
AUROR: Defending Against Poisoning Attacks in
Collaborative Deep Learning Systems

Shiqi Shen Shruti Tople Prateek Saxena
National University of Singapore

{shiqi04, shruti90, prateeks}@comp.nus.edu.sg

ABSTRACT
Deep learning in a collaborative setting is emerging as a corner-
stone of many upcoming applications, wherein untrusted users col-
laborate to generate more accurate models. From the security per-
spective, this opens collaborative deep learning to poisoning at-
tacks, wherein adversarial users deliberately alter their inputs to
mis-train the model. These attacks are known for machine learning
systems in general, but their impact on new deep learning systems
is not well-established.

We investigate the setting of indirect collaborative deep learning
— a form of practical deep learning wherein users submit masked
features rather than direct data. Indirect collaborative deep learn-
ing is preferred over direct, because it distributes the cost of com-
putation and can be made privacy-preserving. In this paper, we
study the susceptibility of collaborative deep learning systems to
adversarial poisoning attacks. Specifically, we obtain the follow-
ing empirical results on 2 popular datasets for handwritten images
(MNIST) and traffic signs (GTSRB) used in auto-driving cars. For
collaborative deep learning systems, we demonstrate that the at-
tacks have 99% success rate for misclassifying specific target data
while poisoning only 10% of the entire training dataset.

As a defense, we propose AUROR, a system that detects mali-
cious users and generates an accurate model. The accuracy un-
der the deployed defense on practical datasets is nearly unchanged
when operating in the absence of attacks. The accuracy of a model
trained using AUROR drops by only 3% even when 30% of all the
users are adversarial. AUROR provides a strong guarantee against
evasion; if the attacker tries to evade, its attack effectiveness is
bounded.

1. INTRODUCTION
Deep learning techniques have brought a paradigm shift in data

driven applications, from speech recognition (e.g., Apple’s Siri [4],
Google Now [7], Microsoft’s Cortana [6] and recently Facebook
M [3]), to image identification (e.g., Google’s Photos [5], Face-
book’s Moments [2]). Several security applications like spam fil-
tering [9], malware detection [23, 25] and others use neural net-
work algorithms as their back-bone. However, to attain reasonable
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accuracy in these systems, deep learning algorithms require exten-
sive training datasets. This constraint restricts the widespread use
of learning techniques in many applications. To address this limita-
tion, collaborative deep learning is emerging as a popular technique
to gather data from different sources and combine them to generate
larger datasets. For example, asking users to provide movie rat-
ings, tagging photos, crowd sourcing, marking emails as spam are
widely adopted ways to generate large and varied datasets [8, 11].

Direct collaborative learning, i.e., training directly on user pro-
vided data has two major concerns. First, submitting personal in-
formation to external parties exposes users to privacy risks since
they cannot control how their data is used after sharing. Even pas-
sive inference attacks are a known threat; for example, anonymized
movie ratings can reveal enough information to de-anonymize users
when combined with public data sources [31]. The second concern
is the vast amount of computation time (over few weeks) neces-
sary to train the learning algorithms on large datasets. Indirect col-
laborative learning addresses both these concerns [35, 39, 43]. In
this technique, each user computes partially on its data to generate
masked features. Instead of the original data, all the users submit
the masked features to the server. The server performs the remain-
ing computation of the learning algorithm on the masked features to
generate a global model, thereby guaranteeing each user’s data pri-
vacy and substantially reducing the computation costs on the cen-
tralized server.

Indirect collaborative learning, unlike direct collaboration offers
a weaker adversarial setting. The adversary in this setting can only
poison its own local data without observing the training data of
other users. Moreover, the poisoned data only influences the global
model indirectly via the masked features. Although, the training
process becomes privacy-preserving and cost-efficient due to dis-
tributed computation, as we highlight, it remains susceptible to poi-
soning attacks. Malicious / adversarial users can poison or tamper
the training data to influence the behavior of the global model [42].
However, the severity of poisoning attacks in indirect collabora-
tive deep learning is not yet well-understood. Thus, understanding
whether such restricted poisoning via masked features can influ-
ence the global model substantially is important. As our first con-
tribution in the paper, we study the efficacy of poisoning attacks to
varying levels of poisoning in state-of-the-art indirect collaborative
deep learning systems.

To understand the effect of these attacks, we test a state-of-the-
art indirect collaborative deep learning system which incorporates
differential privacy techniques [39]. We test using two popular
datasets and demonstrate targeted poisoning attacks that influence
the global model, misclassifying specific target data (e.g., digit 1
as 3). We select the well-known MNIST images for handwritten
characters as the first dataset for this system [24]. Using the at-



tack strategy of mislabeling dataset, we show that when 10% of all
the participants are malicious, the attack success rate is upto 99%.
Moreover, for a total of 10 output classes, the average accuracy of
the global model drops by 24% as compared to the model trained
with benign dataset when 30% of users are malicious. As our sec-
ond dataset, we select German traffic sign images (GTSRB) that
has 43 output classes [40]. Our attack exhibits 79% success rate
for specific target and the accuracy drops by about 9% when 30%
of users are malicious. Our experiments show that the attacker’s
advantage increases with fewer output classes in the system.

Existing defenses against poisoning attack focus specifically on
non-deep learning algorithms and assume access to complete train-
ing datasets. Nelson et. al [32] and Mozaffari-Kermani et. al [29]
assume the existence of a golden model generated from a trusted
dataset and classify the training data as malicious or benign based
on its effect on the accuracy of this model. However, in our setting,
we do not have access to such a pre-defined trusted model. Muhlen-
bach et. al [30] propose to identify malicious training data based on
the label of their neighboring data values. This method, however,
requires access to the entire training dataset beforehand. Hence,
previous defenses are insufficient and cannot be re-purposed in a
straightforward manner to prevent poisoning attacks in indirect col-
laborative deep learning systems. This problem raises the question
— is it possible to defend against poisoning attacks without having
access to the complete training data?

