
Attacking Byzantine Robust Aggregation in High Dimensions

Sarthak Choudhary*, Aashish Kolluri* and Prateek Saxena
School of Computing, National University of Singapore

csarthak76@gmail.com {aashish7, prateeks}@comp.nus.edu.sg

Abstract—Training modern neural networks or models typ-
ically requires averaging over a sample of high-dimensional
vectors. Poisoning attacks can skew or bias the average vectors
used to train the model, forcing the model to learn specific
patterns or avoid learning anything useful. Byzantine robust
aggregation is a principled algorithmic defense against such
biasing. Robust aggregators can bound the maximum bias in
computing centrality statistics, such as mean, even when some
fraction of inputs are arbitrarily corrupted. Designing such
aggregators is challenging when dealing with high dimensions.
However, the first polynomial-time algorithms with strong
theoretical bounds on the bias have recently been proposed.
Their bounds are independent of the number of dimensions,
promising a conceptual limit on the power of poisoning attacks
in their ongoing arms race against defenses.

In this paper, we show a new attack called HIDRA on
practical realization of strong defenses which subverts their
claim of dimension-independent bias. HIDRA highlights a
novel computational bottleneck that has not been a concern
of prior information-theoretic analysis. Our experimental eval-
uation shows that our attacks almost completely destroy the
model performance, whereas existing attacks with the same
goal fail to have much effect. Our findings leave the arms race
between poisoning attacks and provable defenses wide open.

1. Introduction

Machine learning training algorithms often have to com-
pute an average over a set of vectors. The standard stochas-
tic gradient descent (SGD) algorithm for neural network
training, as an example, computes the average of gradient
vectors derived from data samples in each step. Similarly,
in federated learning, local models are trained at individual
worker machines and then sent to a central service that
averages over these vectors to get the global model.

Several security problems arise if some of these vectors
can be maliciously crafted. For instance, poisoning attacks
corrupt training data samples so that gradients computed
from them during SGD skew or bias the learned model.
The bias is how far the average computed from the partially
corrupted vectors can be from the benign (uncorrupted)
value. Such biasing attacks on ML training can severely
deteriorate the training accuracy of the model [1], [2], [3],
exacerbate privacy concerns [4], and create unfairness that

*. These authors contributed equally to this work.

did not exist in the dataset [5], [6]. Local models sent
by malicious worker machines in federated learning can
directly be corrupted before being sent to the central service.

A natural security question arises about the robustness of
such averaging. It is easy to see that even a single corrupted
input vector can result in arbitrarily biasing the average
when taking a simple arithmetic mean. It is desirable to
design algorithms that compute an aggregate statistic over
given vectors, similar to the mean, which cannot be biased
much even by a strong adversary. The Byzantine Robust
Aggregation problem captures this goal: Imagine a fraction
ϵ of vectors can be arbitrarily corrupted, then can we ensure
the bias in the computed aggregate is small [7], [8]? Robust
aggregation algorithms bound how much the attacker can
skew the average model at each step in training, thereby
offering a principled limit on the effect of attacks.

Designing robust aggregators is an algorithmic challenge
that has inspired many attempts. These aggregators, as
shown in Table 1, most often provide a theoretical upper
bound 1 on the maximum bias of O(

√
ϵd) [9], [10], [11],

[12]. The bias is the L2 norm of the maximum adversarial
error induced, ϵ is the fraction of vectors controlled by the
adversary, and d is the number of dimensions of the vectors.
The issue in practice is that the number of dimensions d is
usually the parameter size of the ML model, which can be
in millions or billions. The bias bound being dependent on
d makes it vacuously large for modern ML systems. Hence,
we refer to these algorithms as weakly bounded (or weak).
Concrete poisoning attacks that have a severe impact on
weak algorithms have been shown recently [2], [3], [13].

On the theoretical side, robust aggregation or robust
mean estimation has been a long-standing challenge in high-
dimensional statistics. The primary goal is to give stronger
bounds of O(

√
ϵ) on the bias, without the

√
d factor, which

is the statistically optimal [14], [15]. The classical Tukey
median [8] achieves the goal but best known algorithms
for computing it have running time exponential in d [16].
A new line of algorithms gives the first polynomial time
solutions with strong bounds on bias [17] and their first
practical realization strategy is shown recently [14]. Table 1
summarizes the guarantees of strong aggregators. It has been
experimentally verified that they completely thwart existing
poisoning attacks which aim to reduce the trained model
performance, thus establishing the state-of-the-art [14]. Im-

1. The more precise asymptotical bounds are in Table 1. We will often
drop the Σ term, as it is a constant for a given distribution.

TABLE 1: Comparison of the worst-case bias between
different robust aggregation algorithms. ||Σ||2 is maximum
variance of the uncorrupted sample. Õ(·) ignores the con-
stant and logarithmic factors in the computation complexity.
The number of vectors is n and dimensions d.

Algorithm Max. Bias Comp. Complexity

Weak robust aggregators

Median [9] Õ(
√
ϵd) · ||Σ||

1
2
2 Õ(nd)

Trimmed Mean [9] Õ(
√
ϵd) · ||Σ||

1
2
2 Õ(nd)

Geometric Median [10], [11], [12] Õ(
√
ϵd) · ||Σ||

1
2
2 Õ(nd)

Strong robust aggregators

Filtering [17] Õ(
√
ϵ) · ||Σ||

1
2
2 Õ(ϵn · d3)

No-Regret [18] Õ(
√
ϵ) · ||Σ||

1
2
2 Õ((n+ d3) · d)

SoS [19] Õ(
√
ϵ) · ||Σ||

1
2
2 poly(n, d)

Tukey Median [8] Õ(
√
ϵ) · ||Σ||

1
2
2 NP-Hard in d

portantly, these are the only polynomial-time algorithms
known to have strong bounds on the bias independent of
d—a crucial security property when working with high-
dimensional vectors as in modern ML training.

Our work. Since none of the existing attacks defeat strong
robust aggregators, even when working in low dimensions,
it is natural to ask: Are there any attacks that create bias
matching the theoretical upper bound of O(

√
ϵ) in them? In

this paper, we present the first effective attack against strong
robust aggregators, called HIDRA2. HIDRA induces bias
matching their analytical upper bounds in low dimensional
settings. Our attack, thus, shows that the prior theoretical
bounds for strong defenses are tight.

