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Abstract—Web applications often handle sensitive user data,
which makes them attractive targets for attacks such as cross-
site scripting (XSS). Content security policy (CSP) is a content-
restriction mechanism, now supported by all major browsers,
that offers thorough protection against XSS. Unfortunately,
simply enabling CSP for a web application would affect the
application’s behavior and likely disrupt its functionality. To
address this issue, we propose AUTOCSP, an automated tech-
nique for retrofitting CSP to web applications. AUTOCSP (1)
leverages dynamic taint analysis to identify which content should
be allowed to load on the dynamically-generated HTML pages
of a web application and (2) automatically modifies the server-
side code to generate such pages with the right permissions. Our
evaluation, performed on a set of real-world web applications,
shows that AUTOCSP can retrofit CSP effectively and efficiently.

I. INTRODUCTION

Web applications are extraordinarily popular, easily acces-
sible, and often handle personal, confidential, and even sensi-
tive data. These characteristics, together with the widespread
presence of vulnerabilities in such applications, make them
an attractive target for attackers. Cross-site scripting (XSS) in
particular, is one of the most commonly reported security vul-
nerabilities in web applications and often results in successful
attacks, whose consequences range from website defacing to
theft of sensitive information.

The most common defense mechanisms against XSS are
based on input filtering, which can be an effective approach,
but is error prone and often results in an incomplete protec-
tion. Content security policy (CSP), conversely, is a content
restrictions scheme that is currently supported by all major
browsers [1] and offers comprehensive protection against XSS
attacks. In fact, the popularity of CSP is increasing, and com-
panies such as Facebook and GitHub have started to move CSP
to production. In a nutshell, web developers can use a CSP
header to provide, for an HTML page, a declarative whitelist
policy that defines which content should be allowed to load
on that page. Unfortunately, simply enabling a default CSP
for a web application can dramatically affect the application’s
behavior and is likely to disrupt the application’s functionality.
On the other hand, manually defining a policy can be difficult
and time consuming.

To support an effective use of CSP, while both reducing
developers’ effort and preserving functionality, we propose
AUTOCSP, an automated technique and tool for retrofitting
CSP to web applications. Given a web application, AUTOCSP
operates in four main phases. First, it marks as trusted all
“known” values in the web application’s server-side code (e.g.,
hard-coded values) and exercises the web application while
performing positive dynamic taint tracking. The result of this

phase is a set of dynamically generated HTML pages whose
content is annotated with taint information. Second, it analyzes
the annotated HTML pages to identify which elements of these
pages are trusted. Basically, the tainted elements are those that
come only from trusted sources. Third, AUTOCSP uses the re-
sults of the previous analysis to infer a policy that would block
potentially untrusted elements while allowing trusted elements
to be loaded. Fourth, AUTOCSP automatically modifies the
server-side code of the web application so that it generates
web pages with the appropriate CSP.

To assess the usefulness and practical applicability of
AUTOCSP, we developed a prototype that implements our
technique and used it to perform an empirical evaluation. In
our evaluation, we applied AUTOCSP to seven real-world
web applications and assessed whether it can protect web
applications without disrupting their functionality. Overall,
the results of our evaluation are encouraging and show that
AUTOCSP can effectively retrofit CSP to existing web applica-
tions so that (1) the applications are actually protected against
XSS attacks, (2) their functionality is either not affected
or minimally affected, and (3) their performance incurs a
negligible overhead. Our results also show that automating
this approach is cost-effective, as the number of changes to
perform to the server-side code to retrofit CSP is large enough
to make a manual approach very expensive and error prone.

This work makes the following contributions:
• The definition of AUTOCSP, a general approach to retrofit

CSP to web applications.
• A prototype implementation of AUTOCSP that can operate

on PHP web applications and is available at http://www.cc.
gatech.edu/∼orso/software/autocsp.

• An empirical evaluation of AUTOCSP that shows the effec-
tiveness and the practicality of our approach.

II. BACKGROUND AND MOTIVATING EXAMPLE

This section provides an overview of the security-related
concepts needed to understand our approach and an example
that we use to motivate our work.

A. Cross-Site Scripting (XSS)

Web applications are complex multi-tier applications that
include a client and a server sides. Through a browser on
the client side, users can issue HTTP requests to access
functionality running on the server side, or backend. The
server-side code processes the inputs contained in the HTTP
request and generates web pages with the content requested
by the user. These dynamically generated web pages usually
consist of basic HTML entities together with JavaScript, CSS,
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and other resources. When the browser receives these pages,
it renders their content and executes the code they contain.

XSS attacks are injection attacks that take advantage of
the dynamically generated content in a web page to insert
malicious scripts into otherwise benign and trusted web pages.
In these cases, malicious code coexists and executes together
with benign code, as the web browser is unable to discern
between the two. XSS vulnerabilities can be divided into
different types, based on the methodology used to generate
the exploiting attack. XSS vulnerabilities of persistent type
are those whose attacks are performed by injecting and per-
manently storing malicious script content within a resource
of the targeted web application. Subsequently, when a user
requests that resource, the malicious code executes as if it
were generated by the web application itself (i.e., as if it
were trusted). This type of vulnerability is widespread because
the web application logic allows for the possibility of using
inline scripts and inline style directives within the dynamically
generated HTML (e.g., using the <script>...</script>

construct). XSS vulnerabilities can also be of reflected type,
when the corresponding attacks are built by having the server-
side code processing the content of an HTTP request and
attaching it verbatim to the requested web page. This type of
vulnerability is also widespread, as application logic usually
permits inline scripts and inline style constructs. The DOM-
based type identifies vulnerabilities in which the attacks are
created by injecting malicious payload directly into the DOM
of the victim’s web browser. Because of the way this type of
attack is constructed, the server-side of the application never
sees the malicious script content. This class of vulnerabilities
is exploitable due to a combination of JavaScript and HTML
features. One of the most important among these features is the
ability of JavaScript to execute code from strings (i.e., eval).
Another feature is that JavaScript code, while executing,
can create new elements in the DOM, such as inline/event
scripts and inline/attribute styles. Finally, resource-based XSS
vulnerabilities can be exploited by placing malicious scripts
within resources being fetched by the web browser while ren-
dering a requested HTML page. Examples of these attacks are
malicious script content injected into SVG files, or Chameleon
attacks [2]. This type of vulnerability is recurring in web
applications because they generally do not restrict the sources
from which dynamic web pages can fetch their content.