In this paper, we propose a defense against poisoning attacks that
does not require the availability of entire training data. To this end,
we design AUROR— an automated defense that filters out mali-
cious users based only on their masked features. The key insight in
designing AUROR is that poisoning of training data strongly influ-
ences the distribution of the masked features learnt by the system.
Since each masked feature corresponds to a different information in
the training data, the main challenge lies in identifying which set of
masked features are affected due to poisoning of the dataset. Thus,
AUROR involves two key steps a) identifying relevant masked fea-
tures corresponding to the attack strategy and b) detecting mali-
cious users based on the anomalous distribution of the masked fea-
tures. Our solution provides a strong accuracy guarantee against
arbitrary poisoning of data by all the colluding malicious users.

We implement our defense and evaluate its effectiveness on real
datasets for deep learning systems. We employ AUROR to iden-
tify malicious users in our attack set up. The detection rate for
identifying malicious users in both MNIST and GTSRB datasets
is 100% for a fraction of malicious users between 10% to 30%.
We measure the accuracy drop in the trained model after removing
the malicious users detected using AUROR. The trained model ex-
hibits a small accuracy drop ranging from 0% to 3% as compared
to benign setting for both the datasets. Thus, AUROR trained model
provides accuracy guarantees comparable to benign datasets. Our
experiments demonstrate that even an optimal adversarial strategy
cannot do any better in degrading this guarantee.
Contributions. We make the following contributions in this paper:
• Measuring Sensitivity of Poisoning Attacks. We empiri-

cally demonstrate that poisoning attacks are a serious threat
to indirect collaborative deep learning systems regardless of
masking the essential features of the training data and re-
stricted poisoning capacity of the adversary.
• AUROR. We introduce a statistical mechanism called AUROR

as a countermeasure to poisoning attacks in indirect collabo-
rative deep learning systems. AUROR automates the process
of identifying masked features exhibiting abnormal distribu-
tion and detects malicious users in the system based on these
features.
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Figure 1: The indirect collaborative learning setting. The
users compute a local model and submit masked features to
the server. The server computes a global model based on all the
abstract features.

• Evaluation. Our empirical evaluation validates that AUROR
can identify malicious users with almost 100% detection rate,
while limiting accuracy drop to under 3% for the final model
even when 30% users are malicious. AUROR thus enables
accurate and robust indirect collaborative learning systems.

2. OVERVIEW
Our goal is to understand the impact of targeted poisoning on

deep learning systems and investigate a practical defense that is
resistant to evasion.

2.1 Problem Setting
Several enterprises employ collaborative learning to understand

their customer’s behavior towards their products [8, 26]. They col-
lect data from the users in the form of reviews, feedback or other
attributes. In this work, we refer to the entity that collects the data
and processes learning algorithms over them as server. The server
does not necessarily need to be a centralized entity. The tasks of the
server can be performed in a distributed manner among the partic-
ipants. The participants or customers that submit their data to the
server are referred as users. The users can be individuals, groups or
companies with their own dataset. A user does not know or learn
any direct information about the training data of other users.

In this paper, we specifically examine the indirect collaborative
learning setting (as shown in Figure 1). This setting differs from
the direct collaborative learning in the way in which users upload
their data. Instead of submitting the raw data directly to the server,
users mask some information about their data and send it to the
server. This saves both the bandwidth (data costs) and yields better
privacy which is essential for practical adoption of any new tech-
nique. We refer to the masked information as masked features. The
users compute a local model on their machines that generates the
masked features. The server collects these masked features from all
the users and performs operations (for e.g., summation) to gener-
ate a global trained model. This global model captures the features
from the entire dataset, thus has a very high accuracy. Lastly, we
use the global model to perform the classification of the test dataset.

We select the privacy preserving deep learning (PPDL) system
by Shokri et. al [39] as the classification system. The PPDL sys-
tem performs image recognitions by indirect collaborative learning
setting as shown in Figure 1. This system uses differential pri-
vacy techniques to mask the features before submitting them to



the server. PPDL uses a distributed selective stochastic gradient
descent (SSGD) technique to distribute the computation between
the local and global model. Users of the system compute gradi-
ents from the input data and upload them as features of the data.
Section 3.2 gives a detailed explanation about their system and its
working.

2.2 Threat Model
In the above discussed indirect collaborative learning setting, we

consider that a constant fraction (f ) of the users are malicious.
These malicious users are incentivized to modify or poison the
training dataset to affect the accuracy of the global model. For
example, spammers can mark genuine emails as spams, thereby re-
ducing the accuracy of the learnt spam filter. Such a spam filter
will then assign emails with genuine content as spam resulting in
reduced credibility of the filter among its users. In this model, a
majority of the users are honest while a small fraction f (such that
f < n/2) of the users are malicious. This is a rational setting, for
example, consider the case where a product company bribes users
to give higher ratings to their products on an e-commerce web-
site [1,10]. Although, some of the users are compromised, the total
number of participants is much higher, resulting in benign users
forming a majority. We consider that all the adversaries know the
learning algorithm used by a particular application and are able to
tamper with the actual data accordingly (e.g., either by adding fake
data or mislabeling the training data). Moreover, all the malicious
users can collude together to poison their training data. However,
the adversary cannot learn the global model beforehand as the ma-
licious users have no knowledge about the training data generated
from the benign users.

The server in our model is honest-but-curious i.e., it passively
observes the data gathered from the users to learn information about
it. Our model directly inherits privacy guarantees from the previous
work [39]. The server cannot infer information about the original
data as all the users submit masked features. Our attack does not
break the privacy guarantees of the previous system but only influ-
ences the accuracy of the final global model.

2.3 Problem Definition
Targeted Poisoning Attacks. In non-deep learning systems, sev-
eral known adversarial learning techniques reduce the accuracy of
the global model. For example, attackers can modify the test data to
avoid the detection of malicious samples on a well-trained model [13,
16, 21, 33, 34, 41, 46] or alter the training data to affect the model
accuracy during the learning phase [17, 36, 42]. In this paper, we
specifically focus on the latter problem known as causative or poi-
soning attacks caused by tampering with the training data [14, 22,
27] on deep learning systems. Depending on the attacker’s mo-
tive, poisoning attacks can be of two kinds a) random attacks and
b) targeted attacks [22]. Random attacks are perpetrated with the
intention to reduce the accuracy of the model, whereas targeted at-
tacks are performed with a more focused objective. Specifically, in
targeted attack, the attacker’s goal is, for a given source data, the
model M outputs target data of the attacker’s choice. For example,
an adversary can poison the training data to classify a source data
(e.g., a spam email) as a target data (e.g., a genuine email).