More importantly, we observe that the bounds given
by prior theoretical analysis make idealized computational
assumptions which hold primarily when the number of
dimensions is small. As the number of dimensions increases,
existing robust aggregators run into a fundamental compu-
tation bottleneck. Practical realizations of these defenses,
therefore, when working with high dimensions, have to
break down the given vectors into multiple low-dimensional
chunks to solve for. Our HIDRA attack induces a near
optimal3 bias per chunk, resulting in a total bias of Ω(

√
ϵd)

in the high dimensional setting. This is in sharp contrast
to the promised dimension independent Õ(

√
ϵ) bias. A

factor of
√
d translates to several orders of magnitude worse

bias, even for moderately sized neural networks that have a
million parameters. We analytically derive the lower bound
on the bias achieved by our HIDRA attack on the above
chunking procedure of Ω(

√
ϵd) and experimentally confirm

that corruption of input vectors using HIDRA hits this lower
bound. HIDRA is thus, again, near-optimal for high d.

Experimental results. We employ HIDRA towards cre-
ating indiscriminate or untargeted poisoning attacks as a

2. HIDRA is short for High Dimensional attack on Robust Aggregators.
3. The known upper bound is Õ(

√
ϵd), see Table 1.

concrete application [20]. Untargeted poisoning attacks aim
to prevent ML models from learning useful information
and have been difficult to achieve with prior attacks when
strong robust aggregators are used. However, our attack con-
sistently results in a drastic drop in the accuracy of trained
models even when using strong robust aggregators. For
example, in several instances the original model accuracy
of over 80% drops to below 10% with ϵ = 0.2 fraction
of vectors corrupted using HIDRA. Under the same setup,
prior attacks induce below 5% drop in performance.

Computational Bottleneck is fundamental. The compu-
tational bottleneck targeted by HIDRA is fundamental to
the problem of robust aggregation in general, not specific
to a single algorithm. The key idea in all strong robust
aggregators is to filter out vectors far from the mean in
the direction of maximum variance of the given vectors.
For this, strong aggregators compute the maximum variance
direction. It turns out that this is no accident. We show a
quasilinear time reduction from the problem of computing
the maximum variance direction approximately to that of
strong robust aggregation, for a non-trivial class of inputs
(see Section 4.4). In other words, solving strong aggregation
efficiently would imply finding the approximate maximum
variance direction efficiently for this class of inputs.

To our knowledge, the best-known algorithms for com-
puting the maximum variance direction of given vectors
have O(d3) 4 time complexity [21], [22] Their highly opti-
mized implementations5 remain O(d3), despite being widely
used for decades. For modern ML models, d can be 220

to 240, so O(d3) is prohibitively costly. The computational
bottleneck in strong aggregators, therefore, does not appear
easy to work around in full generality.

Our contribution. We present the first effective attacks
against provable byzantine robust aggregation defenses that
have the strongest bias bounds. Our attacks are near optimal
and experimentally surpass the efficacy of existing untar-
geted poisoning attacks for these defenses. They create a
severe loss in performance of trained models. The vulnera-
bility is computational, highlighting the gaps between ide-
alized information-theoretic analysis of these defenses and
their practical realization. As a result, designing practical
and provable defenses that limit the bias in poisoning attacks
remains an open question for the future.

2. Background & Problem Setup

The central question we are interested in is that of com-
puting a “mean-like” aggregate statistic of n vectors when
a small unknown fraction ϵ of them has been arbitrarily
corrupted. The defender wants the computed aggregate to
be robust, i.e., not too far from the mean of uncorrupted

4. Algorithms for exact maximum variance run in O(d3), while the
approximate algorithms with desired error rates operate in Õ(n2d). We
refer readers to section 4.4 for more details.

5. https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html

vectors. The problem arises in many applications, though
we are motivated by its use in machine learning tasks.

2.1. The Problem: Byzantine Robust Aggregation

There are n vectors X = {x1, ..., xn}, for example n
gradients of a neural network, where each vector xi ∈ Rd.
A Byzantine adversary who has access to X can replace an
ϵ < 1

2 fraction of vectors in X and with arbitrarily chosen
vectors, resulting in a set Y = {y1, ..., yn} called the ϵ-
corrupted set. The defender is given Y and some auxiliary
information about X . The robust aggregation problem is to
specify an aggregation function f : Rn×d → Rd, such that
the bias—the difference between f(Y) and the arithmetic
mean of X for all possible choices of Y —is bounded by λ.
Formally, there exists some λ > 0 such that:

bias = max
Y
∥f(Y)− 1

n

n∑
i=1

xi∥2 ≤ λ (1)

There are known information-theoretic limits for which
sets we can solve robust aggregation. Solving the above
problem with provable guarantees in full generality, without
making any assumptions about the uncorrupted samples
X , is not possible. One must minimally assume that an
upper bound on the variance of uncorrupted samples is
known [17], [19], [23]—without it, there exist sets where
a small number of corruptions make it impossible to re-
cover the original mean. We will therefore assume that a
reasonably good estimate of maximum variance is known in
advance. The maximum variance is the largest eigenvalue or
the spectral norm of Σ, denoted by ||Σ||2, where Σ ∈ Rd×d

is the covariance matrix of X defined below:

Σ =
1

n
·

[
n∑

i=0

(xi − µ̂)T · (xi − µ̂)

]
; µ̂ =

1

n

n∑
i=0

xi

The statistically optimal (best possible) bias λ is a
multiplicative factor, independent of d, times the maximum
variance ||Σ||

1
2
2 . We refer to this multiplicative factor as

the bound when clear from context. ||Σ||
1
2
2 is fixed by the

distribution X is drawn from, but it may depend on d.
The robust aggregation problem is also called robust

mean estimation in statistics [8], [15], [18], [19], [23], [24],
[25], [26], [27]. The above assumption about knowing ||Σ||2
is standard in prior work on robust mean estimation [17].

2.2. Application: Untargeted Poisoning in SGD

The standard training algorithm for neural networks is
stochastic gradient descent (SGD) [28]. We will use training
with SGD as the baseline throughout the paper.

Aggregation in SGD. SGD works by initializing the ML
model parameters or weights w ∈ Rd with random values
and iteratively updating it in sequential steps. In each step

t, it selects a set of n samples uniformly at random from
the training dataset and computes the aggregate:

wt+1 = wt − η

n

n∑
i=1

∇Qi(w
t)

Here, the number of samples taken in each set is a
constant n, the gradient of the ith data point in the set is
∇Qi(w), and the learning rate η is a constant. The gradients
are vectors in Rd. The choice of loss functions, neural
network architecture, and so on are not relevant for the
purpose of modeling the problem of robust aggregation.

