transitions to fire; solve conflicts and select firable

transitions; actual execution of the selected transitions. The last step in the previous

procedure includes identifying the next configuration after execution of the current tran-

sition and maybe side effects, which are events generated during the execution of actions

associated with the transition. The run to completion step in UML state machine is, as

indicated by the name itself, non-interruptable(but can be stopped1.). This is guranteed

by the PROMELA atomic command. The translation process is structured since it is

based on the pre-defined formal semantics of EHA [44]. The authors also provides proof

for the translation to guarantee the correctness of the procedure.

[40] is another approach to translate UML state machine into PROMELA. It sup-

ports initial, choice pseudo states as well as deferred events and completion events. It

further provides an action language, a subset of the Jumbala [26] action language, which

1The difference between interrupt and stop is that, interrupt means stop temporally and need to be
resumed afterwards. But stop means permanently stop without resuming
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is used to specify guard constraints and the effects of transitions of a UML state ma-

chine. They also implement a tool called PROCO, which takes a UML model in the

form of XMI files and out put a PROMELA model.

[42, 41] provide a method to model checking UML state machines as well as col-

laborations with the other UML diagrams. They compile UML state machines into a

PROMELA model and collaborations into sets of Büchi automata and then invoke the

SPIN model checker to verify the model against the automata. Each state in the state

machine is mapped to an individual PROMELA process. Two additional PROMELA

processes are generated to handle event dispatching and transitions. The event queue

is modeled as buffered channels and communication among processes are models via

unbuffered channels, i.e. they are synchronized. This approach further considers the

consistencies between UML diagrams, i.e. collaboration diagram and state machine di-

agram. The possible communications among objects shown in a collaboration diagram

should be consistent with the dynamic behavior represented in the state machine di-

agram. By translate collaboration diagram into sets of Büchi automata, which is the

form of property to be checked against the model, this approach cleverly checked the

consistencies between the two diagrams.

3.2 Approaches using SMV

[43] formalize UML 1.3 statecharts semantics by rule-rewriting systems and provides a

translation approach from the formalized semantics to SMV model checker. Although

no detailed implementation is discussed in this paper, we assume it is possible to build

such a front end since the translation procedure is described.

[25] first provide an symbolic encoding(formal semantics) for a UML state machine,

which has been discussed in Section 2.4. Then they performed a translation from the

defined semantics to the input language of NuSMV [21] model checker. The detailed

translation steps are not discussed in the paper, but some experiment results are report-

ed.

[22] is another approach which uses SMV as the back end model checker to automat-

ically verify UML state machines. Kein et al. [22] first defines the formal semantics with

ASM as semantic domains for UML state machine, which has been discussed in Section

2.2. Then an SMV model checker which is based on SMV model checker is invoked to

verify the SMV specification of a UML state machine. This approach is different from

the other translations approaches in that it does not provide a translation from (some
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form of formalization of a) UML state machine to the input language of a model checker.

Instead, it relies on a translation tool from ASM to SMV [24].

[13] also provides a translation from UML diagrams to the input language of SMV

model checker. Instead of focusing on just UML state machines, it focuses on the

collaborations of different UML diagrams such as class diagrams, state machine diagrams

and activity diagrams. This paper does not describe the detailed translation rules, but

instead, illustrate their translation approach with an ATM machine example. Noticing

that high-level model designers are unfamiliar with LTL and CTL properties which are

used by model checkers, the authors also provide some aid in the form of ask and answer

questions to aid the property writing.

3.3 Approaches using other Model Checkers

[30] is another translation approach, which is also based on the formalization of UML

state machine in their early work [44]. The translation is from a hierarchical automaton

into semantic automaton(LTS), which need to be further translated into FC2 format,

which is the standard input format to Jack. But in this case, the FC2 format is nothing

but a LTS.

Shaojie and Yang [55] provide a translation approach which translate UML state

machines into CSP#, an extension of CSP language, which serves as the input modeling

language of PAT [50]. Different from other translation approaches, the transformation

is not based on a pre-defined formal semantics, but directly from the meaning of each

UML state machine construct. But this approach provides experiment results of the

verification of UML state machine with PAT [50].

[42] present an approach to translate timed UML state machines into timed automata

which is used by the UPPAAL Model Checker. But the translation is not based on a

formal semantics of timed UML state machines. Event queue and UML state machine

are separatedly modeled by timed automata and the communication is modeled with a

channel. This approach is implemented in a prototype tool, HUGO/RT, which can verify

whether scenarios specified by ML collaborations with time constraints are consistent

with the corresponding set of timed UML state machines.

3.4 Summary

The translation approaches aim at utilizing the automatic verification ability of different

model checkers. So the advantage of these approaches is that most of them will provide
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the translation rules as well as the implementation of those rules in the correspond-

ing model checkers. But we notice that translation based approaches suffers form four

drawbacks. Firstly, it is hard to link back the original model if a bug is detected in the

translated model. Secondly, the translation may introduce more redundant behaviors

which may slow down the verification process. Thirdly limited by the translated lan-

guage, most approaches consider quite restrictive subsets of the UML syntax defined by

OMG [6]. Lastly and the most importantly, it is hard to verify whether the translation

procedure is correct since it is done in an unsystematic and informal way, thus cannot

guarantee the correctness of the verification model and the verification result. So we are

going to build our tool directly based on the operational semantics we defined for UML

state machine.
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4 Current Tool Support

There are commercial as well as academic tool supports for UML modeling. Current

Commercial tools just support the design of UML models. Some academic prototype

tools were developed based on the translation approaches, which aim at automatic ver-

ification of UML state machine, as we surveyed in Section 3. We are going to survey

these tools in this section and concentrate mainly on those automatic verification tools.

4.1 Static Checking and Graphical Editing Tools

There are many commercial company concentrating on the UML modeling language and

provide tool support for graphically designing UML diagrams. A lot of software tools(34

as categorized by wiki[10], out of which 18 are free) have been developed to meet the

requirement of model-driven development. IBM Rational Rhapsody, Microsoft Visual

Modeler, Papyrus are representative for this kind of software. Rational Rhapsody and

Microsoft Visual Modeler are commercial software and Papyrus is free software. We

briefly introduce the three software since they are representative in functionality among

all the 34 tools.

IBM Rational Rhapsody [1] is a visual model developing environment based on UML,

which supports developing of embedded system, real-time systems. It also support

automatically generating of software applications from the graphical model in various

languages such as C, C++, C#, Ada and Java. Some static checking functionality such

as consistency checking is also supported.

Microsoft Visual Modeler [3] provides visual modeling of class and component dia-

grams based on a subset of UML, including class diagram, component diagram, activity

diagram, use case diagram and sequence diagram. It is integrated with Microsoft Visual

basic and Visual C++ to support generation of basic and C++ code automatically. It

also support a reverse generation, i.e. from C++ or basic code to class and component

diagrams. But UML state machine diagram is not supported.

Papyrus [8] is an open source tool for UML2 graphical modeling, and has now become

an eclipse plug-in project [7]. Papyrus aims at providing full support for OMG UML

specifications.

Though there are many UML developing tools, they just support graphically mod-

eling and a little static checking, such as syntax checking and consistency checking, of

UML models. Tools which support dynamic checking and simulation are needed.
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4.2 Dynamic Behavior Simulation and Property Verification Tools

We surveyed dynamic verification tools for UML diagrams in this subsection. All of these

tools are prototype tools based on the translation approaches surveyed in Section 3.

vUML

[47] reports a tool vUML which aims at automatically verify UML model behaviors

specified by UML statecharts diagrams. This tool utilizes SPIN model checker as a

backend to perform model checking and creates a UML sequence diagram according to

the counter example provided by SPIN. The formal semantics(supporting UML 1.3) is

defined in [47] and they also conduct a case study with the production cell example in

[46].

vUML aims at checking collaborations of UML models instead of a single UML

state machine. So the PROMELA specification for a UML model is generated from class

diagrams, statecharts and collaboration diagrams, where each UML class is mapped into

a PROMELA process-type, each UML object is mapped into a PROMELA process and

each link in the collaboration diagram is converted into a PROMELA channel for objects

to exchange messages. vUML provide an event generator to emulate external events

without parameters(close models) and remove external events carrying parameters in

order to avoid state space explosion.

vUML can check the following properties: deadlock, livelock, reaching an invalid

state, violating a constraint on an object, sending an event to a terminated object,

overrunning the input queue of an object, overrunning the deferred event queue.

In order to verify those properties, two extra stereotypes are introduces, namely

<<invalid>> and <<progress>>. UML model developers need to add those extra

stereotypes into their models in order to use vUML to model check safety and liveness

properties. Constraints also act as a way to specify properties(invariants over attributes

and states). vUML cannot verify LTL formulas due to unavailable to express a LTL

formula in a UML diagram.

[47] has developed such as tool called vUML, which make use of Spin model checker.

It first transform a UML statecharts into Promela, which is the modeling language

used by the Spin model checker. Then, model checking is done by the Spin model

checker. Whenever a counter example is provided by the Spin model checker, vUML

will transform the counter example back to a UML sequence charts and report to the

user.
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HUGO

HUGO [42] is a tool which contains three components, each of which supports one

functionality. The first is the code generation component, which is used to automatically

generate Java code from UML state machines. The second is model checking component,

used to verify the consistency of UML state machines against specifications expressed as

collaboration or sequence diagrams. HUGO can support LTL model checking provided

knowledge of the underlying model checker(SPIN) and the structure of the translation.

The third component is a back end for the real time model checker UPPAAL.

HUGO also adopts the translation approach where it translates UML state machines

into PROMELA models and utilize the SPIN model checker to do the verification(the

same applies to the real-time components where the UML state machines are translated

into the UPPAAL modeling language). HUGO is developed based on UML version 1.4.

SMV-based Verification Tool

[49] introduced a tool based on ASM model checker(which is based on SMV model

checker). The semantics they adopted is defined in [22](UMLversion1.3 or early, though

not explicitly mentioned in their technical report). This tool set supports both stat-

ic(structural) and dynamic(behavioral) check of a UML diagrams. The static checking

handles class diagrams and object diagrams, while the dynamic checking deals with

statechart diagrams. This tool takes UML diagrams specified in XMI as input and out-

put a counter example in the form given by the SMV model checker(since the dynamic

checking component of this toolset is based on the SMV model checker). The counter

example trace can be fed to their analysis tool, which will analysis of the error trance

and produce some UML diagram such as sequence diagram or a collaboration diagram

to the users. In contrast to vUML [47] and HUGO [42] which proposed a translation

approach, [49] formalizes UML semantics in ASM and utilizes ASM as both the seman-

tic and validation model. Then a ASM model checker(based on SMV model checker) is

directly used to model checking the dynamic properties of the model. In this way, they

guarantees that the model is correctly defined and the verification result reflect the real

problem in the model.

TABU

[13] introduced a tool called TABU(Tool for the Active Behavior of UML). TABU takes

UML diagrams(activity and state diagrams) in the form of XMI as input, automatically
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translate it into .smv representation and call the Cadence SMV Model Checker to verify

the UML model. In addition, TABU also provides assistant for writing (LTL/CTL)

properties to verify against the model. This feature makes the underlying model and

the translation procedure transparent to the users, and solved the problem faced by

vUML [47] to some extend.