Definition 2.1. (Source Data) Source data is any input value to the
global model for which the attacker wants to influence the model’s
output.

Definition 2.2. (Target Data) Target data is a value of attacker’s
choice that the influenced model should output for a given source
input.

The attacker arbitrarily chooses the source and target data values
first and then poisons its training data known as the poison set. The
poisoning strategy depends on the underlying learning algorithm
used by the system. The final poisoned model MP represents the
features from the entire training data provided by malicious as well
as benign users. We define the success rate of attack as follows:

Definition 2.3. (Attack Success Rate) The attack succeeds if the
poisoned model outputs the desired target value T for a source
input I , MP (I) → T and sets SI = 1 otherwise the attack fails
with SI = 0 where SI is used to indicate whether the target attack
succeeds. The success rate (SR) of the attack for the model MP is
given as:

SRMP =
(ΣI∈DSI)

|D| × 100

where D is the domain of all possible source inputs.

Along with the output of the source data, targeted poisoning ef-
fects the overall accuracy of the global model. We measure this
effect on the accuracy by calculating the accuracy drop due to poi-
soning on dataset.

Definition 2.4. (Accuracy Drop) Accuracy drop (AD) in a model
MP due to poisoning is defined as the difference in the overall
accuracy of a model trained using benign dataset and malicious
dataset, specifically as below:

AD(MB→MP ) = AMB −AMP

where AMB and AMP is the accuracy of benign model MB and
malicious model MP respectively.

Higher is the value of accuracy drop AD(MB→MP ), larger is
the influence of poisoning on the global model. Clearly, perform-
ing targeted attacks is more difficult than random attacks, as the
attacker has to poison the training data with a specific goal. It is
even harder to perform targeted attacks in collaborative learning
where each user contributes a small portion of data towards the en-
tire training dataset. Since all the previous poisoning attacks are
performed in direct collaborative machine learning setting [42], it
is not well-understood if targeted attacks are equally effective when
the users submit only their masked features. As a first step towards
this direction, we explore the effectiveness of targeted poisoning at-
tacks at various levels of poisoning in indirect collaborative learn-
ing and study the efficacy of these attacks on deep learning systems.
Defense Solution. As a preventive measure, we design a defense
for poisoning attacks in the indirect collaborative learning setting.
To thwart these poisoning attacks, the server should distinguish ma-
licious users among all the participants and exclude the features
contributed by these users while training the global model. This
detection and elimination strategy ensures that the global model is
not influenced due to the poisoned data. Thus, any server that em-
ploys this defense before computing the global model can guaran-
tee a robust and accurate model even under attack by a fraction f of
malicious users. However, the challenge in designing this defense
lies in correctly detecting the malicious users. One method is to
observe the labels of samples of all users and detect discrepancies
between them, as suggested by previous work [30]. The difficulty
of identifying malicious users escalates when the server does not
have access to the entire original training data but can only observe
the masked features of the data. In this work, we investigate the
problem of designing AUROR— a defense that thwarts poisoning
attacks in indirect collaborative learning setting without access to
training data. A global model trained using AUROR MA is robust
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Figure 2: The design details and steps involved in AUROR. AU-
ROR takes the masked features from users as input and pro-
duces a the final accurate global model.

and effective if the attack success rate SRMA and the accuracy
drop AD(MB→MA) of MA are small enough to be acceptable for
practical purposes.
Research Questions. In summary, we aim to answer the following
research questions:

• RQ1: What is the impact of targeted poisoning attacks in
indirect collaborative deep learning?
• RQ2: Can we effectively thwart poisoning attacks on deep

learning systems without having access to the entire training
dataset?

2.4 Our Approach
We propose AUROR— a defense against poisoning attack in in-

direct collaborative learning setting that can detect malicious users
with high accuracy, thereby building a robust global model. AU-
ROR does not need access to raw dataset and computes only on
submitted features. In designing AUROR, we highlight several key
observations that allow us to detect the malicious users.
Key Observations. Our first observation is that whatever be the
underlying distribution δ of the training data, the distribution of the
masked features δ′ preserves the distribution in the benign setting,
δ ∼ δ′. The second observation is that poisoning on the train-
ing data directly affects the distribution pattern of some specific
masked features referred to as indicative features. Let i be an in-
dicative feature then in an attack setting δ(i) � δ′(i) within statis-
tical error bounds. Thus, in an attack scenario, indicative features
from majority of honest users will exhibit a similar distribution
while those from malicious users will exhibit an anomalous dis-
tribution. As long as the fraction of malicious users is within range
(ε < f < n/2), AUROR performs this detection correctly. Here, ε
is the lower bound on the number of malicious users for which AU-
ROR can perform accurate detection. The value of ε varies with the
type of underlying dataset so that we need to determine the value
of ε for each dataset.
AUROR Design. Figure 2 shows the steps involved in designing
AUROR. It follows a deterministic algorithm and has no knowl-
edge about the attacker’s goal i.e., source or target values. AUROR
is applied on the training data before the online testing phase of
the model. AUROR takes masked features as input from both be-
nign and malicious users. At first, it analyzes the distribution of
the masked features from all the users to identify the indicative fea-
tures. The key challenge is to extract the indicative features that
change distribution in an attack setting. Depending on the type of
dataset, different features vary due to poisoning of the input dataset.
To decide whether a particular feature is indicative or not, it groups

the values for that feature uploaded by all users into different clus-
ters. If the distance between the centers of two clusters is greater
than a threshold value α, the feature is marked as indicative. The
value of α depends on the original distribution δ of the training
dataset.

After this, it detects malicious users based on the anomalous
distribution of the indicative features. To identify this anomalous
distribution, it clusters the users based on their indicative features.
The cluster which has majority participants is marked as honest,
whereas the other cluster is marked as suspicious. All the users in
the suspicious group are suspected to be malicious, but are uncon-
firmed. AUROR marks a user in the suspicious group as malicious
if it appears for more than τ times. The parameter τ controls the
error-rate tolerance of the benign users whose fraction of the in-
dicative features show distribution similar to malicious users due to
statistical error. AUROR selects the value of τ automatically based
on the input. Note that malicious users will have an anomalous dis-
tribution for most of the indicative features and hence will always
appear in suspicious groups. Thus, the value of τ depends on the
total number of indicative features for that training data and differs
for each application.