The vanilla SGD procedure, as described above, is sus-
ceptible to adversarial corruptions of gradients. This can
result in arbitrary bias since a simple arithmetic mean (av-
erage) of gradients is computed in each training step. A
more robust aggregation technique than arithmetic mean is
a natural mitigation for attacks that try to bias the aggregate.

Threat model. We assume that the defender will use a
strong robust aggregator f instead of naive arithmetic mean
during the SGD computation. These aggregators take as
input the corrupted samples Y and the auxiliary informa-
tion ||Σ||2 about the benign samples. In practice, one can
estimate ||Σ||2 experimentally based on a small set of clean
unpoisoned samples. We assume the defender knows ||Σ||2
to use in f , and the attacker also knows f and ||Σ||2.

The Byzantine attacker model admits a powerful attacker
that can arbitrarily corrupt vectors being aggregated. Such an
attack model abstracts away from how the attacker induces
the corruption, for instance, whether through poisoning of
datasets [20] or direct control over the vectors [29]. In
typical centralized training, we are concerned with attackers
who control training data samples and can poison them.
Gradients computed from poisoned samples are thus influ-
enced significantly by the attacker but not necessarily fully
controlled. In contrast, certain federated learning setups offer
more direct control over gradient vectors being aggregated.
In federated learning, a server collaborates to train a machine
learning model with several clients or worker machines.
Clients compute local updates (vectors) to the model on their
local datasets and send them to the server, which aggregates
them as in vanilla SGD. It is easy to see that a compromised
or malicious worker has direct and complete control over
the vector they send. Our Byzantine attacker model thus
captures both the centralized and federated learning setups.

The adversary is fully adaptive, meaning that they cor-
rupt with complete knowledge of the function f and ||Σ||2 in
every training round. The ϵ-corrupted sample of X , denoted
as Y , is given to the robust aggregator (defender).

Untargeted model poisoning attacks. While there can
be many attacker goals of biasing models during training,
we focus solely on one type of attacks, namely untargeted
poisoning [20], to show practical value. The attack corrupts
the gradient vectors computed during training. The primary
objective of untargeted poisoning is to bias the aggregated
model at each step such that it exhibits a high error rate for

Benign Samples
Corrupted Samples
Benign Mean
Corrupted Mean
Projection

Figure 1: Left: Gaussian samples with 0.1 (ϵ) fraction of arbitrarily corrupted data, highlighting the mean shift post-
corruption where the dotted circle is the standard deviation (σ) boundary around the mean. Middle: Trimmed mean by
dimension, establishing dimension-wise thresholds to contain corrupted mean within an order of d. Right: Strong robust
aggregator defenses, applying a single threshold based on variance to restrict corrupted mean to a constant distance.

training examples, misclassifying them to any class other
than the correct one generically. Effectively, the ML model
updates in each SGD step learn little useful information. The
final trained model is unusable, leading to denial-of-service.

Untargeted poisoning attacks are a subclass of poisoning
attacks. There are 2 other prominent categories: targeted [30]
and backdoor [1] poisoning. Targeted attacks force the
trained ML model to misclassify a specific class of inputs.
Backdoor attacks misclassify inputs with artificially planted
trigger patterns. We do not study these 2 categories here,
though we believe our key ideas can be adapted to them.

Prior untargeted attacks assume two types of attacker
knowledge about the uncorrupted samples X , i.e., full-
knowledge and partial knowledge. In the full knowledge
setting, the adversary has direct access to X and is able
to arbitrarily manipulate an ϵ < 1/2 fraction of inputs from
X . In the partial-knowledge setting, the adversary does not
have access to the complete X . In particular, for instance, it
cannot exactly compute the mean of X since it only knows
its own uncorrupted vectors, not those of other clients, as is
expected in typical federated learning setups. The rest of the
capabilities in the partial-knowledge setup are the same as in
the full-knowledge setting. We experimentally evaluate both
these settings. Our formal analysis, though, is restricted to
the full-knowledge case because it is difficult to generically
say how much the subset known to the adversary statistically
deviates from the full X in different practical setups.

3. Robust Aggregators

Given vectors Y created from corrupting some ϵ · n in
X , the aggregator does not know which elements in Y are
corrupted. One principled way is to solve the problem is to
distinguish inliers from outliers in Y , and lower the contri-
bution of the latter when computing a measure of centrality.
Nearly all robust aggregators work with this principle, either
explicitly or implicitly, but differ in how they do so.

Robust aggregators with weak bounds on bias. Weak
robust aggregators, such as Trimmed Mean and Median,

Algorithm 1 Meta-algorithm for strong robust aggregators

Input ϵ-corrupted set Y = {y1, ..., yn} ⊆ Rd, n, ϵ, and
||Σ||2

Output µ̃ robust mean
1: ξ := k · ||Σ||2 ▷ Choose

√
20 < k ≤ 9 [14], [25]

2: Y ′ = Y
3: for j = 0 to j = 2 · n · ϵ− 1 do
4: if ||Cov(Y ′)||2 ≤ ξ then
5: return µ̃ = 1

n

∑n
i=1 y

′
i

6: else
7: Y ′ ← OutlierRemovalSubroutine(Y ′, ϵ, ||Σ||2)
8: end if
9: end for

10: return µ̃ = 1
n

∑n
i=1 y

′
i

compute measures of centrality per dimension. When we
compute central tendencies for each dimension separately,
an adversary can always create a bias of Θ(

√
ϵ) in a dimen-

sion, proportional to the benign variance in that dimension,
by corrupting ϵ fraction of X . This is true for X sampled
from any distribution with bounded variance (see Sec. 3
in [25] and Fact 1.2 in [15]). So, it is difficult to bound
the total bias better than O(

√
ϵd) by analyzing individual

dimensions [25], [31].
Let us take the example of Trimmed mean for illus-

tration. Fig. 1 (middle) shows a corrupted 2-d sample that
induces high bias against it. The attacker can create ϵ·n out-
liers positioned at the extreme of benign samples along each
dimension, displacing the trimmed mean in each dimension
by
√
ϵ, giving total bias of O(

√
ϵd). Recent untargeted

poisoning attacks have also experimentally shown that such
high biases are practical on weak aggregators [2].