This tool is attractive in the sense that it deals with UML 2.0 specifications, which is

much closer to recent UML standard. The translation covers most UML features(though

not described in detail in this paper) except for synchronization states, events with

parameters and dynamic creation and destruction of objects. It also provides guides

in writing properties. But it is still a translation approach and suffers all the common

defects of translation approaches. Further, the counter example is given in the form of

SMV model checker, which is not intuitive for model designers to map to their models.

JACK

[30] provide an algorithm to support direct model checking UML statecharts(v1.1) based

on the formal semantics they have defined in [44]. The implementation is based on

the tool set JACK[17], which is an environment based on the use of process algebras,

automata and temporal logic formalism and supports many phases of the system de-

velopment process by integrating different editing tools and verification tools. Different

components of the JACK tool set communicate with the FC2 format. There is a model

checking tool in the JACK tool set named AMC, which supports ACTL model checking.

The system should be translated into the FC2 format first in order to utilize the AMC

component. The user also need to specify their own ACTL property according to the

model. This requires users to have a knowledge of model checking, the underlying model

as well as temporal logic formulas.

PROCO

Another tool which translate a UML state machine in the form of XMI forms into

PROMELA, the input language of Spin model checker is discussed in [40], which has

been discussed in section 3.

4.3 Summary

We notice that all the existing tools just provide a front-end supporting translation from

UML state machine to languages of model checkers. Such a translation will introduce
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extra cost for the verification procedure. Due to the limitation of input languages to

model checkers, the complex semantics of UML state machine cannot be fully support-

ed. There are also problems for the utility of those tool, i.e. it is hard to map the

found vulnerabilities to the original model. The informal translation procedure cannot

guarantee the soundness of the obtained model either. In order to conquer all the above

weaknesses, we are motivated to develop a tool which support direct model checking of

UML state machine diagrams.
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5 Analysis of UML state machine specifications

In this section, we are going to thoroughly analyze the basic constructs of UML behav-

ioral state machine specifications as documented in [6, Chapter 15]. We are also going

to briefly describe UML state machine features. The syntax and semantics, which are

based on the discussion here, will be defined formally in Section 6. The description

is according to OMG UML2.4.1 Superstructure Specification [6, Chapter 15]. We also

refer to [11] as another important reference since it is the most recent related work and

it covers a lot of features of UML 2.2 behavioral state machine. We analyze three kinds

of basic constructs in UML behavioral state machine, i.e. state, pseudostate and tran-

sition. We selectively cite some parts of the original descriptions in OMG UML 2.4.1

Super Structure Specification [6, Chapter 15] for better clarity.

5.1 States

States in a UML behavior state machine have three types, i.e. simple state, composite

state and submachine state. Composite state is further divided into orthogonal com-

posite state and composite state depending on whether it has exactly one or more than

one regions.

“A Submachine state is semantically equivalent to a composite state.”

[6, Chapter 15.3.11, Section Description, Submachine state, p.560]

Thus we can convert a submachine state into a composite state easily in the formal-

ization and verification procedure. Currently we support simple state and composite

state (including orthogonal composite state). In our continued work, we plan to sup-

port submachine state since it can be converted to a composite state.

Final state is a special kind of state. It does not have regions, entry/exit behaviors

or do activities. But it still belongs to the class of state, since it has a fundamental

difference with pseudostate, viz an object can temporally “stay”2 in a final state while

it cannot “stay” in any of the pseudostate.

5.2 Pseudostate

Pseudostates are introduced to connect transitions to form compound transitions which

have a more complete semantic meaning, or to aid the construction of a state machine

to improve the expressiveness of it. There are 10 kinds of pseudostates specified in [6,

Chapter 15.3.8] and they are described bellow. We group some pseudostates which share

2waiting for some event to happen or waiting for some processing procedure to be completed
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Figure 2: Entry and Exit Vertex in Orthogonal Composite Sate

similar specifications(entry point and exit point, shallow and deep history, fork and join)

together.

• Junction pseudostate is a syntax free vertex and is introduced as syntactic sugar

to merge/split incoming transitions into outgoing transitions sharing the same

transition path, i.e. guard condition, target vertex.

“junction vertices are semantic-free vertices that are used to chain together

multiple transitions.”

[6, Chapter 15.3.8, Section Semantics, p.551]

• Entry point (resp. exit point) pseudostate is a way to explicitly indicate the ex-

ecution of entry (resp. exit) behavior. On entering a composite state, it can also

play the role of a junction or fork (resp. join) pseudostate.

“An entry point is equivalent with a junction pseudostate (fork in case the

composite state is orthogonal)”

[6, Chapter 15.3.11, Section Semantics, Submachine state, p.565]

25



But the direct ancestor of an entry (resp exit) pseudostate is not clear.

“An entry point pseudostate is an entry point of a state machine or com-

posite state”

[6, Chapter 15.3.8, Section Semantics, p.551]

Which implies that an entry point belongs to a composite state, at least will

represent the scope of a composite state. However:

“Entering an exit point within any region of the composite state or s-

tate machine referenced by a submachine state implies the exit of this

composite state or submachine state, etc.”

[6, Chapter 15.3.8, Section Semantics, p.551]

This seems to imply that an exit point pseudostate belongs to a region. For ex-

ample, There is no difference between Figure 1[a] and Figure 1[b]. In both figure,

the exit vertex “graphically” belongs to region R1 and the entry vertex “graphi-

cally” belongs to the region R2, but entering the entry vertex means entering the

composite state S0, i.e., both region R1 and R2. The same rule applies to the exit

vertex. Another possible scenario is shown in Figure 2[a]. In this case, the entry

(resp. exit) point pseudostate belong to the composite state.

Since in UML state machine specification [6, Chapter 15], the description of s-

tate [6, Chapter 15.3.11, Section Associations, p561] and state machine [6, Chap-

ter 15.3.12, Section Associations, p573] both have associations named connection-

Point, which refers to entry/exit pseudostates. But in the description of region [6,

Chapter 15.3.10, Section Associations, p557], there is no such associations. So we

will follow this description and make the entry/exit point pseudostate associated

with a state or a state machine.

Further, transition emanates from an entry vertex cannot target a join vertex, as

restricted by “...In each region of the state machine or composite state it has at

most a single transition to a vertex within the same region” [6, Chapter 15.3.8,

Section Semantics, p.551]. Since the target vertex should be in the same region

with the entry vertex, a join vertex will not satisfy such a constrain.

One of the benefit of introducing entry/exit point pseudostate is for the purpose

of using submachine state, which need a mechanism to explicitly indicate the

entrance and exit of it. Another benefit of entry and exit vertices is the fine-

grained behavior granularity. For example in Figure 1, without the exit vertex,
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the action sequence of the run-to-completion step starts from S1 and ends in S4

will be Exf (S0); t2.α; t3.α; Enf (S4). However, with the exit vertex, the action

sequence will be t2.α; Exf (S0); t3.α; Enf (S4).

Another possible scenario is shown in Figure 2, the only difference between 2[a]

and 2[b] is that, in 2[a],the entry behavior of state S0 will be executed before the

actions associated with transition t1, t5, but in 2[b], the order is reversed. This

observation is obtained from:

“An entry point is equivalent with a junction pseudostate (fork in case

the composite state is orthogonal): Entering via an entry point implies

that the entry behavior of the composite state is executed, followed by the

(partial) transition(s) from the entry point to the target state(s) within

the composite state.”

[6, Chapter 15.3.11, Section Semantics, Submachine state, p.565]

• join vertices:

“Join vertices serve to merge several transitions emanating from source

vertices in different orthogonal regions, etc., fork vertices serve to split an

incoming transition into two or more transitions terminating on orthogonal

target vertices.”

[6, Chapter 15.3.8, Section Semantics, p.551]

So join (resp. fork) pseudostate is used to represent execution of transitions from

(resp. to) vertexes in orthogonal regions simultaneously.

“The transitions entering a join vertex cannot have guards or triggers,

etc. The segments outgoing from a fork vertex must not have guards or

triggers”

[6, Chapter 15.3.8, Section Semantics, p.551]

Guarantees that transitions emanating from (resp. ending in) a fork (resp. join)

vertex can be executed simultaneously. They are different from the other pseu-

dostates in that they are emanating (targeting) a set of vertices instead of one

vertex.

“transitions outgoing a fork vertex must target states in different regions

of an orthogonal state”

[6, Chapter 15.3.8, Section Constraints, p.550]
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So the target states of a fork vertex must be states(as opposed to pseudostate).

But we do not see such constraints on a join transition.

• Initial state is used to indicate the default initial state (not pseudostate) of a region

of a composite state, it cannot act as target of a transition. Further constraint is

as follows:

“The outgoing transition from the initial vertex may have a behavior, but

not a trigger or guard”

[6, Chapter 15.3.8, Section Semantics, p.551]

• History pseudostate is a mechanism for the state machine to remember the previous

“snapshot” of its containing state. History pseudostate is further divided into

shallow history and deep history pseudostate.

“ deepHistory represents the most recent active configuration of the

composite state that directly contains this pseudostate(e.g. the state

configuration that was active when the composite state was last exit-

ed). . . shallowHistory represents the most recent active substate of its con-

taining state(but not the substates of that substate)”

[6, Chapter 15.3.8, Section Semantics, p.551]

Shallow (resp. deep) history pseudostates indicates the last active substate (resp.

configuration ) of its containing state. It can act as both source and target of a

transition. Transition emanating from a history pseudostate indicate the default

history (in case a history pseudostate is reached but the containing state has never

been activated or the last active substate was a final state). They are still different

from the other pseudostates since they have an extra “invisible transition”, which is

the recorded last active state within the containing composite state and is changing

during execution.

• Choice pseudostate, though also connects transitions to form compound transi-

tions, has its guard on the transitions emanating from it evaluated dynamically,

which means that the guard evaluation of transitions emanating from the choice

pseudostate may depend on the execution of the previous transitions and cannot be

decided until the choice pseudostate is reached. In this aspect, choice pseudostate

more resembles states instead of pseudostate. Theoretically, transitions emanating

from a choice vertex can end in any vertex (except for initial vertex). But we forbid

transitions emanating from choice vertex to end in a join vertex since join vertex

28



will involve more than one region and the choice vertex may cause ambiguity. For

example in Figure 3, if the current configuration is {S3,S5,S6,S4,S1,S0} and

transition t9, t10 are enabled, since transitions emanating from a choice vertex

should be evaluated during execution, the result of evaluating t11 is unknown. If

the later evaluation of t11 is true, then the best case happens and we proceed

with the current “routine”. If, however, transition t13 is evaluated to true, then

we are in a dilemma, since such a conflict is not specified in the specification.

Thus this situation should be avoided, i.e., a transition emanating from a choice
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Figure 3: Choice vertex Example

vertex cannot end in a join vertex. We do not forbid the use of junction vertex in

this case since all transitions of a junction vertex are evaluated statically (before

execution), no ambiguity will be caused. Another point we should mention about

the choice vertex is that instead of evaluate one single transition emanating from

a choice vertex, we should evaluate the sequence transition with the first of it

emanates from the choice vertex. For example in Figure 3, we should evaluate

sequence transition t11.t12 instead of t11 alone in the choice vertex C 1.