B. Content Security Policy

Content security policy (CSP) [3], [4] is a declarative
mechanism that can be used to protect web applications
against several classes of XSS attacks. CSP can be seen as
a content restriction scheme that web developers can use to
specify what content can be included and how this content
operates within dynamically-generated pages of a web ap-
plication. CSP is enabled by adding, at the server side, a
Content-Security-Policy header and the header content
to the HTTP response that contains the protected resource.
When a web browser receives the policy, it enforces it on the
content of the web page being rendered.

A CSP is a set of directives in the form directive-name:

source-list, where directive-name is the name of the
directive, and source-list is the set of domains to which
the specific directive applies. These directives define many
aspects of a dynamic web page’s content: which scripts are
enabled, from where plugins can be loaded, which styles are
allowed, from where media content can be retrieved, which
resources can be framed, to which hosts the page can connect
through scripts, and from where it is possible to load fonts.
There are two special keywords that can be used in a policy:
unsafe-inline and unsafe-eval. The first keyword can be
used to enable inline scripts and inline style constructs in the
protected web page. The second keyword can be used to enable
the generation of code from string elements in the client-side
code. These keywords are very powerful but, if allowed, may
void the protection offered by CSP.

Several instances of XSS attacks can be blocked if CSP
is properly added to the HTML pages of a web applica-
tion. Persistent XSS attacks, in particular, can be blocked if
unsafe-inline is not in the policy, and the policy only
whitelists scripts and style content that were created by the
developer of the web application. Reflected XSS attacks can
be blocked if unsafe-inline is not excluded from the
policy. The probability of DOM-based XSS attacks can be
highly reduced if both unsafe-eval and unsafe-inline

are excluded from the policy. Finally, resource-based XSS
attacks can be prevented by CSP in two different ways. First,
the attack can be blocked by preventing the resource that
contains the malicious payload from being fetched (i.e., the
domain of the resource must not be whitelisted in the policy).
Alternatively, if the resource needs to be fetched and is located
on the host where the web application is running, the developer
can specify a CSP that states that no script can be executed
in the context of the resource.

Given the whitelist nature of CSP, in order to take full
advantage of the protection mechanism it offers, web appli-
cation developers need to (1) identify a policy for each of
the web pages dynamically generated by the web application
and (2) rewrite parts of the web application’s server-side code
to make sure they generate pages with the right policy. Such
a manual process is not only time consuming but also error
prone. Our approach aims to remove (most of) this burden
from the developers’ shoulders by automating this process.

C. Motivating Example

To motivate our work, we provide an example from a
real-world web application called SCHOOLMATE. The web
application is school management software and has been
downloaded over 16,000 times. Figure 1 shows the server-side
code for the functionality that allows students to visualize the
assignments related to one of their classes (slightly modified
to make it self-contained and more readable). Figure 2 shows
the HTML web page generated by this server-side code.

After generating the HTML page header, the server-side
code adds an inline script to the HTML page (code lines 4–
9, HTML lines 7–11). This script contains the functionality



1 <?php
2 print("<html>");
3 ...
4 print("<script>
5 function grades(){
6 document.student.page2.value=3;
7 document.student.submit();
8 }
9 </script>");

10 ...
11 print("<a class=\"menu\"
12 href=\"javascript:grades();\">
13 Grades</a>");
14 ...
15 while($assignment =
16 mysql_fetch_row($query)){
17 ...
18 print("<tr>
19 <td style=\"text-align: left;\">
20 $assignment[5]</td>
21 </tr>");
22 ...
23 }
24 ...
25 print("</html>");
26 ?>

Fig. 1: SCHOOLMATE server-side
code snippet.

1 <html>
2 <head>
3 ...
4 </head>
5 <body>
6 ...
7 <script>
8 function grades(){
9 document.student.page2.value=3;

10 document.student.submit();
11 </script>
12 ...
13 <a class="menu"
14 href="javascript:grades();">
15 Grades</a>
16 ...
17 <tr>
18 <td style="text-align: left;">
19 <script>
20 alert("XSS");
21 </script>
22 </td>
23 </tr>
24 ...
25 </body>
26 </html>

Fig. 2: SCHOOLMATE original web
page snippet.

1 <html>
2 <head>
3 ...
4 <script src="uri.js"></script>
5 <link rel="stylesheet"
6 type="css" href="sty.css"/>
7 ...
8 </head>
9 <body>

10 ...
11 <script src="external.js">
12 </script>
13 ...
14 <a id="uri" class="menu"
15 href="#">
16 Grades</a>
17 ...
18 <tr>
19 <td id="sty">
20 <script>
21 alert("XSS");
22 </script>
23 </td>
24 </tr>
25 ...
26 </body>
27 </html>

Fig. 3: SCHOOLMATE CSP-
enabled web page snippet.

necessary to navigate the menu of the web application and is
encoded as a constant string in the original program. Lines
11–13 print a link for accessing the functionality offered by
the previous script (HTML lines 13–15). Also in this case,
the element is encoded as a constant string in the program.
Lines 15–23 contain a loop that creates a table in the HTML
page containing the assignments for a given class (HTML
lines 17–23). In this case, the code prints a row and a
column of a table by using a constant string for its structure
and a variable for its content (line 20). The value of this
variable is read from a database and represents comments of
the class instructor. This makes the web application vulner-
able to persistent XSS attacks (see Section II-A). Assume,
for instance, that the value retrieved from the database is
<script>alert("XSS");</script>. When this value is
added to the generated HTML, it is interpreted as an inline
script. At line 19, an inline style is applied to the column of the
table but this value is hard-coded in the program, so it cannot
be modified by an attacker. Finally, the server-side code closes
the HTML page at line 25 and terminates its execution.