Robust aggregators with strong bounds on bias. Strong
robust aggregators differ from weak ones in that they look
at the magnitude of the vectors in Y along all possible
vector directions, not just their individual components per
dimension. They are able to provide substantially better
upper bounds of Õ(

√
ϵ) on bias, independent of d, because

Algorithm 2 FILTERING [17]

Input ϵ-corrupted set Y = {y1, ..., yn} ⊆ Rd, ||Σ||2
Output Y ′ = {y′

1, ..., y
′
n} updated set Y removing or

undermining outliers
1: ci := 1/n, i ∈ [n] ▷ Initialize equal weights

2: µc :=
∑n

i=1 ciyi ▷ Compute mean of Y

3: v ← largest eigenvector of Cov(Y)
4: τi := ⟨yi − µc, v⟩2, i ∈ [|Y |]
5: ci := ci(1−

τi
τmax

), i ∈ [|Y |]
6: cnt := count vectors in Y with ci ̸= 0
7: ci := ci/

∑cnt
i=1 ci ▷ Normalize the new weights

8: return {c1 · y1, . . . , cn · yn}

Algorithm 3 NO-REGRET [18]

Input ϵ-corrupted set Y = {y1, ..., yn} ⊆ Rd, ||Σ||2
Output Y ′ = {y′

1, ..., y
′
n} updated set Y removing or

undermining outliers
1: li,j = ||yi − yj ||2 for all i, j ∈ [n]
2: η := 0.5/(max(li,j))2 ▷ Step size for re-weighting

3: ci := 1/n, i ∈ [n] ▷ Initialize equal weights

4: µc :=
∑n

i=1 ciyi ▷ Compute mean of Y

5: v ← largest eigenvector of Cov(Y)
6: τi := ⟨yi − µc, v⟩2, i ∈ [|Y |]
7: ci := ci(1− τi · ϵη

2||Σ||2d
), i ∈ [|Y |]

8: ∆n,ϵ := {C̃|
∑

c̃i = 1, c̃i ≤ 1
(1−ϵ)n

}
9: C := arg minC̃∈∆n,ϵ

DKL(C̃||C)

10: return {c1 · y1, . . . , cn · yn}

Algorithm 4 Sum of Squares (cf. [19])

Input ϵ-corrupted set Y = {y1, ..., yn} ⊆ Rd, ||Σ||2
Output Y ′ = {y′

1, ..., y
′
n} updated set Y removing or

undermining outliers
1: W := {w1, . . . , wn} ▷ create variables for weights

2: Y ′ := {y′
1, . . . , y

′
n} ▷ create variables for Y ′

3: µ′ := 1
n

∑n
i=1 y′

i ▷ create a variable for mean

4: Σ′ := 1
n

∑n
i=1(y

′
i − µ′)T · (y′

i − µ)

5: Ẽ← initialize a SoS program with W and Y ′

6: Ẽ.add(w2
i = wi for every i ∈ [n]) ▷ add constraints

7: Ẽ.add(
∑n

i=1 wi = (1− ϵ)n)
8: Ẽ.add(wiy

′
i = wiyi for every i ∈ [n])

9: Ẽ.add(1
n

∑
⟨y′

i−µ
′, v⟩2 ≤ 9||Σ||2) for all v ∈ Rd

10: Ẽ.solve() ▷ solve the program to get operator Ẽ
11: return {Ẽ(y′

1), . . . , Ẽ(y
′
n)}

Figure 2: Pseudocode for OutlierRemovalSubroutine in Alg. 1 as instatiated by 3 different strong robust aggregators.

of a key fact: If two sets share at least (1 − ϵ) fraction of
elements and exhibit equal maximum variance, then their
respective means cannot deviate by more than O(

√
ϵ) from

each other (see the explanation below Fact 1.2 in [15]).
The spectral norm ||Σ||2 of the covariance matrix captures
the maximum variance across all vector directions (it is
the largest eigenvalue). Using this principle, strong robust
aggregators check if the variance of the corrupted inputs Y
exceeds the expected ||Σ||2 known from clean samples.

The first polynomial-time strong aggregators have been
proposed only in the last decade [15], [17]. Existing poi-
soning attacks fail to create much bias against them [14].

Alg. 1 is a common backbone for all polynomial-time
strong aggregators. The basic idea is to compute a weighted
average of vectors in Y . Lower weights are given to outliers.
The way the weights are computed varies across different
strong aggregators and is abstracted as the OutlierRemoval-
Subroutine (Line 7). The entire procedure is iterative. In
each iteration, the vectors in Y are re-weighted until the
maximum variance of the newly weighted samples falls
below a threshold ξ (Line 4). The threshold depends on
||Σ||2 (Line 1). This process ensures that all outliers in Y
are assigned minimal weight, rendering the mean of the re-
weighted points a reliable estimate of the true mean.

The value ξ depends on the natural variance (||Σ||2) of
the benign samples, trading off how many inliers vs. outliers
the procedure is willing to exclude. If the defense chooses ξ
much smaller than the natural variance of benign samples, it
will filter out benign samples. For example, a constant frac-
tion (about 0.27) of benign vectors are statistically expected
to be between ||Σ||

1
2
2 and 2 · ||Σ||

1
2
2 for normal (Gaussian)

distributions—therefore, defenses which filter out points in
this range are likely to have bias at least proportional to√
ϵ, for ϵ = 0.27, even without any corruption. Therefore,

practical defenses would use ξ > k·||Σ||2, for some constant
k. Prior works suggest using k =

√
20 [14] and k = 9 [17].

The provable bound on bias then is Õ(
√
ϵ) · ||Σ||

1
2
2 [17].

Fig. 1 (right) plots the behavior of Alg. 1 on the same
example that creates a large bias against the weak trimmed
mean. The samples outside the radius (dark solid circle)
defined by ξ have near zero weight. The resulting estimate
is much closer to the true mean than the trimmed mean.

The weight assignment procedure varies across all the
different strong aggregators proposed in prior work: Filter-
ing [17], No-Regret [18], and SoS [19]. Fig. 2 shows the
different strategies to implement the OutlierRemovalSub-
routine the 3 aggregators use—all follow the same meta-
procedure of Alg. 1. Readers need not understand their de-
tails, they are included to make the paper self-contained. We
experimentally evaluate them in Section 5, when possible.

Computational bottleneck. The maximum variance di-
rection of Y (Line 3 in Alg. 2) is computationally expensive
to compute. We will later show in Section 4.4 that it is
fundamental to the problem of robust aggregation, not just
to the above solutions. This computational bottleneck forces
practical realizations of Alg. 1 to operate on smaller subsets
of dimensions at a time, as explained in Section 4.

4. The HIDRA Attack

We propose a principled untargeted poisoning attack to
defeat existing polynomial-time strong aggregators.