• Entering a terminate pseudostate represents the termination of object which was

active on the current state machine. Without exiting any states nor executing any

exit actions, the state machine terminates immediately.
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5.3 Transitions

“A transition is a direct relationship between a source vertex and a target

vertex.”

[6, Chapter 15.3.14, Section Description, p.581]

So a transition can emanate and target a pseudostate as well.

“ A compound transition is a derived semantic concept, represents a “seman-

tically complete” path made of one or more transitions, originating from a set

of states (as opposed to pseudo-state) and targeting a set of states”

[6, Chapter 15.3.14, Section Semantics, p.583]

So a compound transition can be composed of a series of transitions with more than

one pseudostates inbetween the source and target states. To the best of our knowledge,

no work in the literature has considered compound transitions. We illustrate a compound

transition in Figure 4.
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Figure 4: Multiple pseudostates in a compound transition

As is shown in the figure 4, we can have a compound transition connected by a

junction and choice pseudostate. Actually, according to the definition of a compound

transition, we can have a compound transition connected by any number of junction,

choice and join pseudostates with one fork pseudostate (since fork pseudostate can only

target states in orthogonal regions).

Triggers, guards and effects are associations of a transition. We use Trigger , G and

B to represents the set of all possible triggers, guards and effects separately. In our

current settings, we do not consider time-event as triggers.
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We have listed all possible source and target vertex of a transition we considered

in Table 2. As is shown, transitions emanating from initial, history and fork vertex

can only target states. Initial vertex cannot act as target of transitions. transitions

emanating from a choice or entry point vertex cannot target a join vertex as has been

explained in Subsection 5.2.

Source Target Remarks

S S ∪ Sf ∪ PS\I initial vertex cannot act as targets

I S ∪ Sf the semantics of initial vertex is to indicate the
default state of a composite state instead of oth-
er vertex

H ∗ ∪H S ∪ Sf history pseudostates represents the most recent
active substate (shallow history) or configura-
tion (deep history), which is a set of trees of
states [6, p.564]

C S ∪ Sf ∪ PS\I \J transitions emanating from choice vertex cannot
target a join vertex

J S ∪ Sf ∪ PS\I a transition emanate from a join vertex can tar-
get any vertex except for initial vertex

F S ∪ Sf “transitions outgoing a fork vertex must target
states in different regions of an orthogonal s-
tate” [6, p.550], so the target states of a fork ver-
tex must be states(as opposed to pseudostate).

Junc S ∪ Sf ∪ PS\I transitions emanating from a junction vertex
and target any vertex except for initial vertex

En S ∪ Sf ∪ PS\I \J transition emanates from a entry vertex cannot
target a join vertex

Ex S ∪ Sf ∪ PS\I transitions emanating from an exit point pseu-
dostate can target any vertex except for initial
pseudostate.

Table 2: Valid transitions

Another important point we should notice is the scope of a transition. The scope

of a transition, along with the source and target state, indirectly provides the type of a

transition, i.e., internal, external or local.The suggested container is the Least Common

Ancestor(LCA)3 of source and target states of the transition:

“The owner of a transition is not explicitly constrained, though the region must

be owned directly or indirectly by the owing state machine context. A suggested

owner of a transition is the LCA of the source and target vertices”

[6, Chapter 15.3.14, Section Semantics, Compound transitions, p.583]

3the smallest common container of the two states.

31



But it is not sufficient to identify all types of transitions. For example in Figure 5,

transition t3 would have been mistakenly treated as internal transition since the LCA

of its source and target are both S4.
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6 Formal semantics of UML statecharts–Our Approach

Our work is partially based on the work proposed by Jen Schon̈born et al. [37]. But

[37] considers too many possibilities about the ambiguous nature of UML state machine

specifications, some of which are unnecessary. Besides, junction, choice and terminate

pseudostates are left out in their approach. We argue that even though those pseu-

dostates are considered syntactic sugar, they cannot be easily replaced by the existing

transitions, especially choice pseudostate, which hold the meaning that guards are eval-

uated dynamically inbetween transitions within a run-to-completion step. Furthermore,

the formal semantics provided in [37] are not complete, actually they just provide rules

to formalize transition steps of UML state machine execution How to model the whole

behavior state machine is not discussed. So in our definition of UML state machine

semantics, we will consider all of the pseudostates. Further, for those semantic variation

points, we will choose to fix those obvious ones to the widely adopted semantics. This

will be discussed in the definition of each concrete semantics.

We first introduce two basic sets(types) we defined for the convenience of defining

syntax.

Let Natom be a set of state, region, pseudostate and transition names in the UML

state machine. In Figure 1[a], the set Natom = {S0,S1,S2,S3,S4,R1,R2, f1, i1, en1, ex1, t1,

t2, t3, t4, t5, t6}4.

Let N be a set of composite names, each of which is composed of a sequence of

elements in Natom . The form is elements in Natom connected by dots. For example, in

Figure 1[a], the state S2 will be represented as R0.S0.R2.S2 and the exit point pseudostate

will be represented by R0.S1.R1.en1 in the form of composite names.

6.1 Syntax of UML state machine

We define the formal abstract syntax in this subsection. The syntax we defined is based

on the description of UML state machine specifications. We used different symbols

to represent different domains. The detailed explanation of the symbols is listed in

Appendix B.

Definition 1 A state is defined as a 9-tuple(name, type, subvertex , deffer, entrybehavior,

exitbehavior, doactivity, entrypoint, exitpoint) where:

4In [6], the outermost construct is a state machine, which has the same semantics with a composite
state except that, it represent a complete object behavior. We can ignore the outermost state (machine)
and represent the outermost hierarchy as a default region R0.
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• name ∈ N is the name of the state which uniquely identifies the state.

• type : enum{isSimple, isOrthogonal , isComposite, isSubmachineState} is the type

of the corresponding state.

• subvertex : PR is the set of direct containing regions of this state. In case of a

simple state, the set is empty.

• deffer : PTrigger is the set of defferrable triggering events associated with this

state.

• entry : B is the optional entry behavior of the state. In terms of no entry behavior

is defined for the state, this value is set to ε.

• exit : B is the optional exit behavior of the state. In terms of no exit behavior is

defined for the state, this value is set to ε.

• do : B is the optional do behavior of the state. In terms of no do behavior is

defined for the state, this value is set to ε.

• entrypoint : En is the entry point reference associated with the state. In terms of

no entry point reference is defined for the state, this value is set to ε. entrypoint

can only be associated with a composite state.

• exitpoint : Ex is the entry point reference associated with the state. In terms of no

entry point reference is defined for the state, this value is set to ε. exitpoint can

only be associated with a composite state.

Definition 2 A region is defined as a 3-tuple(name, subvertex , containingpseudostate)

where:

• name ∈ N is the name of the region which uniquely identifies the region.

• subvertex : P(S ∪ Sf ) is the set of direct containing states of this region.

• containingpseudostate : PPS is the set of pseudostates contained in this region.

Definition 3 A pseudo state is defined as tuple (name, type) where:

• name ∈ N is the name of the pseudostate which uniquely identifies the pseudostate.

• type : enum{I ,T ,En,Ex , J ,F , Junc,C ,H ∗,H } is the type of the corresponding

pseudostate.
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Figure 5: Example of a UML behavior state machine

Definition 4 Final state is a special kind of state, which is defined as a tuple (name,

container)

where:

• name ∈ N is the name of the final state which uniquely identifies the finalstate

• container : R is the direct container of the final state.

Definition 5 A transition tr is defined as a 9-tuple(name, Ŝ , ε, ϕ, α , T̂ , ι, F̂ , Ĵ )

where:

• name ∈ N is the name of the transition which uniquely identifies the transition.

• Ŝ ∈ Src is the source state (in the case of a join transition will it be the join

pseutostate).

• T̂ ∈ Trg is the target state (in the case of a fork transition will it be the fork

pseudostate).

• ε ⊂ Trigger is the set of triggers, and it can be an empty set.
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• ϕ ∈ G represents the guard of the transition. It is a boolean expression of triggers,

if there is no guard for a given transition, this field is set to true by default.

• α ∈ B is the effect behavior to be performed when the transition fires. A transition

can have no effect behavior, in such a case, this field is set to be ε5.

• ι is the scope of a transition.

• F̂ is a tuple of the form (fn,TAP), where fn ∈ F is the name of the fork pseu-

dostate and TAP , {(n, trg , eff , ι)|trg ∈ T̂ , eff ∈ B , ι ∈ S\Ssimp
⋃

R}. n is the

name and unique identifier of of one of the transitions emanating from the fork

vertex. trg is the target vertex of the transitions. eff is the effect associated with

the transition and ι is the scope of the transition. If a transition is not a fork tran-

sition, this field is set to (ε, ε, φ, ε) by default. For notation convenience, we will

use the single transition ending in the fork vertex to represent the fork transition

and this transition is referred to as the main transition. For example, in Figure 5,

t13 alone will represent the fork transition t13(t14 || t15) and is called the main

transition.

• Ĵ is defined as a set of tuples of the form (jn,SAP) where jn ∈ J is the name of

the join pseudostate. SAP , {(n, src, eff , ι)|src ∈ Ŝ , eff ∈ B , ι ∈ S\Ssimp
⋃

R}. n

is the name and unique identifier of of one of the transitions emanating from the

fork vertex. src is the source vertex of the transition. eff is the effect associated

with the transition and ι is the scope of the transition. If a transition is not a

join transition, this field is set to (ε, ε, φ, ε) by default. For notation convenience,

we will use the single transition emanating the join vertex to represent the join

transition and this transition is referred to as the main transition. For example,

in Figure 5, t24 alone will represent the join transition (t22 || t23)t24 and is called

the main transition.

In the definition of Transition, we explicitly note join and fork pseudostate and the

associated transitions but leave the other pseudostates alone. Our consideration for this

is that fork and join pseudostates are special since they require a parallel semantics,

i.e., a fork pseudostate requires the transitions emanating from the fork pseudostate to

fire simultaneously. Such semantics will be very troublesome to capture if we do not

explicitly note them. For the convenience of later usage, we explicitly note every field

of a transition as follows. For ∀ t ∈ Tr , its subdomain are denoted as follows:

5Note that ε should not be in Trigger or B since we use it to represent empty action here.
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• t .n is the name of transition t .

• t .Ŝ is the source state of transition t .

• t .T̂ is the target state of transition t .

• t .ε is the set of triggering events of transition t .

• t .ϕ is the guard of transition t .

• t .α is the action associated with transition t .

• t .ι is the scope of transition t .

• t .F̂ refers to the pair (fn,TAP).

• t .Ĵ refers to the pair (jn,SAP).

Further, we define function Isfork: Tr → B check whether a transition is a fork

transition6.

Isfork(t) =

 T , ift .F̂ 6= (ε, ε, φ, ε)

F , otherwise

Function Isjoin: Tr → B check whether a transition is a join transition7.