Finally, AUROR trains the global model excluding the features
submitted by malicious users to produce MA. Thus, AUROR au-
tomatically generates a final accurate global model given a set of
input features and the learning algorithm. For our case studies we
show that both the metrics, i.e., the attack success rate SR and ac-
curacy drop AD of MA are very small. This demonstrates that
AUROR is a promising defense for indirect collaborative learning
applications.
Difficulty in Evading AUROR. To evade detection, malicious users
have to ensure that AUROR cannot distinguish between malicious
and benign users. For achieving this, the attacker has to prevent
AUROR from finding indicative features among all the masked fea-
tures i.e., limit the deviation of indicative features due to poisoning
of dataset to less than α. The adversary can avoid deviating the
distribution by using two strategies.

First, it can limit the fraction of malicious users below the lower
bound of ε. Due to a small fraction of malicious users, the impact
on the distribution of indicative features is small as well. Second, it
can limit the poison set for each of the adversarial users i.e., instead
of poisoning the entire dataset the attacker can partially poison its
dataset to reduce the deviation in distribution of indicative features.
Reducing the poison set or fraction of malicious users will keep the
distribution of indicative features within statistical error bounds of
the benign features thus evading detection from AUROR. However,
we claim that for both these strategies the success rate of the attack
in influencing the global model drops significantly. We experimen-
tally verify our claim and show that attackers can not successfully
perform poisoning attacks while simultaneously evading our de-
fense. Thus, AUROR is robust against evasion attempts and is a
strong defense eliminating malicious users.

3. BACKGROUND
Indirect collaborative deep learning is essential in improving the

model accuracy while enhancing the performance and privacy via
distributed computation. We first provide a background of deep
learning algorithms and then a state-of-the-art solution that com-
putes these algorithms in an indirect collaborative setting.

3.1 Deep Learning
Multilayer Perceptron. Multilayer perceptron (MLP) is a direct
network where each node is fully connected with the node in the
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Figure 3: Deep learning architecture. Wi and bi are the weight
parameters and bias parameters respectively for layer i.

next layer. Figure 3 shows a simple multilayer perceptron architec-
ture with one hidden layer. Each node is a computing unit having a
non-linear activation function and generates an output value, with
the exception of the nodes at the input layer. The activation func-
tion of a layer multiplies the output vector of previous layer with
its weight matrix and then adds the bias vector. For example, the
output vector xi for layer i(i > 1) is represented as,

xi = fi(Wixi−1 + bi)

where Wi, bi and fi(·) are weight matrix, bias vector and activa-
tion function respectively for layer i. The bias vector bi enhances
the representation capability of the network. In its absence, the
model will be restricted in its expressiveness. The weight matrix
and bias vector are denoted together as parameter P. This parame-
ter P represents the contribution from each input value towards the
learnt model. Note that, for the first input layer, the output vector
is same as the raw input data.

To determine the parameter P, multilayer perceptron uses back-
propagation technique with the gradient descent method [37]. The
gradient descent technique calculates the gradient value over the
entire training data in single iteration. However, this method does
not scale to large training datasets. Alternatively, stochastic gradi-
ent descent [18] divides the whole training data into small subset of
training data called min-batch, and trains the model on each min-
batch. A single iteration of stochastic gradient descent operates
over the min-batches of the entire dataset. For example, if there
100 samples in the complete dataset and the min-batch size is 10
samples, then one iteration trains on 10 min-batches.
Convolutional Neural Network. The traditional MLP model has
very high dimension because of the fully connected network and
hence does not scale well in terms of performance. The convolu-
tional neural networks (CNN) model is a type of multilayer percep-
tron model which requires minimal amount of processing because
of its structure. In a CNN model, the layers in the network are not
necessarily fully connected. This structure reduces the number of
parameters used to train the model thereby making the training pro-
cess faster. For layers that are not fully connected, each node only
connects with a small region of the nodes in previous layer, like a
3 × 3 region. This region is called as local receptive field for the
node.

In addition to decreasing the number of parameters, when sliding
the local receptive field across all input values with certain stride,
we will apply the node with same weights and bias though all lo-
cal receptive field, which is called as parameter sharing scheme.
This scheme is based on an assumption that if a feature is useful in
one spatial region, then it should also be valuable for other regions.

The shared parameters are defined as a kernel or filter. To enhance
the representation capability of network, we increase the number of
nodes in the convolutional layer, which is also called as the depth
of the layer. Pooling layer is another periodically existed layer in
CNN after successive convolutional layers. Most commonly, we
use the MAX pooling layer with filters of size 2× 2. Pooling layer
can progressively reduce the amount of parameters and computa-
tion for training the network.

In this paper, we use both the traditional MLP and CNN model,
which are widely used in deep learning, to perform poisoning at-
tacks and apply our defense on them.

3.2 Privacy Preserving Deep Learning
For performing attacks, we select the privacy-preserving model

for image recognition using deep learning proposed by Shokri et
al. [39], which is a state-of-the-art system that provides indirect
collaborative learning. The model uses stochastic gradient descent
method to compute gradient values. Each user trains its own model
based on its training dataset and generates the gradient value for
each iteration. They mask these gradient values using the noise
generated from Laplace distribution, making the local output dif-
ferential private before submitting to the server. We refer to these
masked gradient values as masked features.

The server collects the masked gradient values from all the users
and aggregates them to update the global model. After updating
the global model, the server generates an updated set of parame-
ters from the global model that capture the features from the entire
training dataset. The users download these updated parameters and
provide them as input to their local model, thus generating differ-
ent gradient values. This process is repeated several times until the
global model stabilizes.