This example lets us show why blindly enabling CSP
on the generated web page would either affect its normal
functionality or add inadequate protection against XSS
attacks. Simply using CSP to block all executions of script
and style content (using Content-Security-Policy:

default-src 'none' as the policy header) would block
the XSS attach, but it would also prevent normal users
from accessing the menu functionality on the page. This is
because both the inline script and JavaScript URI, respectively
at lines 7–11 and 13–15 of Figure 2, would be blocked.
Conversely, enabling the inline script, JavaScript URI, and
inline style without modifying the web application (with
policy header Content-Security-Policy: default-src

'none'; script-src 'unsafe-inline'; style-src

'unsafe-inline') would preserve the page’s functionality

but would allow the XSS attack to succeed. Figure 3 shows the
CSP-enabled web page that would preserve the functionality
of the web application while blocking the XSS attack.
The correct CSP would be Content-Security-Policy:

default-src 'none';script-src domain;style-src

domain, where identifier domain represents the host on
which the external JavaScript and CSS files linked in the
HTML reside. As Figures 2 and 3 show, there are significant
changes between the two HTML pages. The inline script at
lines 7–11 in Figure 2 is transformed into the script at lines
11–12 in Figure 3. The content of the script is moved to
an external file called external.js, which is enabled by
the script-src CSP directive. The JavaScript URI at lines
13–15 of Figure 2 is also moved to an external file uri.js

(line 4 in Figure 3) and linked using the newly introduced
id="uri" expression at line 14 in the new web page. A
similar transformation occurs for the inline style attribute
of line 18 in Figure 2. The style content is moved to file
sty.css, enabled using the style-src CSP directive, and
activated through the newly introduced id="sty" expression
(lines 5, 6, and 19 of Figure 3, respectively). The inline
script that contains the malicious payload appears unchanged
in Figure 3 at lines 20–22 and would be blocked by the
browser, as the CSP associated with the web page does not
allow inline scripts.

As this example shows, defining a suitable CSP can be a
difficult, time-consuming, and error-prone task. In the next
sections, we show how AUTOCSP can automate this process.

III. THE AUTOCSP APPROACH

In this section, we present our approach for retrofitting
CSP to web applications. We first provide an overview of
AUTOCSP, and then discuss its different phases in detail.

As we discussed in Section II-B, CSP offers a whitelist
based content-restriction mechanism; that is, CSP (1) blocks
by default the loading/execution of any web-page node that is



not specified in the policy but (2) allows for specifying which
nodes are trusted and can thus be loaded/executed. The basic
intuition behind our approach is to automatically find trusted
nodes in a dynamically generated web page by analyzing
the execution of the server-side code that generates such
page—nodes that are generated using only trusted sources are
marked as trusted, whereas all other nodes are conservatively
considered untrusted.

Figure 4 provides a high-level overview of our approach and
shows its main phases. Given a web application and a set of
test inputs, in its dynamic tainting phase, AUTOCSP marks as
trusted all hard-coded values in the web application server-side
code (plus, optionally, additional whitelisted sources specified
by the developer) and performs dynamic taint analysis as the
server-side code executes and generates web pages. Then, in
the web page analysis phase, AUTOCSP analyzes a dynami-
cally generated HTML page and the associated taint informa-
tion to determine which parts of the page can be considered as
trusted. In the CSP analysis phase of the approach, AUTOCSP
processes an HTML page and its associated taint information
to infer a policy that would block potentially untrusted parts
while allowing trusted parts to be loaded in the browser. This
phase also computes how HTML pages should be transformed
in order to conform to the inferred policy. Finally, in its
source code transformation phase, AUTOCSP modifies the
source code of the web application so that it generates suitably
transformed HTML pages (according to what it computed in
the previous phase) in which the inferred CSPs are enabled.

We describe AUTOCSP with the help of Algorithm 1, which
provides a pseudo-code representation of the approach. The
inputs to AUTOCSP are: a web application WA and a set of
test inputs TS. For every test input ti in TS, AUTOCSP
performs its dynamic tainting, web page analysis, and CSP
analysis phases (lines 3–26). After processing every test input,
the approach moves to its source code transformation phase
(lines 27–33), which produces the final result: the transformed
web application WACSP. In the remainder of this section, we
describe in detail the four phases of AUTOCSP.

A. Dynamic Tainting

This phase aims to determine, given a test input to the web
application, which parts of the generated web page are trusted
and which parts are untrusted, using a whitelist approach. We
consider a DOM node of the generated HTML as trusted
if it is defined by the developer or it is in full control of
the developer. We consider all remaining content untrusted.
Specifically, we use an approach called positive dynamic
tainting, which we used successfully in previous work to
counter SQL injection vulnerabilities [5]. Positive dynamic
tainting marks the trusted data within an application (in this
case, HTML fragments) and propagates taint marks as the
application executes. Positive tainting, in contrast to more
traditional negative tainting approaches, is a more conservative
approach and fits naturally the whitelist approach behind CSP.

There are three main aspects that characterize a dynamic
taint analysis: taint introduction, propagation policy, and taint

Algorithm 1: AutoCSP
Input : WA, web application; TS, set of test inputs for WA;
Output: WACSP, web application using CSP;

1 begin
2 set ES := ∅
3 foreach input ti ∈ TS do

/* Dynamic Tainting */
4 buffer HB, TB, SB := ∅
5 map TM := ∅
6 WA.set(ti)
7 while ¬WA.finish() do
8 instr i := WA.next()
9 i.execute()

10 taint(i, TM)
11 if i ≡ PRINT then
12 HB.add(i.result)
13 TB.add(TM[i.result])
14 SB.add(i.line)

/* Web Page Analysis */
15 dom DOMA := parse(HB, TB, SB)

/* CSP Analysis */
16 policy CSP := STRICT
17 foreach node n ∈ DOMA do
18 if n.positive() then
19 if n ≡ (SCR ∨ OBJ ∨ STY ∨ IMG ∨ MED ∨ FRM) then
20 node nnew := toCSP (DOMA, n)
21 if nnew 6≡ n then
22 edit en := En(linen(DOMA, n), n, nnew)
23 ES.add(en)
24 CSP.allow(nnew)
25 edit eCSP := ECSP (lineCSP (DOMA), CSP)
26 ES.add(eCSP)

/* Source Code Transformation */
27 webapp WPCSP := WA
28 foreach edit e ∈ ES do
29 if e ≡ ECSP then
30 transformCSP (WPCSP, e)
31 else if e ≡ En then
32 transformn(WPCSP, e)
33 return WPCSP

checking. Taint introduction identifies and labels specific data
within the program, called taint sources, using suitable taint
marks. A taint propagation policy governs how taint marks
propagate while the program is executing. Taint checking is
the step in which particular actions are performed when taint
marks reach special locations of the program called taint sinks.
We present now the instance of positive dynamic taint analysis
that we implemented in AUTOCSP. This part of AUTOCSP
is covered by lines 4–14 in Algorithm 1.