Isjoin(t) =

 T , ift .Ĵ 6= (ε, ε, φ, ε)

F , otherwise

Function main: Tr → Tr will return the main transition of a fork (resp. join)

transition. Formally, main(t) = t ′, where t ′.n
.
= t .n, t ′.Ŝ

.
= t .Ŝ , t ′.T̂

.
= t .T̂ , t ′.ε

.
=

t .ε, t ′.ϕ
.
= t .ϕ, t ′.α

.
= t .α, t ′.ι

.
= t .ι, t ′.F̂

.
= (ε, ε, φ, ε), t ′.Ĵ

.
= (ε, ε, φ, ε). Where

.
= means

assign a value to the left hand side formula.

As an example, we consider transition t7, t1 and t2 in Figure 6, their syntactic

representations are shown in Table 3.

transition name syntax representation

t1 (t1,S1, f 1, {e1}, g1, a1,R0, (f 1, {(t3,S2, a3,R0), (t4,S3, a4,R0)}), (ε, φ))

t2 (t2, j 1,S4, {e2}, g2, a2,R0, (ε, φ), (j 1, {(t5,S2, a5,R0), (t6,S3, a6,R0)}))
t7 (t7, init1,S1, e7, g7, a7,R0, (ε, φ), (ε, φ))

Table 3: representation of transitions

6The compound transition connected by a fork pseudostate.
7The compound transition connected by a join pseudostate.
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Figure 6: The syntax of transitions

Definition 6 (State machine) A UML state machine M is defined by a 5-tuple (S ,

Sf , PS, R, Tr),

where

• S is the set of states contained in the state machine.

• Sf is the set of final states contained in the state machine.

• PS is the set of pseudo states contained in the state machine.

• R is the set of regions contained in the state machine.

• Tr : S ∪ PS\T → S ∪ Sf ∪ PS\I is the set of all transitions tr .

In our syntax definition, we try to follow the UML behavior state machine specifi-

cation as much as possible. We keep the state hierarchy in the definition of states with

the field of subvertex . States, regions and pseudostates hierarchy can all be dealt this

way. In a UML state machine, only the inter level8 transitions break the hierarchical

structure. So we do not include transitions into state hierarchies as opposed to the EHA

approaches proposed by [44, 54]. In this way, we keep the hierarchical structure of a

UML state machine tidy and at the same time obey OMG UML behavior state machine

specification as much as possible compared to [37]. For example the state machine in

Figure 7 is represented in Table 4.

8transitions which cross the boundary of states

38



S3
Deffer:e4 S4

t1
/<a1>

t2
e2,[g2]/<a2>

t3
e3/<a3>

t4
e4/<a4>

init1

init2

f1

S1 S2

Entry:En_1 Exit:Ex_1

Do Activity: Do_1

Do Activity: Do_2

t5
/<a5>R1

R2

Figure 7: The syntax of a state machine illustration

6.2 Semantics of UML state machine

We introduce our semantic definitions of UML state machines in this subsection. Firstly

some auxiliary functions(from Definition 7 to Definition 11) are introduced. Then we

proceed to introduce the formalization procedure of our approach. For those ambiguity

or inconsistent descriptions, we explicitly cite the original description in OMG UML

2.4.1 Super Structure Specification [6, Chapter 15] in our discussion for better clarity.

concatenation _: N × N → N is used to concatenate two composite names to form

a new composite name. For example, S0 _ R0 = S0.R0

length N → N (the set of Nature Number) will return the length of a composite name

in terms of the total number of dots it contains. Let n be the total number of dots

in a composite name s, then length(s) = n + 1.

prefix �: N ×N is a partial relation between two composite names. �, {(s ′, s)|s ′, s ∈

N ∧ ∃ s0 ∈ Natom : s ′ _ s0 = s ∨ (s ′ _ s0, s) ∈�}. Note that in our definition

above, the prefix of a string includes itself. We define the set of proper prefix of a

string ≺: N ×N as the set � \{(s, s)}.

first N → Natom is an operation which returns the first sub-component of a given

component name. first(s) , {s0|s ∈ N ,∃ s0 ∈ Natom ∧ s ′ ∈ N : s0 _ s ′ = s}.

last N → Natom is an operation which returns the last sub-component of a given com-

ponent name. last(s) , {s0|s ∈ N , ∃ s0 ∈ Natom ∧ s ′ ∈ N : s ′ _ s0 = s}.
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construct type name syntax representation

state

S1 ((S1, isComposite,R1, ε,En 1,Ex 1,Do 1, ε, ε)
S2 (S2, isComposite,R2, ε, ε, ε,Do 2, ε, ε)
S3 (S3, isSimple, ε, {e4}, ε, ε, ε, ε, ε)
S4 (S4, isSimple, ε, ε, ε, ε, ε, ε, ε)

final state f 1 (f 1,Sf )

region
R0 (R0, {S1,S2}, φ)
R1 (R1, {S3}, {init1})
R2 (R2, {S4, f 1}, {init2})

pseudostate
init1 (init1, I )
init2 (init2, I )

transition

t1 (t1, init1,S3, ε, ε, a1,R1, (ε, φ), (ε, φ))
t2 (t2,S3,S4, {e2}, g2, a2,R0, (ε, φ), (ε, φ))
t3 (t3,S3,S2, {e3}, ε, a3,R0, (ε, φ), (ε, φ))
t4 (t4,S4, f 1, {e4}, ε, a4,R2, (ε, φ), (ε, φ))
t5 (t5, init2,S4, ε, ε, a5,R2, (ε, φ), (ε, φ))

Table 4: Syntax representation of state machine in Figure 7

component N×N→ PNatom returns the ith sub-component specified by the index(i) of

a given dot string. component(s, i) , {s0|s0 ∈ Natom ∧ ∃ s ′, s” ∈ N : length(s ′) =

i − 1 ∧ s ′ _ s0 _ s” = s.

Definition 7 (Direct container ⇑) (S ∪R ∪ Sf ∪ PS )→ P(S\Ssimp ∪R) returns the

direct container of a given vertex. ⇑(s) , {s ′|s ′ ∈ S\Ssimp ∪ R : s ∈ s ′.subvertex}

The direct container of a vertex or region is its direct ancestor, i.e. the state or

region which has it as a subvertex. For example in Figure 7, the direct container of

state S3 is ⇑(S3) = {R0.S1.R1}.

In UML 2.4.1 superstructure specification [6] for behavior state machine, the outer-

most construct should be a state machine. The only difference between a state machine

and a composite state is that, a state machine does not have entry behavior, exit behav-

ior, do activities and deferred event associated with it. Thus we can safely regard the

outermost constructs as a composite state. If the outermost composite state has only

one region9, as is shown in Figure 7, we can even leave out the composite state and just

utilize its directly containing region as the outermost construct. So in our formalization,

we use R0 to represent the outermost construct of a state machine by default.

Definition 8 (Container ↑) (S ∪ R ∪ Sf ∪ PS )→ P(S\Ssimp ∪ R) will return the set

of all the containers of a given vertex. ↑(s) , {⇑(s)} ∪ ↑(⇑(s)).

9Actually, we can always add a wrapper region for a given state
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The container operation returns all the regions and states which directly or indirectly

contains the given vertex. For example, in Figure 7, container of state S3 is ↑(S3) =

{R0.S1.R1,R0.S1,R0}.

Definition 9 (Containing ↓) (S\Ssimp ∪ R) → (S ∪ R ∪ Sf ∪ PS ) maps a state or a

region to the set of vertices/regions contained in it. Formally: ↓(s) , {s.subvertex} ∪

↓(s.subvertex ).

In contrast to container, the containing operation operates in the other direction,

i.e., inwards from the given vertex (not including itself). For simple state, final state and

pseudostates, their containing state set is empty. In the example of Figure 7, the contain-

ing vertex of composite state S2 is ↓(S2) = {R0.S2.R2.S4,R0.S2.R2.init2,R0.S2.R2.f 1}.

Definition 10 (DirectContaining ⇓) (S\Ssimp ∪ R) → P(S ∪ R ∪ Sf ∪ PS ) returns

the direct containing substate of a given vertex. ⇓(s) , {s.subvertex}.

For example, the direct containing vertex of composite state S2 is ⇓(S2) = {R0.S0.R1.S2.R1}.

For simple state, final state and pseudostates, they do not have direct containing state,

we use ∅ to represent the notation of on direct containing state.

Definition 11 (Restriction �) (S∪R∪Sf ∪PS )×(S\Ssimp∪R)→ P(S\Ssimp∪region)

selects a subset of containers of a given vertex according to the given restriction bound

(scope). Formally: �(s, ι) , {s ′| ∀(s, s ′) ∈ ↑ : (s ′, ι) ∈ ↑}.

Restriction, as indicated by the shape of the operator, will return the containers of

a given vertex restricted by a bound/scope. For example in Figure 7, the restriction of

composite state S4 by S02is �(S4,S2) = {R0.S2.R2}. The purpose to introduce this

operator is to calculate the set of states exited and entered as a result of firing some

transitions. The restriction bound/scope is the scope ι of the transition in this case.

Definition 12 (Configuration) The set of all configurations of the current state ma-

chine is defined as: K , {Ŝ ⊂ S ∪ Sf | ∀ s ∈ Ŝ , ↑(s) ⊂ Ŝ ∧ ∀ r ∈ R : ⇑(r) ∈ Ŝ ⇒| ⇓(r) ∈

Ŝ |6 1}.

The first part of the definition constrains that for any state in the configuration, its

container must also be in the configuration. This is required by the hierarchical state

structure and the behavior semantics of the UML behavior state machine. The second

part of the definition indicates two points: Firstly, if an orthogonal state with more than
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one region is in the configuration, then all its directly contained regions should also be

activated. Secondly, within each orthogonal region which is activated currently, there is

exactly one of its directly contained state in the configuration. It exactly captures the

two invariant requests about a configuration as specified by

“If a composite state is active and not orthogonal, at most one of its substates

is active. If the composite state is active and orthogonal, all of its regions are

active, with at most one substate in each region.”

[6, Chapter 15.3.11, Semantics, Composite State, p.564]

In the following, we will use Kc : K10 and Kx : K to represent the current configu-

ration and the next configuration which can be reached from the current configuration

given a triggering event.

Definition 13 (Pseudo Configuration) A Pseudo Configuration represents the set

of vertices the state machine may temporally resides inbetween a run-to-completion step,

i.e., it is the set of vertices the state machine is in after a transition is executed. For-

mally,

PSK , {Ŝ ⊂ S ∪ Sf ∪ PS\I | ∀ s ∈ Ŝ , ↑(s) ∈ Ŝ ∧ ∀ r ∈ R : ⇑(r) ∈ Ŝ ⇒| ⇓(r) ∈ Ŝ |6 1}.

The definition of a pseudo configuration is no different from a configuration except that

pseudostates are allowed to present. Configuration is a special case of pseudo configu-

ration, i.e., K ⊂ PSK. For example, in Figure 5, if the current pseudoconfiguration is

{S0,S1,C 1,S6} 11 and join transition t6 is fired, the next pseudoconfiguration will be

{S0, j 1,S6}.