4. TARGETED POISONING ATTACKS
We study the efficacy of targeted poisoning attacks using two im-

age recognition tasks in indirect collaborative learning. The image
recognition system uses deep learning algorithm as its underlying
technique to train a global model. The final global model classifies
the test images into a given set of categories. In this system, poi-
soning attacks aim to classify a source test image as a target image.
We perform our attacks with the following goals:

• To understand the amount of poisoning necessary to achieve
a reasonable attack success rate
• To understand the difficulty levels for performing targeted

attacks with different goals
• To understand the impact of poisoning attacks on the accu-

racy of the global model

4.1 Handwritten Digit Images
Dataset. We use the MNIST dataset of handwritten digits [24],
a popular benchmark for training and testing deep learning mod-
els [38]. The dataset provides 60,000 training samples and 10,000
test samples where around 1000 test samples correspond to each
digit. Each image has 28 × 28 pixels, which is flattened into a
vector with 784 features and given as input to the deep learning
model. To assign a value for each feature, integer numbers from
0 to 255 that represent different shades of grey are transformed to
floating point values. Hence, each feature has a floating point value
between 0 and 1.
Network Architecture. We use a simple multilayer perceptron
neural network to train the classifier for handwritten digits. There
are only two hidden layers using Tanh function as its activation
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Figure 4: Attack success rate for classifying different pairs of source and target digits when fraction of malicious users is 30%, 20%
and 10% respectively. The entry in each row represents the source label while the entry in each column represents the target label.
The gray value in each cube represents the success rate. Black represents 0%, while white represents 100% attack success rate. The
success rate is the highest when the malicious ratio is 30%.

Fraction of
Malicious users (%)

Accuracy Drop
(%)

Min Max Avg
10% 2 15 9
20% 7 27 16
30% 15 68 24

Table 1: Average accuracy drop, maximum accuracy drop and
minimum accuracy drop for MNIST due to poisoning attacks
as compared to benign model.

function in the network. For the output layer, the activation func-
tion is a Softmax function that converts the output of previous layer
to a digit between 0 to 9. We divide the 60,000 training samples
among 30 users, each of them having 2000 samples. Every user
computes the local model based on these 2000 training samples.
Attack Strategy. To measure the severity of targeted poisoning
attacks on above outlined system, we perform several experiments
by varying the fraction of malicious users f in this setting. The
malicious users range from 10% to 30% of all the users as we con-
sider f < n/2. In each experiment, the malicious users poison
their training data with the goal of influencing the global model
such that it classifies a source digit (e.g., 1) as a target digit (e.g.,
3). Each malicious user extracts all the samples corresponding to
the source digit from its training data and ignores the images for
the remaining digits. Further, it replicates the source digit images
to occupy the entire training space of the user (2000 samples) and
mislabels them as the target digit. The malicious user uses this poi-
soned training data to compute the gradients from its local model.
We run the experiments for all the possible sources (1-10) and tar-
get (1-10) digits.
Attack Findings. To measure the attack success rate, we test the
global model with the samples for each digit in the test dataset.
Figure 4 shows the attack success rate for classifying each of the
source digits (e.g., 0) as the other digits (1 to 9) when fraction of
malicious users is 30%, 20% and 10%. The graph uses different
level of gray value with white for the largest value (90% and above)
and black for the lowest value (0%) to represent the attack success
rate. We observe that when the fraction of malicious users is 30%
the attack success rate for all the combinations vary between 89%

to 100% with 96% average attack success rate. For 20% malicious
users, we observe that the attack success rate reduces for specific
targets but is still high for majority of source to target digits with
91% average attack success rate. The success rate greatly varies
for different targets when the malicious fraction is reduced to 10%.
For instance, the attack success rate is only 3% for mislabeling 4
as 0, while 94% for mislabeling 0 as 6. Other digits demonstrate a
similar behavior. This phenomenon is an extrapolation of the effect
due to distance between the hyperplane of source and target digits
as explained in [34]. The average attack success rate increases from
65% to 96% with the increase in the fraction of malicious users
from 10% to 30%.

Lastly, we test all the 10,000 test samples and measure the ac-
curacy of the global model. In our experiments, the accuracy of
the model when trained under completely benign training data is
86%. Table 1 shows the accuracy drop for the global model due
to poisoning of the training data as compared to benign dataset for
different fraction of malicious users. The maximum accuracy drop
is as high as 68% (e.g. mislabeling 7 to 1) and minimum is 15%. In
addition, the average accuracy drop for various targeted poisoning
attack is 24%, 16% and 9% for 30%, 20% and 10% of malicious
users respectively. This shows that the accuracy drop increases with
increase in the fraction of malicious users. Hence, our experiments
demonstrate that targeted poisoning attacks not only influence the
classification of the source data but also affect the overall accuracy
of the model.

4.2 German Traffic Sign Benchmarks
Dataset. We use GTSRB dataset of German traffic signs [40], an-
other popular benchmark for deep learning problem. The dataset
provides 39,209 training images in 43 classes and 12,630 test im-
ages in random order. Unlike MNIST, the images of traffic signs
are RGB images and are stored in PPM format. The size of images
varies from 15 × 15 to 250 × 250. To eliminate the influence of
size, we reshape all images into 32 × 32 format. In addition, we
standardize the images with zero mean and unit variance. Hence,
each feature has a floating point value between 0 and 1. Among
all training set, we randomly choose 39,000 training samples and
divide them into 30 users, each of them having 1300 samples. Each
user computes its local model based on these 1300 training images.