1) Taint Sources: We introduce a taint mark for a given
piece of data, hence marking it as positively tainted, whenever
such data is hardcoded in the program. The rationale is that (1)
server code normally uses hardcoded data, and in particular
strings, to generate the different parts of an HTML page
and (2) hardcoded data are defined by the developer, and
thus trusted. In addition, our approach also allows developers
to specify additional data that should be marked as trusted
(i.e., whitelisted), such as content originating from a specific
column in a database or return values of specific functions.
AUTOCSP keeps track of this taint information using a taint
map (TM variable in the algorithm).

2) Taint Propagation: A taint propagation policy expresses
how to propagate taint marks during the execution of a
program. More precisely, it determines how the different in-
structions affect the taint marks associated with their operands.
To compute accurate results, it is important to precisely model
the semantics of such instructions. For each type of instruction,
our taint propagation policy determines three aspects: the
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Fig. 4: High-level overview of AUTOCSP.
data defined by the instruction (i.e., its output data), the data
used by the instruction (i.e., its input data), and a mapping
function (i.e., how the input data affects the output data).
After executing an instruction i (execute function in line
9), AUTOCSP updates (taint function in line 10) the taint
marks associated with i’s output data based on the taint data
associated with i’s input data and i’s mapping function.

3) Taint Sinks: Taint sinks are relevant instructions for
the type of taint analysis being performed. For this reason,
when executed, they trigger checking actions on the taint
marks associated with their input data. In AUTOCSP, taint
sinks consist of print instructions, as the data printed by the
server-side code is what constitutes the web page that is sent
back to the client. By checking these sinks, AUTOCSP can
check the taint marks associated to the different parts of
the HTML pages dynamically generated by the application.
In the server-side code there are normally multiple places
in which different parts of an HTML page are generated,
and therefore multiple taint sinks. For each sink (line 11),
AUTOCSP performs the following actions. First, it stores the
characters of the generated HTML page (line 12), in an HTML
buffer (HB). AUTOCSP also populates two other buffers: the
taint buffer (TB) and the source buffer (SB). For each element
in the HTML buffer, AUTOCSP creates a corresponding entry
in the taint buffer (line 13) that specifies whether that element
is trusted (i.e., it has a taint mark) or untrusted (i.e., it does
not have a taint mark). Similarly, the approach stores into
the source buffer (line 14) the source code location of the
statements that generated the content in the corresponding
position of the HTML buffer. These three buffers are used
by the following phases of the approach.

B. Web Page Analysis

The second phase of our approach (represented by line 15
in Algorithm 1) analyzes the HTML, taint, and source buffers.
In this phase, AUTOCSP parses (parse function in line 15)
the HTML generated by the previous phase to build (and then
operate on) its DOM representation, as a browser would do.
In fact, using the same underlining model (DOM), AUTOCSP
can better mimic the CSP enforcement mechanism that web
browsers would apply. AUTOCSP actually produces an en-
hanced version of the DOM tree that we call the annotated
DOM tree (DOMA). AUTOCSP’s parsing algorithm, which is
based on the WHATWG specification [6], operates primarily
on the HTML buffer, which contains the actual HTML content.
The other two buffers are used to annotate the nodes of the

resulting DOM tree. Basically, each of the tokens generated
while parsing the HTML content contains two annotations:
the first one indicates whether the token is trusted, whereas
the second one indicates the locations in the server-side code
of the statements that generated the token. After identifying all
tokens, AUTOCSP produces a corresponding annotated DOM
tree. Because each DOM node can correspond to multiple
HTML tokens, to be conservative, AUTOCSP marks a node
as trusted only if all of its corresponding tokens are.

C. CSP Analysis

This phase takes as input the annotated DOM tree, infers
the CSP for it, and identifies how trusted DOM nodes should
be transformed to comply with the inferred policy. The high-
level algorithm for this phase is covered at lines 16–26
of Algorithm 1. For each annotated DOM tree, this phase
produces a set of HTML transformations and a CSP for the
document. The HTML transformations and the CSP are then
transformed to source code edits (lines 22 and 25) and are
passed to the final phase of the approach as the edit set (ES).

This phase starts by associating the strictest CSP possi-
ble to the HTML of the annotated DOM tree (line 16).
This choice ensures the most effective protection of-
fered by CSP against XSS. The initial CSP corresponds
to Content-Security-Policy: default-src 'none'.
This policy does not allow the protected HTML resource to
use inline scripts, eval constructs, and inline styles. In addition,
the policy does not allow the guarded resource to fetch any
content from the web.

Once the initialization step is completed, AUTOCSP starts
processing nodes in the annotated DOM tree (lines 17–24).
The key idea of this phase is to incrementally add to the CSP
trusted HTML elements. In addition, AUTOCSP transforms
each such element, if necessary, so that the element’s behavior
is not disrupted by CSP’s enforcement mechanism. To do this,
AUTOCSP identifies which elements in the annotated DOM
tree relate to CSP and, if necessary, suitably transforms them.

Our approach identifies whether nodes of the annotated
DOM tree relate to CSP according to what is stated in the
CSP specification [4]. Specifically, there are six classes of
elements that AUTOCSP identifies as related to CSP (line 19):
nodes that (1) enable scripting, (2) load plugins, (3) defines
the style of the web page, (4) fetch images, (5) connect to
media content, and (6) frame other resources.