4.1. Warm up: Attack in Low Dimensions

The invariant in strong robust aggregators (see Alg. 1) is
that Y ′, a re-weighted (scaled) version of Y , has maximum
variance below a threshold ξ. The attack preserves this
invariant: Given uncorrupted vectors X , it replaces n · ϵ
of them to construct Y ′ such that Cov(Y ′) is below the
threshold. Thus, all the corrupted vectors will be used in the
final weighted mean statistic computed by Alg. 1. The attack
procedure is given in Alg. 5. It computes the mean vector

Algorithm 5 Pseudo-code describing HIDRA

Input benign set X = {x1, ..., xn}, fraction of corruption
ϵ, variance threshold ξ

Output ϵ-corrupted set Y = {y1, ..., yn}
1: µ̂ := 1

n

∑n
i=1 xi ▷ compute the mean of X

2: Σ̂ := 1
n

∑n
i=1(xi − µ̂)T · (xi − µ̂)

3: ŝ := µ̂
||µ̂||2

4: σ2
max := ξ√

20
▷ estimate σ2

max using ξ

5: z =
√

ξ−σ2
max

ϵ2+ϵ(1−ϵ)2 ▷ magnitude of corruption along ŝ

6: yi := µ̂− ŝ · z for all i ∈ [1, n · ϵ]
7: yi := xi for all i ∈ [n · ϵ+ 1, n]
8: return Y

µ̂ of X (line 1) and creates corrupted vectors that hit the
maximum allowable deviation from the mean towards zero,
without getting filtered out. Specifically, line 5 computes
the exact magnitude of the corruptions to create along the
direction of −µ̂ such that after corrupting n · ϵ vectors (as
in line 6), the resulting Y has maximum variance below ξ.

To achieve that, recall that the threshold ξ for which
the guarantees of the robust aggregator hold, is always
higher than the benign sample variance along any direction.
Ideally, the threshold should be ≥ 9 · σ2

max as given by
theoretical analyses in prior works [17]. Prior implemen-
tations for FILTERING and NO-REGRET [14] use

√
20

times a constant estimate of σ2
max as the threshold. We

make a key observation that there exists a direction ŝ, along
which corrupted vectors can shift the aggregate far from the
original mean to the maximum value, while ensuring that the
variance in all other directions remains below the threshold.
Specifically, using the magnitude z given in Eqn. (2) below
increases the bias as much as possible without exceeding the
threshold. We use the offset −zŝ for all corrupted vectors.

z =

√
ξ − σ2

max

ϵ2 + ϵ · (1− ϵ)2
− µŝ (2)

µŝ =
1

n

n∑
i=0

⟨xi, ŝ⟩ (3)

Our analysis shows that the above strategy will not
increase variance in any other direction beyond the threshold
(see Lemma 1.2 in Section 4.3). This is necessary to not
trigger the outlier removal procedure. The magnitude of
corruption is thus maximized, subject to the threshold invari-
ant remaining valid. Our analysis presented in Section 4.3
proves that using the value of z given in Eq 2, HIDRA hits
the theoretical upper bound on the bias. We confirm it
experimentally for practical setups as well in Section 5.
Fig. 3 illustrates the corruption strategy described above,
depicting the placement of all corrupted vectors just inside
the variance threshold boundary.

The direction of the perturbation, i.e., along −µ̂, is
chosen to reduce the final µ̂ closer to zero, motivated specif-
ically in untargeted poisoning attacks. If the updates in SGD

Benign Samples
Corrupted Samples
Benign Mean
Corrupted Mean

Figure 3: HIDRA : Corruptions crafted within variance
threshold, yet biasing the mean to an order of Ω(

√
ϵ)

are close to zero, they carry lesser signals about the training
samples, effectively disallowing the model from learning.
Other forms of poisoning can use other directions based on
their goals, but we focus only on untargeted poisoning.

Note that our attack does not have bias dependent on d in
low dimensions, as expected from prior theoretical analysis
of strong robust aggregators. Our attack does close the
gap between the best-known attacks and the upper bound,
showing the tightness of prior theoretical analyses.

4.2. Vulnerability in High Dimensions

The analysis of strong robust aggregators makes ide-
alized computational assumptions. The expensive steps in
these defenses are computing the maximum variance and a
corresponding maximum variance direction of inputs Y . Re-
call that the maximum variance corresponds to the spectral
norm of the sample covariance matrix ||Cov(Y)||2, i.e., the
largest eigenvalue. The maximum variance direction is the
direction of one of the eigenvectors with largest eigenvalue.
The exact computation of ||Cov(Y)||2 is O(d3) [21] due to
iterative matrix multiplication steps. As a rough estimate, it
takes about 150 seconds on a single CPU core of a modern
desktop to compute the largest eigenvector sequentially and
its eigenvalue for d=104. Averaging in SGD is over gradient
vectors which can be much larger, for instance, small CNNs
need d = 3 ×105 and modern large language models can
have d = 1010 to 1012. Therefore, given finite memory per
computational device, the computation over d× d matrices
has to be split into smaller matrices when d is large.

Practical realization of strong robust aggregators. To
overcome the computational bottleneck, recent works split
the dimensions into disjoint chunks that are small enough to
be computed on individually [13], [14]. We illustrate how
practical realization of strong robust aggregators do this. Let
the original dimension of samples be d and FILTERING
be the robust aggregator chosen. Then, we take the first m
dimensions of all vectors as the first chunk, the next m
dimensions of all vectors as the second chunk, and so on.
Each vector is partitioned into chunks of size say m = 1000.
This will result in each vector having c = ⌊ d

m⌋ chunks.

Algorithm 6 Practical realizations of strong robust aggre-
gators in high dimensions

Input ϵ-corrupted set Y = {y1, . . . , yn} ⊆ Rd, partition
size m, ||Σ||2, a strong aggregator A following Alg. 1

Output Robust mean of Y , µ ∈ Rd

1: µ = [0, . . . , 0] ▷ initialize with zero vector in Rd

2: i = 0
3: while i < d do
4: Ỹ ← set of sampled Y using indices in [i, i+m−1]

5: µ[i, i+m−1] := A(Ỹ , ||Σ||2) ▷ get chunk aggregate

6: i := i+m
7: end while
8: return µ

The FILTERING aggregator will be run on the first chunk,
i.e., first m dimensions of all samples to find the robust
aggregate, and similarly on each subsequent chunk. We get
c robust aggregates, one for each chunk, which are then
concatenated to output the final output vector of dimension
d. This generic chunking strategy is detailed in Algorithm 6.