Figure 5: Poisoning the dataset to classify a sign of bicycle
crossing as a sign of wild animal crossing (above) and classify a
sign of 20 km/h maximum speed limit at 80 km/h (below)

Fraction of
Malicious
Users (%)

Attack Success
Rate (%)

Accuracy Drop

(%)
Bicycle
to Wild
Animal

20 km/h
to 80 km/h

Bicycle
to Wild
Animal

20 km/h
to 80 km/h

10 31 26 2 2
20 18 17 3 6
30 79 61 9 10

Table 2: Attack success rate and accuracy drop for mislabeling
a sign of bicycle crossing as a sign of wild animal crossing and
20 km/h as 80 km/h in GTSRB dataset

Network Architecture. We use convolutional neural network (CNN)
to train the classifier for traffic signs. For CNN architecture, there
are two convolutional layers, two pooling layers, one fully-connected
layer and a final output layer. The first convolutional layer consists
of 64 filters with 2 × 2 and the second one with 16 filters with the
same size as the first one. After each convolutional layer, there is
one pooling layer followed with a filter of same size 2 × 2. Be-
fore the output layer, there is a fully-connected layer consisting of
64 nodes with ReLU function as their activation function, which is
similar with the hidden layer of MLP architecture. For the output
layer, the activation function is a Softmax function that converts the
output of previous layer to a label between 0 to 42.
Attack Strategy. Since the number of classes for GTSRB is more
than 40, we randomly perform two pairwise target poisoning at-
tacks — classifying a cyclists crossing sign as a wild animals cross-
ing sign and classifying the sign of 20 km/hmaximum speed limit
as 80 km/h (as shown in the Figure 5). The attack strategy is sim-
ilar to that of MNIST dataset where the malicious users replicate
the source image and mislabel them as the target image.
Attack Findings. Table 2 shows the attack success rate and accu-
racy drop for varying levels of malicious ratio when we mislabel a
sign of bicycle crossing as a sign of wild animal crossing (case 1)
and a sign of 20 km/h maximum speed limit as 80 km/h (case
2) respectively. The success rate for case 1 and case 2 is 79% and
61% separately for 30% malicious ratio and reduces with the de-
crease in the malicious ratio, although the attack success rate with
10% of malicious users is a little higher than when fraction of ma-
licious users is 20%. This shows that the attacker can poison the
dataset to achieve a targeted attack. However, the success rate dif-
fers depending on the source and target images that the attacker
selects.

The accuracy drop is small in the final model due to poisoning

of dataset as compared to benign model. The model trained under
benign dataset exhibits an accuracy of 84%. As the total number of
classes is more (43), the accuracy drop is smaller for the GTSRB
dataset as compared to the MNIST dataset which as 10 classes.
Thus, even though the attacker can achieve significant success for
a targeted misclassification, the overall classification for other im-
ages is fairly accurate. Specifically, the accuracy drop for case 1
and case 2 is 9% and 10% when the malicious ratio is 30%.
Result 1: Targeted poisoning attacks are significantly effective in
indirect collaborative deep learning setting regardless of masking
the essential features of the training data and restricted poisoning
capacity of the adversary.

5. DESIGN
Our AUROR defense against poisoning attacks is deployable at

the training phase before the final global model is generated. AU-
ROR filters the malicious users before creating the final model, us-
ing the following steps.
Identifying Indicative Features. In designing AUROR, the first
step is to identify the indicative features that show an anomalous
distribution under attack setting. It collects all the masked features
from users and compares each of these features. In this step, we
use KMeans algorithm to divide all users into two clusters for any
given masked features for first 10 epochs since features for first 10
epochs have enough difference between malicious users and benign
users and decrease the computation. However, any other clustering
algorithm can be used instead. We then calculate the distance be-
tween the centers of these clusters. If the distance exceeds a certain
limit α, we consider the masked features as indicative features. The
threshold α determines whether the two clusters are distinct from
each other. We choose α = 0.02 for MNIST dataset and for GT-
SRB α = 0.0045.
Identifying Malicious Users. The second step in AUROR is to
identify the malicious users based on the indicative features. For
each indicative feature, the users are divided into different clusters.
Every cluster with number of users which is smaller than n/2 are
marked as suspicious clusters, since the attackers are in the mi-
nority. The users that appear in suspicious clusters for more than
τ = 50% of the total indicative features are confirmed as malicious
users. The threshold τ ensures that the benign users that show a
similar distribution as the malicious users within statistical error
are not labeled as malicious.
Training Global Model. The server excludes the input values from
the malicious users identified in the previous step and trains the
global model on the remaining masked features. The training pro-
cedure varies based on the underlying learning algorithm used in
the application. For the cases we illustrate in our paper, we use
privacy preserving deep learning architecture (PPDL) to retrain the
model.
Implementation. We implement the prototype of AUROR in Python.
The implementation contains a total of 5401 lines calculated us-
ing CLOC tool available on Linux. We use Theano package [12]
to realize the back-propagation procedure in deep learning. To
implement the collaborative setting for these applications, we use
multiprocessing module in Python to run users’ programs asyn-
chronously. We create a server process to aggregate masked fea-
tures submitted by each user and compute the final global model.

6. AUROR EVALUATION
To evaluate the efficacy of AUROR, we apply our defense to

the targeted poisoning attacks performed on image recognition sys-
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Figure 6: For MNIST dataset, the gradient value for 8th weight
parameter of third node in first hidden layer for mislabeling 7
as 8. All the users cannot be distinguished over 10 iterations.

tems. The poison set of malicious user includes mislabeled source
images. Both the benign and malicious users submit their masked
gradient values of the training data as features to the server for each
iteration. Each gradient value corresponds to a particular parameter
of the classifier. The server in our setting executes AUROR where
the input is the masked features from the users and output is the
final global model trained using AUROR. We perform our experi-
ments on a server running on Ubuntu Trusty (Ubuntu 14.04.3 LTS),
equipped with 40 CPUs E5-2660 v3 each having a processor speed
of 2.6GHz and 64 GB RAM.
Evaluation Goals. We perform the evaluation with the following
three goals:

• To measure the detection rate of AUROR for identifying the
malicious users.
• To evaluate the attack success rate of global model trained

using AUROR.
• To evaluate the accuracy drop of the global model as com-

pared to the benign model.

6.1 Handwritten Digit Images
Identifying Indicative Features. AUROR analyses the distribu-
tion of gradient values uploaded by the users for several iterations
of the training phase. Figure 6 shows the comparison of the av-
erage gradient values for 8th weight parameter of third node in
first hidden layer for the first 10 iterations between benign cluster
and suspicious cluster. The average gradient value of benign users
shows a similar distribution as the malicious users during the iter-
ations. Hence, AUROR discards this feature and does not use it in
the future steps. On the contrary, Figure 7 shows the comparison
of the average gradient values for the bias parameter of 8th node
in final layer. The gradient values exhibit two different kinds of
distribution. Based on the anomalous behavior AUROR selects this
as a indicative feature. The number of masked features selected as
indicative features varies for different experiments. For example,
AUROR selects 64 indicative features for mislabeling 7 as 8 while
67 indicative features when mislabeling 1 as 4 with 30% malicious
users. In addition, we notice that all the indicative features come
from the final layer, because the parameters in final layer have the
largest influence towards the final result. Hence, the changes to
final layer’s parameter are larger than the other parameters.
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Figure 7: For MNIST dataset, the gradient value for the bias
parameter of 8th node in final layer for mislabeling 7 as 8. The
gradient shows different distribution for benign and malicious
users.