Definition 14 (SeqTrans) STr ∈ N is a set of sequence transitions which is defined

as follows:

1. ∀ t ∈ Tr , t ∈ STr

2. ∀ ti , tj ∈ STr ∧ last(ti).T̂ ⊂ first(tj ).Ŝ , ti _ tj ∈ STr

3. ∀ ti , tj ∈ STr ∧ IsJoin(last(ti)) ∧ IsJoin(first(tj )) ∧ last(ti).T̂ = {first(tj ).Ĵ .jn} ∧

last(ti).Ĵ .jn ∈ first(tj ).Ŝ , ti _ tj ∈ STr

In our semantics definitions, we consider the name of each transition as the unique

identifier for a transition. So when we write t ∈ Tr , we are referring to t .n. ( We choose

10We may use some defined concepts as types in this paper. Actually any type is just a set of
elements. So any set we have defined can be used as a type. We use K as a type and the comma : can
be interpreted as “of type”.

11Since each vertex and region in this example has a unique name, we just use their name instead of
the hierarchical dotted string here.
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to include only transition names in a sequence transition to avoid unnecessary costs. )

For example, in Figure 5, transition t6 and t11 form a sequence transition by the junction

pseudostate j1, then t6 _ t11 is denoted as t6.t11.

Transition is a special case of sequence transitions which does not have pseudostates

as connectors.

If a sequence transition’s target state is a subset of another transition’s source states,

then they can be connected to form a new sequence transition.

The last condition is specially for connecting two or more join transitions in a row.

For example in Figure 5, the two join transitions t24 and t28 are connected consecutively.

The transition t24 is public to both, i.e., part of compound transition connected by join

vertex jn1 as well as part of transition connected by join vertex jn2. Thus the specified

condition 2 is not suited here. In condition 3, we require that the second join vertex

must be the target vertex of the first join transition last(ti).T̂ = {first(tj ).Ĵ .jn} and

the first join vertex must be in the set of source vertex of the second join transition

last(ti).Ĵ .jn ∈ first(tj ).Ŝ . Fork transitions do not have such a concern since it is required

that a fork transition must target states (as opposed to pseudostate) in orthogonal

regions.

Compound transitions, connected by join and fork vertices contain multiple tran-

sitions. Some of them may require simultaneous invocations for orthogonal regions,

Therefore, they need to be executed together. In our syntax notation, i.e. in Definition

5, we had explicitly represented the compound transition connected by one join or fork

vertex. In Figure 5, t24.t28 (which represents(((t23 || t22)t24) || t25)t28) is a sequence

transition. In Figure 5, transition sequence t1, t4.t5, t4.t5.t7.t8.t9 are also elements of

STr .

Definition 15 (evaluate) evaluate : S ∪ Sf ∪ PS\I × Trigger → PSTr will return

the set of sequence transitions of which all the guards of all its component transi-

tions are evaluated to true under the current Active vertex and the dispatched event

matches its triggering event. Formally, evaluate(S , e) , {st ∈ STr | first(st).Ŝ ∈ S ∧

last(st).T̂ ∈ (S ∪ Sf ∪ T ∪ C ) ∧ @st ′ ∈ evaluate(S , e) : st ′ ≺ st ∧ (∀ i ∈ [1, length(st)] :

enable(component(st , i), e)))}.

enable(t , e) ,

T , t .ϕ = T ∧ (t .ε = e ∨ t .ε = φ)

F , otherwise

We consider a set of enabled sequence transitions. Such a sequence of transitions

may emanate from a set of arbitrary vertex but must ends in either a set of states,
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or choice or terminate pseudostates. We also explicitly deal with history vertex. Our

consideration here is as follows

• We need to temporarily pause at the choice pseudostate because we need to make

a dynamic decision as to which outgoing transition to follow.

• For the terminate state, since it means the termination of the whole state machine,

there is no need to proceed any more.

• Pause at choice and terminate pseudostates will not affect the evaluation of enabled

transitions. For choice pseudostate, there must be a default transition emanating

from it to guarantee the well-formedness in case guards of all the other transitions

are evaluated to false.

“If more than one of the guards evaluates to true, an arbitrary one is

selected. If none of the guards evaluates to true, then the model is consid-

ered ill-formed. (To avoid this, it is recommended to define one outgoing

transition with the predefined “else” guard for every choice vertex.)”

Chapter 15.3.8, Semantics, choice, p551

For terminate pseudostate, no further operation is needed.

• For fork (resp. join) transitions, since transitions entering a join (resp. outgoing

from a fork) vertex must not have triggers and guards [6, Chapter 15.3.8, Seman-

tics, p.551], we can treat a join (resp. fork) transition the same way as a normal

transition and considers only the transition emanating from a join (resp. entering

a fork) vertex.

Note that, after each evaluation is called, we need to add the result sequence tran-

sition to the current Firable transition set.

Definition 16 (Enabled Transitions) K×Trigger → PSTr is a function which maps

the current configuration and triggering event to a set of enabled sequence transitions

which emanates from the states in the current configuration and are activated by the

triggering event. Formally, EnTrans (Kc , e) , evaluate(Kc , e).

Enabled transitions are those sequence transitions evaluated to be enabled in current

configuration.

Definition 17 (Leave) Tr ×PSK → P(S ∪PS ) maps a transition to the set of states

and regions it leaves in the current configuration on firing. Formally:
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Leave(t ,PSKc) ,



φ, t .ι ∈ t .Ŝ⋃
t ′∈t .Ĵ .SAP

Leave(t ′,PSKc)
⋃

Leave(main(t),PSKc), IsJoin(t)⋃
t ′∈t .F̂ .TAP

Leave(t ′,PSKc)
⋃

Leave(main(t),PSKc), IsFork(t)

↓(t .ι) ∩ PSKc otherwise

The operator Leave is introduced mainly for deciding conflict transitions and calcu-

late next configuration.

• If a transition is a internal transition, as indicated by t .ι ∈ t .Ŝ which means the

source and target state are the same, then the set of states it left on firing is empty.

• If a transition is a join (fork) transition, we need to count not only the main

transition, but also those transitions ending in the join (emanating from fork)

vertex.

• For other transitions, the states left on firing are all the containers and containing

states of the source state which are in the current pseudo configuration PSKc . In

other words, all the subvertices of t .ι (the scope of transition t) which are in the

current pseudo configuration will be exited. This is captured by ↓(t .ι) ∩ PSKc .

For example in Figure 8, the set of states and regions it left on firing transition t6

is shown in table 5.

Fired transition t6

PSKc S0,S2,S3,S5,S7

states left S0,S2,S3,S5,S7

Table 5: States left on firing a transition

Definition 18 (Conflict) Tr × Tr × K → B is a function which decides whether two

transitions t , t ′ conflict with each other. Whether two sequence transitions are in conflict

with each other is decided by their first transitions.

Conflict(t , t ′,Kc) ,


T , ((Leave(t ,Kc) = φ ∨ Leave(t ′,Kc) = φ) ∧ t .Ŝ

⋂
t ′.Ŝ 6= φ)

∨ Leave(t ,Kc) ∩ Leave(t ′,Kc) 6= φ

F , otherwise

“Two transitions are said to conflict if they both exit the same state, or, more

precisely, that the intersection of the set of states they exit is non-empty.”

[6, Chapter 15.3.12, Semantics, Conflicting transitions, p.575]
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Figure 8: Transitions Enter and exit orthogonal composite states

This is captured by Leave(t ,Kc) ∩ Leave(t ′,Kc) 6= φ.

“An internal transition in a state conflicts only with transitions that cause an

exit from that state.”

[6, Chapter 15.3.12, Semantics, Conflicting transitions, p.575]

This is captured by (Leave(t ,Kc) = φ ∨ Leave(t ′,Kc) = φ) ∧ t .Ŝ
⋂

t ′.Ŝ 6= φ.

We use configuration instead of pseudo configuration because that we only need to

solve a conflict between transitions at the beginning of a run to completion step. In

the middle of a run to completion step, if we encounter a choice vertex, we may need

to do the evaluation again, but there is no need to solve conflict. Since it has been

specified that if more than one guards of transitions emanating from the choice vertex

are evaluated to true, an arbitrary one is selected to be executed.

“If more than one of the guards evaluates to true, an arbitrary one is selected”

[6, Chapter 15.3.8, Semantics, p.551]

Definition 19 (Priority) Tr × Tr is a partial relation between two transitions. A

pair of transitions (t , t ′) ∈ Priority means that transition t and t ′ are conflicting with

each other and transition t has higher priority over transition t ′. Formally, Priority:,

{(t , t ′)|conflict(t , t ′) ∧ ∃ s ∈ t .Ŝ : ∀ s ′ ∈ t ′.Ŝ , distance(s,LCA(s, s ′) > distance(s ′,LCA(s, s ′)}.

“The priority of a transition is defined based on its source state”

[6, Chapter 15.3.12, Semantics, Firing Priorities, p.576]
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. Here we consider two kinds of situations in solving conflict transitions, differentiated

by whether an orthogonal composite state is involved. The first situation is that neither

of the two conflict transitions is a part of a compound transition connected by join

pseudostate, i.e., emanating from different regions of an orthogonal composite state.

This scenario is specified as follows:

“By definition, a transition originating from a substate has higher priority than

a conflicting transition originating from any of its containing state.”

[6, Chapter 15.3.12, Semantics, Firing Priorities, p.576]

In the rest of the paper, we refer this to the “hierarchical priority principle”. For

example, in Figure 912, transitions t1 and t3 are conflicting and t1 has priority over t3

in this case. As for t1 and t9, the priority is unsolved since they emanate from the same

state.

The second situation is that at least one of the two conflict transitions is a part of

a compound transition connected by join pseudostate. This situation is described as

follows:

“The priority of joined transitions is based on the priority of the transition with

he most transitively nested source state”

[6, Chapter 15.3.12, Semantics, Firing Priorities, p.576]

We refer this as “ join priority principle” in the rest of the paper. The “most

transitively nested source state” is ambiguous since the baseline is not clear. But the

intuition to us is that the baseline should be the Least Common Ancestor of the involved

states. However, another description about the suggested transition algorithm provided

by [6, p.576] seems to provide the contradict idea:

“States in the active state configuration are traversed starting with the inner-

most nested simple states and working outwards, etc. The only non-trivial

issue is resolving transition conflicts across orthogonal states on all levels, this

is resolved by terminating the search in each orthogonal state once a transition

inside any one of its components is fired.”

[6, Chapter 15.3.12, Semantics, Transition selection algorithm, p.576]

This has been discussed in [37], where they did not get a conclusion about the

ambiguous situation, but provide formalization for both situations. In our work, we

follow the hierarchical priority principle (not the transition selection algorithm) and

12In this example, we remove all the triggering events, guards and effects for simplicity. We assume
that guards of all transitions are satisfied and all the pair of transitions discussed here are triggered by
the same event.
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choose the Least Common Ancestor(LCA) as the baseline. Priority is given to the

transition with the most transitively nested source states, i.e., the source state has the

largest distance with the Least Common Ancestor (LCA) of the source states of all the

conflicting transitions. The reasons for this choice is as follows:

• Since we need to compare states from orthogonal regions, which are not in the

same branch of state hierarchy 13, we need a uniformed reference which is “fair”

and convincing to both side. Referring to the innermost simple state(leaves in

the tree) in either side is not fair nor convincing to the other side since they are

not in the same branch of state hierarchy and hence not comparable. Further, in

some cases, the priority is not solvable if we follow the algorithm suggested by [6,

Chapter 15.3.12, Semantics, Transition selection algorithm, p.576]. For example

in Figure 9, consider join transition t7 and t8, the priority is not solved since S5

and S7 are both the innermost simple states in each region.