Vulnerability. Chunking introduces a new source of vul-
nerability. Running robust aggregation on different chunks
independently creates an opportunity for the adversary to
bias the result on each chunk separately. Specifically, the
adversary can bias the aggregate of each chunk by Ω(

√
ϵ)

using Algorithm 5. Since the final aggregated vector is
the concatenation of all of the aggregates of each chunk,
the biases from the aggregates from all chunks add up.
Therefore, the bias in the final aggregated model is Ω(

√
ϵc).

Since the number of chunks c is proportional to d, the
total bias introduced by HIDRA is Ω(

√
ϵd) ·
√
ξ. Formally,

Theorem 1 in Section 4.3 proves our claim.

Multi-chunk HIDRA. Multi-chunk strong robust aggre-
gators have to decide the threshold to use per chunk. Prior
work has used a constant function to bound the variance of
each chunk by a fixed constant σ2

max, which is the maximum
value of the variance across all chunks (line 5) [14]. Our
attack therefore uses σ2

max as a replacement for ||Σ||2 in
Alg. 5. One can extend the defense to consider an adaptive
threshold, a different constant multiple of the variance σ2

i
for chunk i. The HIDRA attack would simply use Alg. 5
for each chunk separately using the respective threshold.
The analysis remains the same because the threshold used
in each chunk must be proportional to the natural variance
σ2
i in that chunk, in order to avoid filtering out inliers. So,

the threshold used must be at least a constant times σ2
i .

Full vs. Partial Knowledge Setups. Algorithm 5 extends
to the partial-knowledge setting as well. The only change
is to estimate the µ̂ (see Line 1) using a subset of benign
vectors that the adversary has access to (e.g. its own). We
have evaluated both setups in Section 5.

In summary, we have shown HIDRA, an attack strategy
to create a bias of Ω(

√
ϵd) in high dimensions. This de-

feats the main advantage offered by strong robust aggrega-
tors over weak ones. Practical incarnations of strong robust
aggregators that give Õ(

√
ϵ) bias, therefore, remain elusive.

4.3. Theoretical Optimality Analysis

Our Theorem 1 asserts that HIDRA against practical
realizations of strong robust aggregators will result in a bias
that will be at least Ω(

√
ϵd). Prior known bias for such

aggregators is Õ(
√
ϵd), so our attack is nearly optimal. Our

analysis presented here is for the full-knowledge setting. It
remains the same for the partial-knowledge setting, modulo
the estimation error in computing µ̂ (Line 1 in Alg. 5), which
varies by datasets.

Theorem 1. HIDRA , as outlined in Algorithm 5, will result
in a bias of Ω(

√
ϵd) · ||Σ||

1
2
2 against Alg. 6 in the worst case.

Proof. We prove three Lemmas 1.1, 1.2, and 1.3 that are
stated below to prove this theorem. We provide complete
proofs for the Lemmas in Appendix A.

In the Lemma 1.1, we first prove that along any direction
ŝ, we can corrupt an ϵ fraction of samples to increase the
variance along that direction to the maximum possible value
defined by the threshold ξ. We show it suffices to use a mag-
nitude of perturbation close to that given in Eq. 2 previously,
to create Ω(

√
ϵ) · ||Σ||

1
2
2 bias with high probability.

In the second Lemma 1.2, we claim that if the corrupted
vectors have magnitude of z =

√
ξ−σ2

max

ϵ2+ϵ(1−ϵ)2 −µŝ the maxi-
mum variance will be ξ and the maximum variance direction
will be ŝ. Thus, none of the points will be filtered out (or
reweighted) by strong robust aggregators (see Alg. 1).

It follows from Lemma 1.1 and 1.2 that HIDRA designs
corruptions that do not get filtered out by strong robust
aggregators and create Ω(

√
ϵ) · ||Σ||

1
2
2 bias per chunk.

Finally, Lemma 1.3 proves that if the robust aggrega-
tor runs independently over c different chunks of original
vectors, as done in Alg. 6, with threshold ξ, then the bias
is Ω(

√
ϵc) ·
√
ξ. When

√
ξ ≥ ||Σ||

1
2
2 and c = ⌊ d

m⌋ where m
is a constant representing the size of each chunk such that
m≪ d, then the bias is about Ω(

√
ϵd) · ||Σ||

1
2
2 .

Lemma 1.1. Let ŝ be any direction, µŝ be the component
of benign mean along ŝ, and σŝ be the variance along ŝ.
Then, replacing an ϵ · n vectors in X with −z(ŝ), where

z =
√

ξ−σ2
ŝ

ϵ2+ϵ·(1−ϵ)2−µ
ŝ ± δ·σŝ√

n
, results in bias of Ω(

√
ϵ)||Σ|| 12

with probability at least 1− exp(−δ2), for all δ > 1.

Lemma 1.2. Let ŝ be in the direction of the benign ag-
gregate mean µ = 1

n

∑n
i=1 xi and Y be ϵ-corrupted set

of vectors. Let the corrupted vectors be along −ŝ with
magnitude z =

√
ξ−σ2

max

ϵ2+ϵ(1−ϵ)2 −µ
ŝ. Then, ||ΣY ||2 ≤ ξ, where

||ΣY ||2 is the spectral norm of the covariance matrix of Y .

Lemma 1.3. If strong robust aggregators are used to ro-
bustly aggregate over c chunks, as in Algorithm 6 with a
single threshold ξ, then HIDRA performed over each chunk,
as in Algorithm 5, will result in a bias of Ω(

√
ϵc) ·
√
ξ.

Elements of Construction (EC)

1) D ← d dimensional spherical Gaussian distri-
bution (O, I)

2) Y = {y1, . . . , yn−nϵ}
i.i.d.∼ D:

a) 1
n

∑n−nϵ
i=1 yi = µ̂

b) Cov(Y) = Î where µ̂ ≈ O and Î ≈ I

3) B = {b1, b2} ← randomly chosen 2 orthogo-
nal unit vectors

4) Li = {
√
d + li1, . . . ,

√
d + linϵ

2
} ← distance

of corrupted vectors from the origin along ith
vector in B such that :

a) |lij | ≪
√
d ∀j ∈ [1, nϵ

2]
for instance, |lij | ∈ [0, 1]

b)
∑nϵ

2
j=1 lij = 0

c)
∑nϵ

2
j=1 l

2
1j =

∑nϵ
κ
j=1 l

2
2j

5) c1, c2 ← set of corrupted vectors along each
vector in B such that for each ci:
ci = {(

√
d+ li1) · bi, . . . , (

√
d+ linϵ

2
) · bi}

6) C = {yn−nϵ+1, . . . , yn} ← c1 ∪ c2
7) Y ′ = Y ∪ C

4.4. Is Computational Bottleneck Fundamental?

HIDRA works against several strong robust aggregators,
all of which face the computational bottleneck of computing
the maximum variance direction of given vectors. It corre-
sponds to computing the largest eigenvector, a problem of
broad interest in ML that does not scale with dimensions.
How fundamental is the connection between designing a
strong robust aggregator and computing the maximum vari-
ance direction of the given vectors? Specifically, is it neces-
sary for strong robust aggregators to be as computationally
expensive as finding the maximum variance direction?