If a DOM node that relates to CSP is trusted (positive
function in line 18 returns true), it is enabled in the CSP and,



if necessary, AUTOCSP identifies how to transform it to make
it conform to the inferred CSP. The transformation process
(toCSP function in line 20) is dependent on the type of node
considered. If a transformation is necessary, a new node edit
(en) is added to the edit set (line 23). The node edit contains
three pieces of information: the source code location of the
statement that generated the node (result of linen function in
line 22), the original node (n), and the modified node (nnew).
After processing every node, AUTOCSP also creates a CSP
edit (eCSP) and adds it to the edit set (line 26). A CSP edit
contains two pieces of information: the source code location
where the CSP header should be added (result of lineCSP

function in line 25) and the inferred CSP for the web page
considered (CSP).

In the reminder of this section, we provide details on the
transformations performed on specific kinds of DOM nodes.

1) Script Nodes: There are different types of script
node that can appear in the DOM and that must be han-
dled in different ways. The first type of node is repre-
sented by inline script elements, that is, script nodes in
the form <script>...</script>. AUTOCSP transforms
this type of node to a script node in the form <script

src="..."></script>. The new node fetches an external
file stored on the web application server whose content is the
original script. In this case, the CSP of the protected document
gets extended by allowing the web page to fetch the script
resource from the application server using the script-src:

host; directive. The second type of node consists of event
handlers attributes, such as HTML elements having attributes
in the form <button onclick="..."> </button>. In this
case, AUTOCSP replaces the original element with an element
that does not declare the event handler and creates a script
that adds the same event handler to that element. The new
script code is placed in an external script file that is linked
to the corresponding HTML document and such that (1) the
script is activated when the DOM is loaded, and (2) the
domain in which the file is stored is allowed in the CSP.
The third type of node consists of elements having attributes
that invoke a script using a JavaScript URI, such as <a

href="javascript:..."> </a>. The transformation ap-
plied to this node is similar to the one applied for event
handlers. As before, the new script is placed in an external
script file, linked to the HTML document, activated when
the DOM is loaded, and the domain where the file is stored
is allowed in the CSP. The final type of script node is a
node that links to an external script file in the form <script

src="..."></script>. In this case, no transformation is
applied. However, the domain of the linked script file is added
to the CSP.

2) Style Nodes: Also for style nodes, AUTOCSP treats
different types of nodes differently. The first type of node
are inline style elements, that is, style nodes in the form
<style>...</style>. AUTOCSP transforms this type of
node to a node in the form <link rel="stylesheet"

type="text/css" href="..."/>. The new node fetches
an external style file that is stored on the web server and

has the same content as the original style node. In this case,
the CSP gets extended by allowing the document to fetch the
style resource from the server using the style-src: host;

directive. The second type of nodes are style attributes,
such as HTML elements with attributes in the form <p

style="..."> </p>. The approach replaces this type of
node with a node without the style attribute and moves the
style content to an external file. It then links the file to
the corresponding HTML document and allows the domain
where the file is stored in the CSP. The last type of style
node consists of style elements that link to an external style
file, that is, elements in the form <link rel="stylesheet"

type="text/css" href="..."/>. In this case, no trans-
formation is applied, but the domain of the linked style file is
added to the CSP.

3) Other Nodes: The remaining nodes that relate to CSP
are discussed together in this section, as AUTOCSP applies
a similar analysis to all such nodes. This part of the ap-
proach analyzes classes of elements that (1) load plugins,
(2) fetch images, (3) connect to media content, and (4)
frame other resources. AUTOCSP identifies the resource to
be fetched by the nodes and adds the domain where the
resource is located to the CSP directive corresponding to
the node being analyzed. In addition, if the whitelisted re-
source is coming from the same host of the web applica-
tion, the approach attaches a Content-Security-Policy:

default-src 'none' header to the resource being fetched.
This is done to avoid XSS attacks that could piggyback on the
resource being loaded [2]. The policy used for this resources is
as strict as possible to avoid to weaken the protection offered
by AUTOCSP. Section V shows that this choice does not
disrupt the functionality of web applications in our evaluation.

D. Source Code Transformation

AUTOCSP’s source code transformation phase modifies the
server-side code of the web application so that it generates
HTML pages (1) with the inferred CSPs enabled and (2)
conforming to such CSPs. This phase takes as input the content
of the edit set which was produced in the previous phase
across multiple executions of the web application and returns
a transformed CSP-enabled web application. In the rest of this
section, we illustrate the two main parts of this phase, which
correspond to lines 27–33 in Algorithm 1.

1) Enabling CSP: This part of AUTOCSP processes
(transformCSP function in line 30) CSP edits created across
multiple executions of the web application. As mentioned in
Section III-C, a CSP edit contains the inferred CSP and the
source code location where the inferred CSP header needs to
be added. This latter is normally the code that generates the
initial HTML content, as the CSP header needs to the be sent
to the web browser before any other HTML content.

Because our approach collects information across different
executions, it is possible to have different CSPs associated
to a single statement in the source code. In this case, our
technique takes the superset of the policies and uses the
newly generated policy for all the web pages whose initial



HTML content is generated at the current location. It is worth
noting that combining the policies corresponding to different
executions, may result in a more permissive policy for a
specific execution. However, we believe (and our experience
confirms) that whitelisted content in one execution is unlikely
to harm related executions of the same web application.

2) HTML Generation: This part of AUTOCSP processes
(transformn function in line 32) the DOM-level transfor-
mations identified by the third phase of the approach and
changes the server-side code of the web application to reflect
these transformations in the generated web pages. It does so
by analyzing the node edits in the edit set, where each edit
consists of the original DOM node content, the location in the
code where the HTML that includes such content is generated,
and the modified node content. For each edit, AUTOCSP first
extracts the source code location (stmto). It then modifies the
code as follows. First, AUTOCSP introduces a new variable
out and adds to the code a statement that assigns to that
variable the HTML content generated by stmto. Second,
AUTOCSP adds a statement stmtr that replaces in out the
original DOM content with the new one. stmtr takes into
account the fact that the out might not contain the value
corresponding to the original node because reached by an
execution different from the one for which we generated the
node edit. Finally, AUTOCSP adds a statement that prints
the modified HTML content contained in out. If the new
content links to a new external script or style file introduced
by AUTOCSP, this part of the analysis also creates the file
with the proper content.