• Since this is a conflict in the UML specification [6, Chapter 15.3.12, Semantics

p.576] itself, we should follow the most reasonable one. We consider the priority

principle as the first hand reference while the suggested transition selection algo-

rithm as the second hand reference since it is based on the priority principle and

should have supported it. Thus we choose to follow the priority principle in our

work.

In Figure 9, Transition t3 and t4 are conflicting. Since t4 is part of a join transition,

the priority is thus decided by t3, t4, and t5(since t5 is also part of the join transition).

The source states of the three transitions are S3,S3 and S7 respectively, the LCA of

them are S0. S7 has the largest distance 14 with S0. So the join transition has higher

priority over t3, thus t4 has higher priority over t3. Apply the same rule, we can know

that the join transition t7 15 has higher priority over the join transition t8.

The other possibilities are considered undefined and we suggest to avoid those situ-

ations in the modeling.

Definition 20 (deferral Conflict) deferral conflict is the conflict between a defferred

event of a state and a transition consuming the event. We solve such a conflict and

13Remind that all the vertex and regions in a UML state machine form a tree structure, the root
of which is the outermost region. Each orthogonal composite state acts as a branching point and each
region of it is the subroot of a subtree. Thus states in different subtrees are not comparable from bottom
up(use leaves as baseline), but comparable from top down(use root as base line).

14We choose to leave out the region when considering the distance between states, thus the distance
between S7 and S0 is 3 while the distance between S3 and S0 is 1.

15We use the single transition emanating from the join transition to represent the join transition. So
t7 here represent (t4, t5)t7 and t8 represents (t2, t6)t8
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Figure 9: Conflicting transitions illustration

returns true if the event is defferred by the state and false if the event is consumed by a

transition.

defConflict(t ,Kc , e) ,


T , t ∈ EnTrans(Kc , e) ∧ ∃ s, s ′ ∈ Kc :

(e ∈ s.deffer ∧ s ′ ∈ t .Ŝ ∧ s ′ ∈ ↑(s))

F , otherwise

In our definition, we try to solve the conflict following the specifications of [?], which is

described as follows:

“In case of a composite orthogonal state, substates of orthogonal regions may

also introduce deferral conflicts. The conflict resolution follows the triggering

priorities, where nested sates override enclosing states. In case of a conflict

between states in different orthogonal regions, a consumer state overrides a

deferring state”

[6, Chaperter 15.3.11, Semantics, Deferred events]

So in our definition of deferral conflict, we consider two situations.

• If the confliction does not involve orthogonal composite state, which means that

the involved states must be in the same branch of state hierarchy, then we give
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higher priority to substates. In our definition, ∃ s ∈ Kc : e ∈ s.deffer capture the

condition that the event e is in the defferred event set of a state in the current

configuration. ∃ s ′ ∈ Kc : ∃ t ∈ EnabledTrans(Kc , e) ∧ s ′ ∈ first(t .Ŝ ) captures the

condition that event e also triggers some transitions whose source states are in the

current configuration. Thus a confliction arises. !IsOrthog(LCA(s, s ′)) ∧ s ∈ ↑(s ′)

captures the condition that no orthogonal composite states are involved in the

confliction and the state with event e in its defferred event set is the substate of

the state which has transition with trigger e emanating from it.

• If the confliction involves orthogonal composite state, we do not compare the state

hierarchy as has been done in solving conflicts between transitions in Definition 19,

but directly give higher priority to transitions which consumes the current event.

In the case which join transitions are involved, since orthogonal composite states must

be involved in this situation, the second situation should be applied. For example in

Figure 10, the defferred event in state S6 can be conflict with transition t8, since S6 is a

substate of S5, so the event deferral has higher priority. The defferred event in state S6

also conflict with transition t2, in this case, they resides in different orthogonal regions,

i.e. composite state S1 is involved, so the priority if assigned to transition t2. The same

condition applies to the confliction of defferred event in state S6 with transition t7, in

this case, priority is also assigned to transition t7.

S4

S6
Deffer: e

S2

S5

t7
e

t8
e

t3

t6

S1

S3 t2
e

t1

t4

t5

Figure 10: deferral Conflict illustration
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Definition 21 (Firable Transitions) K × Trigger → STr is the set of enabled tran-

sitions of which conflicts are solved by priority rules. Formally, we define Firable Transi-

tions FirTrans(Kc , e) , {st | ∃ st ∈ EnTrans(Kc , e) ∧!deferralConflict(first(st),Kc , e) ∧

@st ′ ∈ FirTrans(Kc , e) : conflict(first(st),first(st ′)) ∧ @st” ∈ EnTrans(Kc , e) :

conflict(first(st),first(st”)) ∧ priority(first(st”),first(st))}

The purpose of the function Firable Transition is to select the largest non-conflicting

subset from Enabled transitions such that transitions in the selected subset are non-

conflicting and have higher priorities over the conflicting ones in the left part. The first

step of deciding firable transitions is to check the deferral conflict. !deferralConflict(Kc , e)

means there is no such confliction or transition is assigned higher priority, which is the

basic condition before we proceed to check conflicts between enabled transitions.

Definition 22 (ActiveSubState) P(S ∪ Sf ∪ R ∪ PS\I )× Trigger → PS will return

all the transitively/indirectly activated states due to the given set of active vertices.

Formally, ActiveSubState(S , e) ,
⋃

s∈S Active(s, e), where

Active(s, e) ,



(s.s = φ ∨ s.s ∈ Sf )?defhistory(s) : s.s, s ∈ H
⋃

H ∗

ActiveSubState(first(evaluate({s}, e)).T̂ , e), s ∈ C⋃
s′∈⇓s inital(s ′) s ∈ S\Ssimp

s, s ∈ Ssimp ∪ Sf

initial(s), s ∈ R

stop, s ∈ T

φ, otherwise

This operation is introduced to deal with the varieties raised by history, choice, initial

and terminate pseudostates as well as final states. The detailed explanations about each

item in the definition are as follows:

• If we have reached a history vertex, that means we need to consider two possibili-

ties, i.e., default history state and the recorded last active state. The operator “ c

? a: b ” is inspired by the C language which means that if condition c holds then

return a, else return b. In the Enabled Transition step (Definition 16), we just guar-

antee that the sequence transition whose last subtransition emanates from a history

vertex is enabled. This is the point where we should decide which states should

we enter. defhistory(s) , {s ′|s ∈ H
⋃

H ∗ ∧ ∃ t ∈ Tr : t .Ŝ = {s} ∧ s ′ ∈ t .T̂}

will return the default history states pointed to by the default history transition

emanating from history pseudostate s.
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• If we have reached a choice vertex, we will first evaluate which sequence transition

is enabled in the current environment and return the active substate of the target

state of the first transition of the enabled sequence transition. The set evaluate is

defined in Definition 15.

• If we have reached a composite state, we need to active its default substate indi-

cated by the initial vertex. initial : R → S
⋃

Sf will map a region to its default

substate indicated by its containing initial vertex. initial(r) , {s| ∃ s ′ ∈ I : s ′ ∈

⇓(r) ∧ ∃ t ∈ Tr : t .Ŝ = {s ′} ∧ t .T̂ = {s}} ∪ initial(⇓(s)).

• If we have reached a final state, we need to wait for all the orthogonal regions of

its container composite state have reached their final state and active its container

composite state. Note that we cannot recursively active a given vertex in this

situation. The semantic meaning of reaching a final state is to exit the container

composite state, in a well-formed state machine, there should be a transition ema-

nating from the composite state. If we recursively active the composite state, the

result will be enter the substates indicated by the initial state of each region in the

composite state, which is incorrect semantics. We use Infinal : S\Ssimp → Bool

to wait for all the orthogonal regions of a composite state has reached their fi-

nal state. Since we did not consider completion event currently, we just coarsely

describe this concept.

• If we have reached a simple state, just active it directly.

• If we are in a region, active its default substate indicated by initial state.

• If we have reached a terminate state, then the state machine is terminated by

definition. We use stop to represent this.

• If we have reached other vertex except for those discussed above, no active substate

exists since those vertex do not have substates. We include these pseudo vertex

just to provide a unified view of the semantic definition.

Definition 23 (Enter) Tr × Trigger → P(S ∪ R ∪ Sf ∪ PS ) maps a transition to the

set of vertices and regions it enters on firing. Formally,

Enter(t , e) ,


⋃

(t ′, , , )∈t .F̂ .TAP
Enter(t ′, e)

⋃
Enter(main(t), e) Isfork(t)⋃

(t ′, , , )∈t .Ĵ .SAP
Enter(t ′, e)

⋃
Enter(main(t), e) Isjoin(t)

{s ′|s ′ ∈ �(s, t .ι), s ∈ t .T̂}
⋃

ActiveSubState(t .T̂
⋃

R, e)
⋃

t .T̂ , otherwise

52



where R = {r |s ∈ t .T̂ ∧ ∀ s0 ⊂ �(s, t .ι)
⋃

t .T̂ ∧ IsOrthogonal(s0), r ∈ ⇓(s0)}\(
⋃

s∈t .T̂ ↑(s)).

In the rest definitions, we use underline to represent the element we do not care. En-

tering a state means entering all the containers of the state (up to the scope of the transi-

tion) and all the substates of the state. For example, in Figure 5, on firing the fork tran-

sition t13, the set of states/regions entered would be {R0.S0.R2.S10,R0.S0.R2.S10.R1,

R0.S0.R2.S10.R2,R0.S0.R2.S10.R1.S12,R0.S0.R2.S10.R1.S12.R1,R0.S0.R2.S10.R2.S8,

R0.S0.R2.S10.R1.S12.R1.S7}.

One situation we need to pay extra attention is entering an orthogonal composite

state. We need to make all the default states in each orthogonal region of contain-

ers of the target state active. For example in Figure 8, firing of transition t4 will

cause all the containers of S7 to be entered, since container S0 and S4 are orthogonal

composite states, we also need to enter region R1 and R3, which means their default

states (S1 and S5 respectively) are entered. This will be applied recursively and fi-

nally, the set of active states will be {S7,S4,S5,S1,S2,S3,S0}. We formalize this by

using an auxiliary function called ActiveSubState, which will active the containing ver-

tex of a given state/region. We capture the activation of orthogonal composite state

by using the set R = {r |s ∈ t .T̂ ∧ ∀ s0 ⊂ �(s, t .scope)
⋃

t .T̂ ∧ IsOrthogonal(s0), r ∈

⇓(s0)}\(
⋃

s∈t .T̂ ↑(s)), which contains all the orthogonal regions of a composite state,

which is container of the target state except for the regions in the set of containers of

the target state.

Definition 24 (Next Pseudo Configuration) Tr × PSK × Trigger → PSK com-

putes the next pseudo configuration which will be active after executing the current tran-

sition. Formally, NextConfig(t ,Kc , e) , PSKc\Leave(t ,PSKc)
⋃

Enter(t , e).