Bias vs. computational complexity. We will construct a
set of vectors, call it Y ′, for which computing its maximum
variance direction approximately will have complexity not
much worse than that of computing the aggregate with a
strong robust aggregator f . Theorem 2 given later formalizes
the claim. To the best of our knowledge, the worst-case time
complexity of computing the maximum variance direction
approximately6 for the set Y ′ is min(Õ(n2d), O(d3)) [21],
[22], [32] and hence, devising more efficient f would imply
faster algorithms for the former on Y ′. We refer to such sets

6. We seek approximations where the approximation error decreases lin-
early with the number of vectors n. With regards to such error, approximate
methods like power iteration operate with a time complexity of Õ(n2d)
[32].

Y ′ as a non-trivial instances for computing the maximum
variance direction. To create Y ′ we rely on an initial set of
vectors sampled from a spherical Gaussian 7 distribution as
it suffices to show the existence of such sets for which the
reduction is valid.

Constructing Y ′. We follow the aforementioned elements
of construction to construct the set Y ′. Consider a d dimen-
sional spherical Gaussian distribution with mean at Origin
and I as covariance (1). Now, sample a set of vectors Y , i.i.d
from this distribution as shown in (2). We construct the set
Y ′ from Y by adding nϵ corrupted vectors to Y following
the steps from (3) to (7). First, we choose a set B, as per (3),
which represents 2 mutually perpendicular directions. Now
we distribute nϵ vectors equally along these 2 directions.
The distances of these vectors from the origin in each of
the directions in B are given in (4). Informally, all vectors
are slightly different from each other but are close to

√
d

distance from the origin. Accordingly, we get nϵ
2 corrupted

vectors in each of these directions as given in (5). Finally,
we add these vectors to the set Y to create Y ′ (6, 7).

Note that while constructing Y ′ we choose the corrupted
vectors to be at distances of about

√
d to make them indis-

tinguishable from the benign vectors of Y , since samples
from a d dimensional Gaussian are at a distance of

√
d with

very high probability [33] (also see Figure 2.1 in [33] for
illustration). Further, the different added Lis make sure that
the corrupted vectors are also different from each other with
respect to their magnitude (L2 norm). Hence, the corrupted
and benign vector magnitudes follow the same distribution.

We first establish in Lemma 2.1 that the maximum vari-
ance of vectors in Y ′ lies approximately along the difference
of vectors in B. We provide the proof in Appendix A.

Lemma 2.1. Given an ϵ-corrupted set of vectors Y ′, as
constructed using the elements of construction (EC), the
direction of maximum variance of Y ′ lies with a small angle

of cos−1
(√

1−O(δ
2

n)

)
from the difference of vectors in

set B with probability at least 1−2 exp(−δ
2

2), for all δ > 2.

We see that the approximation error in the angle drops
with n. The failure probability drops exponentially in δ,
which is a tunable constant in the analysis.

Reduction. Lemma 2.1 provides a way to compute the
maximum variance direction of Y ′ if we know the difference
of vectors in B. So, how does one find this difference given
Y ′? We provide a reduction in Alg. 7 to show that the
direction of maximum variance of any set Y ′, constructed as
above, can be computed approximately using the outputs of
robust aggregator f(Y ′) in quasilinear extra time Θ̃(|Y ′|).
Theorem 2 presented later formalizes the precise claim.

Alg. 7 works as follows. It computes two vectors µ′, the
average of Y ′ (line 1) and µ̂, the robust aggregate f(Y ′)
(line 2). Then, it iterates over all the vectors in Y ′ and
checks for the projection of µ′ − µ̂ along each of them

7. These are distributions with equal variance along every direction.

Algorithm 7 Reduction Algorithm

Input Y ′ = {y1, . . . , yn} ⊆ Rd, strongly-bounded robust
aggregator algorithm f

Output v∗, direction of maximum variance
1: µ′ := 1

n

∑n
i=1 yi ▷ compute average of the set

2: µ̃ := f(Y ′) ▷ compute robust mean of the set
3: S := {} ▷ create an empty set
4: for k = 1 to k = n do
5: si := ⟨µ′ − µ̃, yi

||yi||2 ⟩
6: S ← si ▷ add si to S
7: end for
8: C ′ ← set of nϵ vectors with highest value in S
9: c1 := C ′[1] ▷ take the first vector of C ′

10: for k = 2 to k = nϵ do
11: c2 := C ′[k]
12: if ⟨c1, c2⟩ = 0 then
13: return c1

||c1||2 −
c2
||c2||2

14: end if
15: end for
16: return c1

||c1||2 −
c2
||c2||2

(lines 4-6). The nϵ vectors with the largest projections are
identified as the set of corrupted vectors C ′ (line 8). Next,
it iterates over C ′ to find a pair of mutually perpendicular
vectors. Finally, it takes the unit vectors along each of the
mutually perpendicular vectors and returns the difference of
these unit vectors as output (lines 9-16).

Lemma 2.2 below states that Alg. 7 indeed finds the
difference of vectors in set B with very high probability.

Lemma 2.2. Let f(Y ′) = µ̃ and µ′ = 1
n

∑n
i=0 Y

′[i],
then Alg. 7 returns the difference of vectors in set B with
probability at least 1− n · exp(−nδ

2

2), for all δ > 1.

Proof Sketch. We defer the full proof to Appendix A and
provide a sketch here. We show that the projection of µ′− µ̃
is much larger along the corrupted vectors than along others
in set Y ′ with very high probability. Hence, it is sufficient to
iterate over vectors in Y ′ and get the top n · ϵ vectors in the
order of µ′−µ̃’s projections along them to find the corrupted
ones. Thus, in Line 8, C ′ represents the set of corrupted
vectors. Since equal numbers of vectors in C ′ align along
each vector in set B, if we choose any vector from C ′ we can
find a perpendicular corrupted to it in a single iteration. The
difference of these corrupted vectors normalized by their
norm is equal to the difference of vectors in set B. It implies
Alg. 7 returns the difference of vectors in set B.