Malicious Ratio (%) Accuracy Drop (%)
10 0
20 1
30 3

Table 3: Accuracy drop for MNIST dataset after retraining the
model using AUROR for 10% to 30% malicious ratio

Detecting Malicious Users. AUROR uses KMeans clustering algo-
rithm to separate all the users into different groups based on their
uploaded indicative features. The groups with fraction of users
within 50% are marked as suspicious. For every indicative feature,
it creates clusters of benign and suspicious users. The users that
appear in the suspicious clusters for more than τ = 50% of the in-
dicative features are marked as malicious. We observe that the 12th

and 14th benign users appear in suspicious clusters three times of
64 indicative features when we mislabel 7 as 8 with 30% of mali-
cious users. The value of τ shows the tolerance of AUROR towards
the minor difference between benign users. We calculate the detec-
tion rate based on the users marked as malicious by AUROR and the
actual number of malicious users in every experiment. We observe
that the detection rate is 100% for 10% to 30% of malicious users.
Evaluating the Final Model. For generating the final global model,
AUROR removes the users detected as malicious in the previous
step and trains the model. We measure the attack success rate and
accuracy drop of this final global model trained using AUROR de-
fense. We observe that the attack success rate reduces largely after
training the model without the malicious user, which are all below
5% when malicious ratio is 10%, 20% and 30%.

We measure the accuracy drop of the final global model as com-
pared to the benign model and study the improvement over the poi-
soned model. Figure 3 shows the accuracy drop for malicious ra-
tios ranging from 10% to 30%. We observe that the accuracy drop
is very small as compared to the benign model. It is only 3% when
the fraction of malicious users is 30%. This highlights an important
finding that the overall accuracy of the image recognition system
remains similar to the accuracy of benign model even after exclud-
ing the training data from malicious users.
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Figure 8: In GTSRB dataset, the gradient value for the 547th

weight of final layer for the first 10 iterations. The gradient
show different distribution for benign and malicious users.

6.2 German Traffic Sign Benchmarks
The German Traffic Sign Benchmarks (GTSRB) dataset is a col-

lection of images used to generate models for using in auto-driving
cars. The trained model classifies a sign into one of the 43 classes.
Identifying Indicative Features. AUROR analyses the distribution
of gradient values uploaded by the users for several iterations of
the training phase. Figure 8 shows the comparison of the gradient
values for 547th weight of final layer for the first 10 iterations. The
gradient values exhibit two different kinds of distribution. Based on
the anomalous behavior AUROR selects this as a indicative feature.
The number of masked features selected as indicative features vary
for different experiments. For example, AUROR selects 36 indica-
tive features when we mislabel the sign of bicycle crossing as the
sign of wild animal crossing with 30% malicious users, while se-
lects 55 indicative features when we mislabel the traffic sign of 20
km/h maximum speed limit as 80 km/h. In addition, we also ob-
serve the distribution of all indicative features. The indicative fea-
tures are all from the final layer of the model, which confirms the
finding that the parameters of final layer are easy to change since
they have the largest influence over final result compared with other
parameters.
Detecting Malicious Users. For each indicative feature, AUROR
creates clusters of benign and suspicious users. The users that occur
in the suspicious clusters with the frequency less than τ = 50% are
marked as malicious. Like MNIST, we have the same observation
that the second and third benign users both appear in the suspicious
clusters twice of 9 indicative features when we mislabel the sign of
20 km/hmaximum speed limit as 80 km/hwith 10% of malicious
users. We calculate the detection rate based on the users marked as
malicious using AUROR and the actual number of malicious users
in every experiment. We observe that the detection rate is 100% for
10% to 30% of malicious users.
Evaluating the Final Model. To measure the effectiveness of our
solution, we calculate the accuracy drop after retraining the model
using AUROR on the GTSRB dataset. Table 4 shows the accuracy
drop as compared to the benign setting when mislabeling a sign of
bicycle crossing as a sign of wild animal crossing. The accuracy
drop is negligible for the malicious ratios from 10% to 30%, indi-
cating that the overall accuracy of the model is not affected drasti-
cally by removing the dataset contributed by malicious users. We
measure the attack success rate of the retrained model and report
that it is below 5% for malicious ratio from 10% to 30%.

Fraction of
Malicious Users (%)

Success
Rate (%)

Accuracy
Drop (%)

10 1 0
20 2 0
30 2 0

Table 4: Attack success rate and accuracy drop for GTSRB
dataset after retraining the model using AUROR for 10% to
30% malicious ratio

6.3 Evading AUROR
There are two main approaches to evade AUROR’s detection mech-

anism. The first strategy is to decrease the fraction of malicious
users so that the influence of the poisoned data on the global model
is reduced. Our experiments demonstrate for MNIST dataset, when
the poison set of attackers is 100% malicious data, the detection
rate of our method AUROR is 100% even when there is only one
malicious user among 30 participants. To mislabel the sign of bicy-
cle crossing as the sign of wild animal crossing in GTSRB dataset,
the detection rate is 60% when number of malicious users is re-
duced to one. Although the detection rate is 60%, we find that the
attack success rate is only 3% with 1% accuracy drop. Thus, our
experiments confirm that decreasing the number of malicious users
can evade detection mechanism of AUROR in some cases but the
final result generated by these poisoning attack cannot achieve the
attackers’ goal of misclassifying data.