The definition of next pseudo configuration is straightforward. Starting from the

current pseudo configuration, remove all the states which are exited on firing transition

t and add all the states which are entered on firing transition t . But note that the

order does matter in this definition. We must eliminate the set of states exited from

the current pseudo configuration first, before adding the set of states entered. This is to

prevent missing states when a transition first exit then re-enter a state. For example in

Figure 5, transition t3 exits S4,S11,S1 and re-enter them. If we add the entered states

first before removing exited states, the result will be missing these three states 16.

16The root reason is that, there is no duplicate elements in a set.
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In order to represent the non-deterministic effect sequences, such as those effects on

transitions ending in a join pseudostate or emanating from a fork pseudostate, and the

do activity, which is activated by entering its belonging state, with the entry behavior of

its substates etc, we introduce a new operator ‖(parallel). n effects e1, e2, · · · , en execute

in parallel is represented by ‖ni=1 ei , which indicates that all the n effects are executed

non-deterministically, i.e., no orders among them are forced. Another meaning of the

parallel operator is that the events are executed interleavingly, without interference with

each other. The operator sequence, denoted by a semicolon(; ) is used to represent the

execution order of two (collections of) effects. For example, e1; e2 represents that effect

e2 should be executed only after effect e1 has finished. In the following definitions, we

use AL to represent an ordered sequence of effects e ∈ B .

Definition 25 (ExitBehavior) PSK×Tr → AL will return the ordered exit behavior

of states a given sequence transition leaves. Formally:

ExitBehavior(PSKc , t) = Exit(⇓(t .ι) ∩ PSKc ,PSKc)

Exit(s,PSKc) ,


‖s′∈⇓(⇓(s))∩PSKc

Exit(s ′,PSKc); exitb(s), isOrthog(s)

Exit(⇓(⇓(s)) ∩ PSKc ,PSKc); exitb(s), !isOrthog(s)

exitb(s), isSimple(s)

exitb(s) = Stop(s.do); s.exit

An active state configuration can actually be represented as a tree structure, as has

been described:

“Furthermore, since the state machine as a whole and some of the composite

states in this hierarchy may be orthogonal(i.e., containing regions), the current

active “state” is actually represented by a set of trees of states starting with

the top-most states of the root regions down to the innermost active substate.

We refer to such a state tree as a state configuration.”

[6, Chapter15.3.11, Semantics, Composite state, p.564]

In our current definition, the root of the tree should be the direct containing substate

of the scope of the fired transition since we just focus on a single transition. The exit

behaviors should be collected from the innermost state, i.e. from leaves to the root in

the tree hierarchy. But we still need to avoid to collect duplicated behaviors. Since

transition(instead of compound transition) is the basic unit of collecting exit behaviors

and the exit behavior of a compound transition is composed of the exit behavior of its
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Figure 11: Collecting Exit Behavior

component transitions. We need to do the proper truncating so that no duplicate exit

behavior is collected. For example, in Figure 11, in order to collect the exit behavior

to be executed by firing compound transition t5.t6, we need to first collect the exit

behavior caused by firing t5, then collect the exit behavior caused by firing t6. One

point we need to pay extra attention is that on firing t6, states S1 is directly exited.

But state S2 and S3 are also exited indirectly since they are substates of S1. Then we

should avoid to collect duplicate exit behaviors since we had already collected the exit

behavior of S3 and S2 when firing t5. This is guaranteed by PSKc . The PSKc at the

moment we fire transition t6 does not include states S2 and S3 since they had been

exited on firing transition t5. So when we compute the set ⇓(⇓(s))∩PSKc , there will be

no duplicate states as has been exited by previous fired transitions. For a given pseudo

configuration PSKc and a fired transition t , The exit behavior is computed recursively

from the root of the tree. Three conditions are distinguished here:

• if the current state is an orthogonal composite state, then all its direct contain-

ing substates which are in the current pseudoconfiguration are exited in parallel,

followed by exiting the orthogonal composite state.
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• if the current state is not orthogonal, then the direct containing substate of the

current state is exited followed by exiting the current state.

• if the current state is a simple state, then its exit behavior is collected.
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Figure 12: Exit Orthogonal Composite State on join transition

Definition 26 (EntryBehavior) Tr × Trigger → AL will return the ordered entry

behavior of states a given transition enters. Formally:

EntryBehavior(t , e) = Entry(⇓(t .ι) ∩ PSKc ,Enter(t , e))

Entry(s,S ) ,


s.entry ; (‖s′∈⇓(⇓(s))∩S Entry(s ′,S ) ‖ s.do), isOrthog(s)

s.entry ; (Entry(⇓(⇓(s)) ∩ S ,S ) ‖ s.do), !isOrthog(s)

s.entry ; s.do. isSimple(s)

The entry behaviors should be collected from the outermost state to the innermost

state. Similar to collecting exit behaviors, we operate from the root down to leaves.

• If a state is an orthogonal composite state, then its entry behavior should be

invoked, all its direct containing substates which are present in the state tree

should be activated in parallel following the activation of the orthogonal composite

state.
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• If a state is not orthogonal, then its entry behavior should be collected, followed

by the entry behavior of its direct containing substate.

• If a state is a simple state, then its entry behavior and do activity are collected.

One thing we should pay additional attentions is that entry behavior and do behavior

should both be executed on entering the state, and do behavior should be executed after

the entry behavior has finished.

“If defined, entry actions are always executed to completion prior to any internal

behavior or transitions performed within the state”

[6, Chapter 15.3.11, Associations, entry, p.561]

But there is no constraint on the terminating time of do behavior. Actually do

activity of the current composite state will continue its execution until its belonging

state is exited or it finishes execution.

“The execution starts when this state is entered, and stops either by itself or

when the state is exited whichever comes first”

[6, Chapter 15.3.11, Associations, doActivity, p.561]

So it is possible that the do activity of the current composite state executes in

parallel with the entry behavior/do activity of its substates. For example, in Figure

13, the do activity of composite state S1, i.e. Do 1 may be executed in parallel with

En 2,En 4,Do 2,Do 3,Do 6. There is no constraint specifies the execution order of a

do activity of a composite state and the entry behavior of its direct containing substate,

i.e. the execution order of Do 1 and En 2 in Figure 13 is not specified. But we know

that Do 1 should follow En 1 and En 2 should also follow En 1. So we assume that

En 2 and Do 1 can start execution at the same time. We use the parallel operator ‖ to

express the meaning that the two parts connected by the parallel operator should start

execution at the same time and the activities in each part are executed interleavingly.

There is another issue about the parallel operator that we should notice: Actually

we are using the concatenation operator ; to indicate the execution order between the

do activity Dof (s) and the rest of behavior Entry(child(s)). A tricky situation is that

if a composite state do not have entry behavior, i.e. Enf (s) = ε, then we are unable

to represent the invoking order of Do activities. For example, in Figure 13, we would

like to express the meaning that Do 3 is invoked before Do 6, but we may mistakenly

write Do 6 ‖ Do 3 in his case and the active order of Do 3 leading Do 6 is missing.

So we chose to use ε to represent the missing entry behavior. ε here is a place holder,

meanwhile, it will represent the invoking order. In the above example, we will write
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(Do 3 ‖ (ε; Do 6)) instead and it means Do 3 should be invoked before Do 6. We can

also use the place holder ε to represent the missing do activity, but it does not affect

the semantic meaning and we choose to remove it by default.

The sequence of entry and do behaviors invoked by firing fork transition t1 should

be En 0; (Do 0 ‖ En 1; (Do 1 ‖ En 2; (Do 2 ‖ ((ε; (Do 3 ‖ (ε; Do 6))) ‖ En 4)))),

which is the same as computed by our definition.

S0

Entry: En_0 Exit: Ex_0

Do activity: Do_0

Do activity: Do_1

Entry: En_1 Exit: Ex_1

S1

S2
Entry: En_2 Exit: Ex_2

Do activity: Do_2

S3

S4

S5
t1 t2

t3

Do activity: Do_3

Entry: En_4     Exit: Ex_4

Do activity: Do_6
S6

Figure 13: Collect Entry Behavior Illustration

Definition 27 (Collect Actions) CollectAct : Tr × PSK × Trigger → AL will col-

lect all the effects, including exit behaviors, actions along the transition, entry behav-

iors and do activities, associated with the execution of the given transition. Formally,

CollectAct(t ,PSKc , e) , ExitBehavior(t ,PSKc); t .α; EntryBehavior(t , e).

Definition 28 (Event dispatch) PTrigger × (Trigger × PTrigger) will dispatch an

event from the current event pool.

Formally, dispatch, {(Trigger , e,Trigger ′)|Trigger = e ^ Trigger ′ }.
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UML behavior machine specifications does not explicitly define the storage structure

of events and the event dispatch orders in order to support different priority-based

schemes. So we will use a general function to model the event dispatch mechanism and

leave the details open for all possibilities

Here we choose to use the symbol ^ instead of
⋃

to represent the operation of join

event e into the event pool Trigger ′ and avoid the confusion of treating the event pool

as a set.

Definition 29 (Event Merge) (PTrigger×PTrigger)×PTrigger will merge two event

pools into one event pool. Formally, Merge, {(ε, ε′, ε”)|ε ^ ε′ = ε”}.

Given all the above auxiliary functions, we can finally provide the formal semantics

of a UML behavior state machine. We use the form of inference rule to define the formal

semantics, the formula above the line represent the premises and the formula below the

line represent the conclusion, which is the formal semantics.

Firstly, we will introduce the single step rule, which describes the semantic transition

step of firing a single transition.

Definition 30 (Single Step Rule)

t .Ŝ
e,t .ϕ−−−→
t .α

t .T̂ , t .Ŝ ⊂ PSKc , !defConflict(t ,Kc , e)
[ (Trigger , !t .α,Trigger ′ ∈ Merge) ]

PSKc
e,t .ϕ−−−−−−−−−−−−−−−→

CollectAction(PSKc ,t ,e)
NextPC (PSKc , t , e)

The premise indicate that the transition t has a triggering event e, which is the

same as t .ε, guard t .φ and behavior t .α and its source state is within the current pseudo

configuration. When transition t fires, the semantics is that the state machine will

transform from the current pseudo configuration PSKc to the next pseudo configuration,

which is computed by NextPseudoConfig(PSKc , t , e) and all the behaviors happened

along the execution of the transition are collected by function CollectAction(PSKc , t , e).

Each action along a transition may generate new events which should be joined into

the event pool. We use the operator ! to represent that the action along transition t ,

i.e. t .α can generate new events and the generated event is represented as !t .α. This

checking is done each time a single transition is executed.

Definition 31 (RTC Wandering Rule)

t .Ŝ
e−→ ∅, t .Ŝ ⊂ Kc , !defConflict(t ,Kc , e)

[ RTC −Wandering ]
Kc

e−→ Kc
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Wandering rule is used to represent the situation when no transitions are triggered

and no defferred events in the current pseudo configuration match the event e dispatched

from the event pool. Then the state machine stays at the current pseudo configuration

and has the dispatched event e consumed.

Definition 32 (RTC Deferral Rule)

e ∈ s.deffer , s ∈ Kc , defConflict(t ,Kc , e)
[ RTC −Deferral ]

Kc
e−→ Kc

Deferral rule is used to capture the situation when there exists deferral conflict and

the deferred event get higher priority over the conflicting transitions. Then the state

machine stays at the current pseudo configuration and the dispatched event is added

back to the deferred event pool.