IV. IMPLEMENTATION

The implementation of AUTOCSP can analyze PHP web
applications and transforms them to use CSP 1.0 [4]. We
decide to implement our general approach for PHP web
applications because it is a language used for over 244 million
applications and is installed on over 2.1 million servers [7].

A. Dynamic Tainting

The dynamic tainting module consists of two main compo-
nents. The first one is an extension to the ZEND engine Version
2.4, a PHP interpreter written in C code. The engine translates
PHP scripts into opcodes and calls to C implementations of
PHP libraries. In the version that we used, there are 1064
opcodes and 4887 library functions. We analyzed semantics
of all of the engine’s opcode handlers but, to minimize our
implementation effort, only analyzed the library functions used
by our experimental benchmarks. Specifically, we analyzed
how values flow through them, and implemented hooks to read
relevant values during the taint process. Extracted input and
output values, together with the opcode and function details,
are passed to the component that handles taint introduction,
taint propagation and taint checking.

The component that handles taint introduction, taint prop-
agation and taint checking is written in Java, which is the
language used by the libraries used by the remaining modules

of the tool. This component introduces taint marks for hard-
coded values in the server-side code and for values originat-
ing from trusted locations specified by the developer in an
XML configuration file. For each opcode and library function
analyzed, the component implements the function that map
taint marks of values affecting the opcode computations to
the values produced as result of the computation. When the
component processes PRINT and ECHO opcodes (taint sinks),
it fills the three buffers produced by the dynamic tainting phase
of AUTOCSP, as described in Section III-A.

B. Web Page Analysis

Our tool implements the parsing phase of AUTOCSP by
extending JSOUP 1.7 [8]. The parser is an open source Java
project able to handle real-world HTML. It provides a very
easy to use, flexible, and efficient API for extracting and
manipulating elements of the DOM. This module extends
jsoup so that the output of the parsing process is the annotated
DOM tree. Our tool modifies the classes that implement
the tokenization and tree construction stages to operate as
discussed in Section III-B. Additionally, the module adds
supplementary fields to the classes of the nodes that can appear
in the DOM tree. It does so to store taint mark information and
source code locations that relate to a given node. The module
also extends the library API of JSOUP to offer easy access to
the information in the annotated DOM tree.

C. CSP Analysis

This module implements the third phase of AUTOCSP. It
analyzes the annotated DOM tree, computes the CSP that
applies to it, finds the transformations to generate HTML that
complies to the inferred CSP, computes the CSP and node
edits as mentioned in Section III-C, and stores them in an
XML file. The code that handles the transformations computed
by this module leverages the API added to JSOUP and uses
FREEMARKER 2.3 template technology [9] to create script
and style code that host the original content of transformed
inline script and style nodes.

D. Source Code Transformation

The last module of our tool parses the XML file produced
by the CSP analysis module and creates a version of the web
application that uses CSP. As described in Section III-D, the
module retrofits CSP to a web application by adding and mod-
ifying statements in the source code of the application. The
module uses the ECLIPSE PDT libraries to create an abstract
syntax tree for the source code and applies changes to the
application by modifying the AST. This module also creates
the external script and style files introduced by AUTOCSP.

V. EMPIRICAL EVALUATION

To determine the practicality and effectiveness of our ap-
proach, we used our implementation of AUTOCSP to perform
an empirical evaluation on a set of real-world web applications
and target the following research questions:



TABLE I: Description of experimental benchmarks.
Benchmark Type Version KLOC

GALLERY Photo Sharing 1.5 34.4
LINPHA Photo Sharing 1.3 59.6
MYBB Forum 1.6 105.9
OPENEMR Medical Management 4.1 480
PHPLIST Newsletter Management 2.10 35.4
SCHOOLMATE School Management 1.5 6.5
SERENDIPITY Blogging 0.8 49.6

RQ1: Can AUTOCSP retrofit CSP to web applications
and offer an effective protection against XSS attacks
without disrupting their functionality?

RQ2: What is the effect of AUTOCSP on the performance
of the retrofitted web applications?

RQ3: How dependent is AUTOCSP’s performance on the
input used for its taint analysis?

RQ4: Is automation needed to retrofit web applications?
The rest of this section presents our experimental benchmarks
and setup and discusses our results.

A. Experimental Benchmarks and Setup

For our empirical evaluation, we used real-world PHP
web applications that were also used in previous work on
XSS [10]–[15]. Among the applications used in these papers,
we selected those that were either used in more than one
paper or had a larger code base than the other. This resulted
in nine web applications, among which we had to discard
two (PHORUM and PHPBB) because they dynamically create
the server-side code; that is, in these applications, HTML
pages are dynamically created by code that is also dynamically
created, which is something that AUTOCSP does not handle.

Table I provides a summary description of the seven appli-
cations we considered. Columns Benchmark, Version, and Type
provide name, version and type of the web application. The
last column, KLOC, reports the number of (thousand) lines of
PHP code in the benchmark.

We deployed our benchmarks on a server machine with 3GB
of memory, two Intel Pentium D CPU 3.00GHz processors,
and running Ubuntu 10.04. We used ZEND 2.4 as the PHP
application server. To answer our research questions, we ran
our benchmarks against a set of representative inputs. Because
the benchmarks do not include a test suite, and we need inputs
for our dynamic taint analysis, we deployed our benchmarks
and asked five graduate-level students unfamiliar with AU-
TOCSP to explore the functionality of the web applications.
The students’s sessions were recorded by a Google Chrome
extension we created. These recordings are available, together
with another Chrome extension for replaying them, on our
tool’s website, provided in the Introduction.

B. Results

a) RQ1: To answer the part of RQ1 about AUTOCSP’s
effectiveness, we applied our approach to the benchmarks
considered and then ran a set of attacks against the retrofitted
applications. To do so, we created test inputs for known
vulnerabilities (7) in our benchmarks. In addition, to evaluate

TABLE II: Browser’s console errors that occur while
running the benchmarks under different CSP schemes.