The second strategy is to decrease the number of malicious sam-
ples in malicious users’ training set. Table 5 shows the average
detection rate, average attack success rate and average accuracy
drop with various combination of fraction of malicious data and
fraction of malicious users for MNIST dataset when misclassifying
5 as 3. When the fraction of malicious users is 20%, the average
detection rate of AUROR on MNIST is 100% even when only 20%
of the training set of each adversary is poisoned, while the average
detection rate is 0% when the fraction of malicious data reduces to
14%. Although the average detection rate drops to 0%, the aver-
age attack success rate is only 34% with 3% of average accuracy
drop. Hence, the adversaries can decrease the number of malicious
samples in their training set to decrease the distance of gradients
between malicious users and benign users (α). However, while
evading AUROR, the average attack success rate and average accu-
racy drop become relatively low such that the goal of adversaries
cannot be achieved. Table 6 shows similar relation of average de-
tection rate, average attack success rate and average accuracy drop
for different fraction of malicious data and fraction of malicious
users while mislabeling the sign of bicycle crossing as the sign of
wild animal crossing in the GTSRB dataset. In addition, we ob-
serve that the attack success rate varies between a wide range. For
example, the minimum and maximum attack success rate are 1.6%
and 57.8% respectively for 90% of malicious data and 20% of mali-
cious user when mislabeling the sign of bicycle crossing as the sign
of wild animal crossing in the GTSRB dataset. Even with such a
variation, the detection rate is 100%. Thus, AUROR is robust and a
promising solution against evasion.
Result 2: A robust and strong defense against targeted poisoning
attacks is possible based on the masked features and by exploiting
the limited poisoning characteristics of indirect collaborative deep
learning systems.



Fraction of
Malicious Users (%) Metrics (%)

Fraction of
Malicious Data (%)
14 18 20

10
DR 33 100 100
SR 21 20 21
AD 1 0 2

20
DR 0 100 100
SR 34 38 45
AD 3 2 3

30
DR 74 100 100
SR 54 69 68
AD 4 5 5

Table 5: Average detection rate (DR), average attack success
rate (SR) and average accuracy drop (AD) for MNIST when
the fraction of malicious data is decreased.

Fraction of
Malicious Users (%) Metrics (%)

Fraction of
Malicious Data (%)
50 70 90

20
DR 33 70 100
SR 31 13 22
AD 2 2 4

30
DR 100 96 100
SR 16 60 32
AD 2 2 5

Table 6: Average Detection rate (DR), average attack success
rate (SR) and average accuracy drop (AD) for GTSRB when
the fraction of malicious data is decreased.

7. RELATED WORK
Collaborative Learning. Various researches have shown the ben-
efits of collaborative learning in the area of machine learning algo-
rithms [28, 45]. With the advent of deep learning, researches have
proposed collaborative setting for deep learning algorithms. Wang
et. al use hierarchical Bayesian model and show that collaborative
deep learning significantly improves the state-of-the-art recommen-
dation systems [43]. Xu et. al separate the learning tasks to each
user based on the data locality property, which is compatible with
various learning algorithms and ensure that only final result is re-
vealed to other user [44]. To make this setting privacy preserving,
Pathak et. al aggregate a classifier using classifiers trained locally
by separate participants [35]. Their model leverages the technique
of differential privacy to hide the information about the training
data. However, simple aggregation generates classifiers with very
high accuracy. Recently, Shokri et. al use differential privacy to de-
sign a deep learning model that supports collaboration among users
while preserving the privacy of their training data [39]. Our work
is motivated by such indirect collaborative deep learning models.
Adversarial Learning. Adversarial learning is a problem that has
been studied by researchers for a long time [14, 20, 22, 27]. Re-
searchers divide this problem into two categories by the influence:
one is the causative attacks or poisoning attacks, the other is the
exploratory attacks. For the poisoning attacks, the adversaries al-
ter the training procedures by polluting the training data, while for
exploratory attacks they modify the samples in order to bypass the
trained classifier. Deep learning systems are also open to these at-
tacks. Various researchers have focused on performing exploratory
attacks on deep learning models and proposed algorithms and de-
fenses for the same. Papernot et. al provide algorithms to craft
adversarial samples such that the final model misclassifies specific

target samples [34]. They exploit the mapping between the in-
put feature and output class so that attackers can efficiently evade
the classifiers by perturbing the related features. Goodfellow et.
al utilize the gradients to update the input value in order to get
the adversarial samples [21]. Moreover, in a recent work, Paper-
not et al. introduce another attack algorithm that creates an alter-
nate model of the input-output pairs and craft adversarial samples
based on the auxiliary model [33]. All the previous work focus
on exploratory attacks that are perpetrated after the training phase
is complete. However, the emerging collaborative learning tech-
nique opens these deep learning algorithms to poisoning attacks.
Although, poisoning attacks are well understood with respect to
machine learning algorithm for example in recommendation sys-
tems [17, 36, 42], there impact on deep learning systems is unex-
plored. According to our knowledge, this is the first work to un-
derstand the efficacy of poisoning attacks in deep learning systems
and provide a concrete defense against it.
Defense. Defenses against poisoning attacks are known in the area
of collaborative recommendation systems using machine learning
techniques [15,19,36]. Biggio et. al [15] examine the effectiveness
of bagging ensembles towards the poisoning attack in spam filter
and the intrusion detection system. Previous work has considered
data sanitization to measure the negative impact of training dataset
towards a trusted model [29, 32]. Muhlenbach et al. filter sam-
ples that do not have same class as their neighbors, which needs
access to raw training dataset [30]. All the previous work is tar-
geted towards defending poisoning attacks for machine learning al-
gorithms like k-nearest neighbors (KNN), support vector machines
(SVM) and others. Thwarting poisoning attacks in deep learning
systems, where the final model takes into consideration the param-
eters from every node in the neural network of the input dataset is
not known. In this work, we show that detecting poisoned dataset
based on anomalous distribution of the parameters is an effective
and promising solution.

8. CONCLUSION
In this paper, we demonstrate the impact of targeted poisoning

attacks on deep learning systems for two datasets (MNIST and GT-
SRB) in indirect collaborative learning setting. Targeted poisoning
attacks are effective even if the attackers can poison a limited frac-
tion of training data and the final model is trained using masked
features from the training data. To thwart against these attack, we
propose AUROR— a statistical defense that exploits the fact that
malicious users can only poison their dataset without the knowl-
edge about the data of other users. Our evaluation confirms that
AUROR is a promising defense against poisoning attacks in indi-
rect collaborative learning.
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