Definition 33 (RTC Progressing Rule)

ti .Ŝ
e,ti .ϕ−−−→
ti .α

ti .T̂ , ; i∈[1,n]ti ∈ FirTrans(Kc , e), ti .Ŝ ⊂ PSKi ,

ti .T̂ ⊂ PSKi+1,PSKi+1 = NextPC (ti ,PSKi , e),
PSK1 ∈ K,PSKn ∈ K, !defConflict(ti ,Kc , e)

[ RTC − Progressing ]

; i∈[1,n]PSKi
ti .ε,ti .ϕ−−−−−−−−−−−−−→

CollectAct(ti ,PSKi ,e)
PSKi+1

A Run to completion step is composed of one or more Single Steps. It represent the

complete semantics of dispatching one event. The premise of the rule indicate that there

are n transitions ti · · · tn and they form a sequence transition. Each target state set will

be in the next pseudo configuration after executing the transition. The first and last

pseudo configuration in the sequence both belong to the set of configuration. Actually

firing each transition in the sequence transition can be seen as using the Single Step

Rule, and the semantics for a run to completion step is defined as a connection of those

single steps in order.

Definition 34 (Semantics of a UML state machine) The semantics of a UML s-

tate machine is defined as a Labeled Transition System (LTS) L , (S,⇒,Sinit).

• S , K ∪ PTrigger is the state of L. Trigger is the event pool associated with the

current configuration, waiting for dispatching.

• ⇒ ⊂ S× S is the transition relation of L

• Sinit = (s0,Trigger) is the start state of L
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Kc
e−→
α̂
Kx

[ (Trigger , e,Trigger ′) ∈ dispatch ]
(Kc ,Trigger)

e−→
α̂

(Kx ,Trigger ′)

where Kx ∈ K is the configuration the state machine is in after a RTS step. α̂ represents

the behaviors collected along the RTC step.
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7 Future Work

In this section, we are going to discuss some promising future work related to the cur-

rent problem. We firstly describe the ongoing work, implementations of the operational

semantics we defined in Section 6 in PAT. Then we discuss two other related problems,

i.e. formal verification of Stateflow and automatic generation of state diagrams from

natural language documentation. All the work we are concerning are related to sup-

porting formal verification of design models, which is quite important and meaningful

in software engineering life cycle.

7.1 Implementation in PAT

Program Analysis Toolkit(PAT) [50] is our home grown framework to support simu-

lation, model checking of concurrent and real time systems. PAT implements various

model checking techniques which support different properties such as LTL properties

with fairness assumptions, deadlock-freeness, divergence-freeness, reachability as well as

probability model checking. Different models have been build inside the PAT framework,

including LTS models, real-time models, CSP models as well as stateflow models etc. We

are implementing our defined operational semantics of UML state machine within PAT

for the purpose of directly supporting model checking UML state machine models. We

Figure 14: Interface of UML Module in PAT

show some preliminary results of the UML Module under development. Figure 14 shows
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the interface of the UML module. Our module accepts a UML state machine diagram

in XMI(XML Metadata Interchange) format17, which basically is a specific use of XML.

We have finished the XML parser and are now working on the semantics programming

part.

7.2 Automatic verification of Stateflow

Stateflow [9] is a statechart-like language and is also referred to as an industry tool

developed by MathWorks company which provides a design environment used to devel-

op state charts and flow graphs. It18 provide a rich set of graphical language elements

for the convenience of modeling. Although Stateflow’s modeling language shares a lot

of common features with UML state machine, they have some differences. Stateflow

does not have as many graphical features as UML state machine does. Some similar

features supported by Stateflow, such as condition, condition actions and transition ac-

tions cannot be simply aligned with those in UML state machine. The most important

difference is that the Stateflow semantics is completely deterministic, while some pseu-

dostates such as junction, choice and conflicting transitions introduces non-determinism

into UML state machine diagrams.

Stateflow tool extends Simulink with a state chart and flow graph designing environ-

ment. It is tightly integrated with MATLAB and Simulink tool suite and benefits from

the mature framework. It also supports simulation, code generation as well as some

static checks, such as ill-specified truth tables checking. What is worth mentioning is

that, Stateflow also supports some runtime checking, such as checking for transition

conflicts, cyclic problems, state inconsistencies, data-range violations, and overflow con-

ditions. But those checkings are quite primitive and only at syntax level. It would be

exciting if we can also check some semantic properties of the underlying model, such as

deadlock-freeness, reachability and LTL properties. But to the best of our knowledge,

there are no such tools available now.

Stateflow’s user guide is documented in [2]. It is an integrated documentation which

provides usage information of the Stateflow tool as well as Stateflow language specifica-

tions. The document is written in purely naturally language and no formal semantics

are provided. Since Stateflow is widely used in model-based development in embedded

systems, and it has a quite different semantics from UML state machine. It is quite

17XMI is an OMG standard for exchange metadata information.
18Stateflow represents the modeling language as well as the integrated environment used to model

systems. Here it refers to the language.
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meaningful for us to provide a formal semantics for Stateflow, which can act as the base

of developing automatic verification tools for Stateflow diagrams. There exist some re-

lated work [32] [19] towards formalizing and automatic validation of Stateflow diagrams.

Grégoire and John provide an operational semantics for Stateflow [32] and built a proto-

type tool based on their defined semantics. This tool translate a Stateflow diagram into

the SAL language, which is used by SRI’s model checkers. Another approach proposed

by us is to systematically translate Stateflow diagrams into CSP#, the input language

of our home grown model checker PAT [50]. These translations approaches share the

same disadvantage with the translation approaches of UML state machine. So we plan

to provide direct model checking support to Stateflow diagrams.

7.3 Automatic generation of UML state machine diagrams

Another related work would be to apply Natural Language Processing(NLP) techniques

to project documentations and automatically extract UML state machine diagrams from

those documentations. There are some related work [51, 52, 29, 56, 48] which extract

useful information form software-related natural language descriptions such as program

comments [51, 52, 29] and API documentations [56, 48]. This provides us a clue of pos-

sibility of extracting a UML state machine model from the natural language description

of a project with the help of NLP techniques.

Lin et al. [51, 52] extracts useful information, such as lock-requiring and lock-

releasing constraints, program functions invocation order, from program comments as

well as program source code to detect inconsistencies between program comments and

source code. Those inconsistencies may indicate either bugs or bad comments which

may be misleading and cause potential maintenance problems. Hao et al [56, 48] ex-

plores API documentations to extract constraints on the usage of API functions. [56]

extracts constraints based on a pre-defined template which include operations such as

object creation, manipulating and destroy, they also considered lock and unlock oper-

ations. [48] defined more complicated templates in order to obtain program contract

information.

Those approaches all use very primitive NLP techniques such as POS tagging, shal-

low parsing, and some machine learning techniques such as Decision Tree Learning

and Hidden Markov Model(HMM). Limited by those simple NLP techniques, those

approaches can only extract constraints from simple sentences with significant “sign-

post”(imperative words, topic-related keywords). We believe that applying more ad-
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vanced NLP techniques will find us deeper-hidden information, which may need analysis

of multiple sentences.

Automatically generate UML state machine diagrams from natural language de-

scriptions will further automate software developing from analyzing informal natural

language documents to formal verification of system models.
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8 Conclusion

In this report, we thoroughly surveyed existing work on formalizing UML state machine

semantics and automatic verification of UML state machine as well as tool support.

We found that although a lot of work have been done in this area, most of the work

just support a limited subset of UML state machine features. The automatic verification

tools are all prototype tools built on top of existing model checkers based on a translation

approach, which is less efficient, and hard to prove correctness. We proposed a more

comprehensive semantics for UML state machine to bridge the gap. A tool which is based

on the proposed semantics is being developed in the PAT [50] environment. We are also

planing to support the direct model checking of Stateflow diagrams in PAT in the future.

Another promising future work we are considering is to automatically generate UML

state machine models from the extracted information of a project’s natural language

descriptions documentation.
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Appendix A

Limitation of EHA

S2

S1

Do Activity: Do_1

t1

t2 
e2[g2]/a2

t3 
e3[g3]/a3

t4 
e4[g4]/a4

t7

S3
t5 

e5[g5]/a5 S4
t6 

e6[g6]/a6

Figure A.1: Transitions cannot be expressed in EHA

We show in this section that EHA cannot represent local transitions.

“A transition with kind local must have a composite state or an entry point as

its source.”

[6, Chapter 15.3.15, Constraints, p.590]

In Figure A.1, transiton t2 and t5 are all local transitions, which emanating from a

composite state to its containing substate.

In an EHA, internal transitions, i.e. transitions which do not cross state boundaries,

are translated to the Sequential Automata which represent is containing composite s-

tate. For example in Figure A.1, transtion t4 should be translated into a transition

which belongs to a Sequential Automata that represent composite state S1. Interlevel

transitions such as t6 in Figure A.1 should be translated into a transition in a Sequential
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Automata which is the direct container composite state of its main source/target state.

In the example shown in Figure A.1, transition t6 should be translated into a tran-

sition of a Sequential Automata which represents the outermost region, i.e. the state

machine itself. With certain extra information recorded(source restriction and target

determinator [44]), interlevel transitions can be recognized correctly.

But transition t3, t5 are out of the capability of EHA. Hierarchical Automata requires

a strict hierarchical structure. The existence of interlevel transitions and local transitions

break the hierarchical structure. EHA just extend the Hierarchical Automata to deal

with interlevel transitions. But transitions like t3, t5 are from a state to its container

state, or from composite states to its containing states. It is impossible to represent

such transitions in an EHA since states in different hierarchies cannot appear in a single

Sequence Automata. This may threat the usage of EHA in formalizing UML state

machines.
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Appendix B

List of Symbols

Symbols

_ concatenation operator
‖ parallel operator
; sequencing operator
^ merge operator
! output of an operation
↑ container operation
⇑ direct container operation
↓ substate operation
⇓ direct substate operation
� substate difference operation

Plain letters

B The behavior type
C choice psuedostate type
Deffer deferred event of a state
do do activity of a state
En entry point pseudostate type
Ex exit point pseudostate type
entry entry behavior of a state
exit exit behavior of a state
F fork pseudostate type
G guard constraint type
H ∗ deep history pseudostate type
H shallow history pseudostate type
I initial pseudostate type
ID The unique identifier of a state machine construct
J join pseudostate type
Junc junction pseudostate type
K configuration
Kc current configuration
Kx next configuration
L Labeled transition system
LCA Least Common Ancestor operation
M state machine
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N set of natural numbers
P power set operation
PS Set of Pseudostates
PSK set of pseudo configuration
PSKc the current pseudo configuration
R Set of region names
S Set of state names
S states in LTS
SAP source action pair, component of a transition
Sinit initial state of LTS
Sf Set of final state names
Src source state set of transitions
STr sequence transition set
T terminate pseudostate type
TAP target action pair, component of a transition
Trg target state set of transitions
Tr set of transitions
Trigger The triggering event type

Greek letters

ι Scope of a transition
ε empty items
ϕ guard constraint of a transition
α effect behavior of a transition
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