Benchmark TI None Self AUTOCSP
GALLERY 16 175 68 0
LINPHA 43 231 136 0
MYBB 63 598 364 2
OPENEMR 113 699 533 11
PHPLIST 77 1224 273 1
SCHOOLMATE 90 16 8 0
SERENDIPITY 65 476 385 6

the breadth of AUTOCSP, we also randomly selected a set of
XSS attack vectors [16]–[19] and built the corresponding test
inputs (21). We tested the behavior of AUTOCSP with these
test inputs on four different browsers: Chrome 34, Firefox 28,
Opera 20, and Safari 7. All exploits were successfully blocked.

For the second part of RQ1, which is about the effects
of AUTOCSP on the applications’ functionality. We ran the
retrofitted web applications against the inputs we described
in Section V-A and checked whether that resulted in er-
rors in the browser. Unfortunately, we could not compare
AUTOCSP to any existing tool, as the most related exist-
ing approach, DEDACOTA [20], only works on applications
written in ASP.NET. However, in order to have a baseline,
we decided to implement two simple approaches: NONE,
which simply enables on all generated HTML pages the
strictest possible CSP policy (Content-Security-Policy:
default-src 'none') and SELF, which employes a policy
that allows guarded resources to fetch content only from
their same domain of origin (Content-Security-Policy:
default-src 'self'). These simple baselines can give us
an idea of what would happen if developers would simply
apply CSP to a web application without analyzing it.

Table II reports, for each benchmark, the number of test
inputs used (TI) and the number of unique (based on the
client-side code location) client-side errors occurring when
using approaches None, Self, and AUTOCSP (and not present
when executing the original web applications without CSP.
As expected, all benchmarks generates the largest number of
errors with approach NONE, as it prevents the web browser
from executing any script, applying any style, and loading
any external resource in the web page. The number of errors
is significantly also when using SELF. This is because all the
benchmarks extensively use inline scripts and style directives
in their HTML pages, and SELF prevents their execution.

AUTOCSP significantly reduces the number of errors com-
pared to the other two approaches, but it does not com-
pletely eliminate them. More precisely, it transforms three
of the web applications (GALLERY, LINPHA, and SCHOOL-
MATE) without introducing any error, and causes a lim-
ited number of errors in the other four applications. We
investigated the reasons for these errors and found that
they are of three types: (E1) executions of eval (e.g.,
var x = eval('...')), (E2) client-side creation of inline
script nodes in the DOM (e.g., document.write('<input
onclick="...">')), and (E3) client-side creation of
style nodes in the DOM (e.g., document.write('<td



TABLE III: Performance and modification data for the
retrofitted applications.

Benchmark To(ms) Tt(ms) Ecsp(#) En(#) F(#)
GALLERY 339 391 2 76 12
LINPHA 128 125 2 67 11
MYBB 142 142 5 97 6
OPENEMR 288 288 31 319 52
PHPLIST 193 208 1 33 8
SCHOOLMATE 24 31 1 328 26
SERENDIPITY 473 532 5 103 16

style="...">')). In the applications we considered, there
are 4 instances of E1, 5 of E2, and 11 of E3.

These errors could be removed by adding policies
'unsafe-eval' and 'unsafe-inline' to CSP. However,
this would reduce the protection offered by our approach
against XSS. To avoid that, a more sophisticated analysis of
the semantics of the JavaScript code in the HTML would be
needed, which is something that AUTOCSP does not do at
the moment. In future work, we plan to extend AUTOCSP by
adding to it (1) an approach similar to the one presented by
Jensen and colleagues [21], to remove errors of type E1, and
(2) automated script analysis, to remove errors of types E2 and
E3. Currently, AUTOCSP reports such issues to developers.

Based on these results we can answer RQ1 as follows:
AUTOCSP is able, for the cases considered, to retrofit CSP
to the web applications and effectively protect them against
XSS attacks, although it may generate false positives that can
require manual intervention in some cases (significantly fewer
cases than if CSP were simply applied blindly).

b) RQ2: To answer RQ2, we compared the execution
time of the retrofitted web applications with that of the original
applications when run against our set of the test inputs. For
each input, we measured the time from when the web browser
issued an HTTP request to the moment in which the requested
page was fully loaded in the web browser. The first part of
Table III reports, for each application, the average execution
time in milliseconds across one run of all inputs for the
given application. Column To shows the average time for the
original applications, while Tt shows the average time for
retrofitted applications. As the results show, the overhead is
mostly negligible from a practical standpoint. Moreover, it
appears that the larger is the subject, the lower is the relative
overhead, which is in fact not measurable for OPENEMR, our
largest application.

We can therefore say, for RQ2, that the transformations
introduced by AUTOCSP do not seem to significantly affect
the performance of the retrofitted web applications.

c) RQ3: To answer RQ3 we compared the number of
source code edits performed by AUTOCSP as more inputs
are considered for its taint analysis. For each application
considered, we computed the total number of edits when
considering 0%, 20%, 40%, 60%, 80%, and 100% of the inputs
of a server-side PHP file, where 100% means running that file
against all of its inputs in the input set. Because we randomly
selected the subset of inputs, we repeated the experiment 30
times and reported the average of these results in Figure 5. In
the figure, AUTOCSP shows a similar trend for all of the web
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Fig. 5: Number of source code edits performed by AU-
TOCSP as more inputs are considered.
applications. In most cases, the number of edits converges after
only 20% of the inputs have been considered, and in two cases
after 60% are considered (this happens for OPENEMR and
MYBB, which are the two largest applications in our pool).

Overall, these results seem to indicate, for RQ3, that the
approach is not strongly dependent on the specific inputs used.

d) RQ4: The second part of Table III let us investigate
RQ4. It shows the number of modifications performed by
AUTOCSP on the benchmark applications: the number of
CSPs added to the web applications (Ecsp), the distinct number
of DOM node edits (En), and the overall number of server-side
source code files modified by AUTOCSP (F). For five out of
seven applications, our approach finds more than one CSP to
apply in the server-side code (and 31 in the worst case). The
number of DOM node edits per web application is significant
and could be in the order of hundreds even for a small web
application (SCHOOLMATE). The number of source code files
affected by changes is significant as well.

Therefore, the answer to RQ4 seems to be that automation
is necessary to retrofit CSP to existing web applications.

VI. LIMITATIONS

Currently, the prototype of AUTOCSP does not fully sup-
port, in its source code transformation phase, web applications
that can dynamically generate server-side code. More in detail,
the prototype is not able to apply changes to source code
statements that are dynamically generated by the server-side
code. In this case, the prototype can be used as a reporting tool.
In addition, our prototype does not perform a sophisticated
analysis of the semantics of the JavaScript code contained
in generated HTML pages. As consequence, our tool could
generate a CSP that is too strict for a web page, resulting
in a disruption of the application functionality. Although our
prototype presents these limitations, Section V shows that
AUTOCSP is precise, practical, and effective.

VII. RELATED WORK

DEDACOTA [20] is the work most closely related to ours. It
differs, however, in the nature of the approach. DEDACOTA
statically rewrites a web application to separate data and



code in the generated web pages and applies CSP on the
transformed version of the web application. More specifically,
it performs static data-flow analysis to approximate the HTML
output of a web page and then rewrites the HTML such that
inline JavaScript is stored in a separate JavaScript file. The
authors do not deal with the problem of rewriting CSS code
and inline event handlers, although they claim that their tech-
nique is also applicable in these cases. In our evaluation, we
found that inline event handlers constitute a conspicuous part
of the content that needs to be rewritten. In addition, we found
that rewriting of inline event handlers strictly depends on the
DOM node in which they are found, and this information can
be better determined with a dynamic approach. PIXY [13], [22]
is a technique for detecting XSS vulnerabilities based on static
data-flow analysis of PHP scripts. PIXY and AUTOCSP have
similar goals, but operate in very different ways: PIXY aims
to find vulnerabilities in web applications, whereas AUTOCSP
aims to protect them using CSP.

Server-side protection mechanisms (e.g., [23]–[26]) range
from techniques that provide defenses based on input sanitizer
to methods that can differentiate between legal and illegal
scripts. Di Lucca and colleagues [23] propose a mixed static
and dynamic approach to find XSS vulnerabilities. Static anal-
ysis is used to determine web pages that might be vulnerable
to XSS attacks. Dynamic analysis is used to verify whether
identified web pages are actually vulnerable. SANER [24]
is a technique that statically tracks unsafe information from
sources to sinks and applies input sanitization. Subsequently,
the technique performs testing to check for proper sanitization
along the analyzed paths. This technique performs the opposite
type of information-flow tracking that AUTOCSP does (i.e.,
untrusted vs trusted). SCRIPTGARD [25] is a system that
performs context-sensitive sanitization to match the browser
parsing behavior. In a similar fashion, our approach tries to
emulate browser parsing behavior when building the DOM
tree for an HTML web page. XSS-GUARD [26] is a dynamic
technique that learns legal script generated by HTML requests
and removes illegal content from the output of dynamically
generated HTML pages. Similarly, our approach tries to iden-
tify legal scripts but whitelists them instead of removing the
untrusted one from generated web pages.

Researchers explored also XSS protection mechanisms
based on data-flow analysis (e.g., [13], [22], [27]–[30]).
Among those, dynamic taint tracking techniques (e.g., [29],
[30]) are closely relate to our work. Nguyen-Tuong and
colleagues [29], present a technique that replaces the standard
PHP interpreter with a modified interpreter to track taint marks
of string values. Based on computed taint information, the
technique checks whether elements of the dynamically gener-
ated HTML pages were created from untrusted sources. In case
some of these elements are found, the technique removes or
sanitizes them. The dynamic taint analysis implemented by this
technique differs from our technique. We propagate taint marks
associated to every type of data in the program, independently
from its type. In addition, we create an extension of the
PHP engine and we do not modify the interpreter directly,

which enable portability across multiple versions of the PHP
language. CSSE is a method to detect and prevent injection
attacks [30]. Their technique assigns metadata to user inputs,
propagates and checks metadata based on the concepts of
metadata-string operations and context-sensitive string eval-
uation. The technique modifies the core of the PHP engine.
This choice, like in [29], hinders portability. In addition, the
technique might suffer from imprecision because it deals only
with metadata of string values. Finally, the authors say that it
is possible to use the technique to protect against XSS attacks
and provide one example for one class of XSS attacks, whereas
AUTOCSP, by relying on CSP, can protect against different
classes of XSS attacks.

Client-side protection mechanisms include [3], [31] and are
based on enhanced client software. BEEP [31] is a technique
that whitelists scripts on the server side and specifies a
security policy for every web page. The security policy enables
or disables execution of scripts and is similar to CSP [3].
However, CSP handles more classes of HTML elements and
provides better guarantees of protection at the client side being
a W3C standard implemented by all the major web browsers.

VIII. CONCLUSION

We presented AUTOCSP, a novel approach for retrofitting
CSP to existing web applications. Given a web application,
AUTOCSP first performs positive dynamic tainting on the
serve-side code of the application. It then uses the computed
taint information to find trusted elements of dynamically
generated HTML pages and infer a policy that would block
potentially untrusted elements while allowing the trusted ones.
Finally, it automatically modifies the server-side code of the
web application so that it generates web pages with the
appropriate CSP. To assess precision, practicality, and effec-
tiveness of AUTOCSP, we implemented it in a tool that targets
PHP web applications and performed an empirical evaluation
on a set of real-world web applications. The results of our
evaluation show that, for the cases considered, AUTOCSP was
effective in retrofitting CSP to the existing applications while
either preserving their functionality or minimally affecting it.

As future work, we plan to expand the implementation of
AUTOCSP to handle applications that dynamically generate
the server-side code, analyze the semantics of JavaScript
code contained in web pages, and handle applications written
in different languages. We also plan to expand AUTOCSP
to automatically update computed CSPs in case developers
perform changes to the source code of web applications.
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