Using Lemmas 2.1 and 2.2, we state and prove the desired
Theorem 2 below. We use the Θ̃ version of the asymptotic
complexity in the proof, which ignores logarithmic factors.

Theorem 2. Let f be a strong robust aggregator with
running time T (f) and Y ′ be a set of vectors constructed
as in EC. Then, the direction of maximum variance of Y ′
can be computed with a small approximation error, in time
T (f) + Θ̃(|Y ′|), with very high probability.

Proof. Given the set Y ′, Lemma 2.1 asserts that the direc-
tion of maximum variance of Y ′ lies approximately along
the difference of vectors in set B. The approximation error
in the angle is stated in Lemma 2.1 and approaches zero
with increasing number of samples n. Lemma 2.2 asserts
that the reduction stated in Algorithm 7 finds the difference
of vectors in set B using Y ′. The total failure probability in
these two Lemmas is either exponentially small in n or in δ,
so taking a union bound, the final result is correct with very
high probability. The time taken by Algorithm 7, excluding
Line 2, is Θ̃(n · d), which can be verified by inspection.
Each vector summation and dot product ⟨·⟩ is O(d). The 2
loops run O(n) times, with each iteration O(d). Picking the
highest nϵ values in S (Line 8) takes Θ̃(n · d), which is the
same as Θ̃(|Y ′|). The Line 2 takes time T (f). So, the total
running time of Alg. 7 is thus T (f) + Θ̃(|Y ′|).

We have shown that the existence of efficient strong
aggregators f implies being able to compute the approx-
imate direction of maximum variance, for non-trivial inputs
as in EC. The latter problem, to the best of our knowledge
however, has O(d3) algorithms for general inputs. We are
not aware of any faster solutions for the input class EC.

5. Evaluation

Goals. Our experimental evaluation of machine learning
tasks aims to answer two primary questions:

1) Does the bias introduced by HIDRA during train-
ing match the theoretical bias our analysis expects?

2) How effective is HIDRA as an untargeted poison-
ing attack, i.e., what drop in model accuracy does
it induce when used at each training step?

We evaluate on standard image classification datasets,
training with SGD using state-of-the-art strong robust ag-
gregators with strong bias bounds. We evaluate both the
partial and full knowledge settings. Furthermore, we aim to
compare the impact of our attack on training accuracy with
that of existing attacks in these scenarios.

5.1. Experimental Setup

Untargeted poisoning attacks [2], [3] are most often
evaluated in federated learning setups, which consist of
several untrusted clients and a trusted server. Clients train
locally and send local model updates (vector) which are
aggregated by the server as discussed in Section 2. We
evaluate in this setup assuming an ϵ fraction of the clients are
malicious and send update vectors created using HIDRA.

Datasets. We use 3 image classification datasets: MNIST
[34], Fashion-MNIST [35], and CIFAR10 [36]. Each of
these datasets comprises 60, 000 training and 10, 000 test
examples split across 10 classes. In MNIST and Fashion-
MNIST, the examples are 28× 28 grayscale images, while
in CIFAR10, they are 32× 32 color (RGB) images.

0 0.5 1

·105

0

1

2

·10−2
bi

as
(L

2
no

rm
)

MNIST

0 0.5 1

·105

0

1

2

·10−2
Fashion-MNIST

0 0.5 1

·105

0

1

2

3
·10−2

CIFAR10

0 0.5 1

·105

0

1

2

·10−2

dimensions

bi
as

(L
2

no
rm

)

0 0.5 1

·105

0

1

2

·10−2

dimensions

0 0.5 1

·105

0

1

2

·10−2

dimensions

HIDRA (Theoretically expected) HIDRA (Empirical) KA IMA

Figure 4: Bias vs. # of Dimensions against FILTERING (top) and NO-REGRET (bottom) strong aggregators.

Models and training. We use convolutional neural net-
works (CNN) with two convolutional layers followed by
two fully connected layers with ReLU activations. The
CNNs used for MNIST, Fashion-MNIST, and CIFAR10
have 3.2 × 105, 3.2 × 105, and 1.7 × 106 parameters re-
spectively, which are the dimensions d of the vectors being
aggregated. In all experiments, the data is independently and
identically distributed across 100 federated clients. We fix
ϵ = 0.2 for all of our experiments to match the setup with
the prior work that proposes strong robust aggregators [14].
We also report on varying ϵ at the end of this section. In
each round of federated learning, every client runs 5 local
epochs with batch size 10 before submitting the updated
local model to the server. We fix the learning rate at 0.001
for MNIST and Fashion-MNIST, training the models for 100
rounds. In the case of CIFAR10, we use a learning rate of
0.01 and extend the training to 400 rounds. We design and
implement all our experiments using Python and PyTorch.
All the experiments are conducted on Ubuntu 20.04 LTS
servers with 64 AMD Ryzen Threadripper 3970X CPUs,
96G RAM, and 2 NVIDIA GeForce RTX 3090. The code
for evaluation is provided in [37].

Strong robust aggregators. We evaluate all strong robust
aggregators that are tractable to run on high-dimensional
vectors. These include FILTERING and NO-REGRET. We
follow the setup identical to prior work, where the chunk
size is 1000, the threshold ξ per chunk is

√
20 × 10−5,

and the estimated upper bound for σ2
max is 10−5 for each

chunk [14]. We cannot run the third known strong robust
aggregator, called SoS, since it requires solving a system
of degree-4 equations using a semi-definite programming
(SDP) solver. Current SDP solvers cannot do so in a rea-

sonable time for d > 10, so it is intractable for our tasks.

Prior attacks. There are 3 untargeted poisoning attacks
considered in prior work evaluating strong aggregators [14]:
Krum Attack (KA) [2], Trimmed Mean Attack (TMA)
[2] and Inner-Product Manipulation Attack (IMA) [3]. We
report the bias, and drop in model accuracy, achieved by
KA and IMA against all tractable defenses we evaluate.

We evaluated TMA for 20 training iterations on all
defenses on all datasets, but we do not report on TMA in
detail here. This is because all strong aggregators run very
effectively against TMA, but take too much time to run
in full. Specifically, we verified that the defenses filter out
(assign zero weight to) all the poisoned gradients created by
TMA—unlike for other attacks—in all iterations we tested,
so the bias induced by TMA is zero. But such filtering by
defenses is iterative and removes each of the n · ϵ poisoned
gradients one at a time, taking O(d3) time for each. This
makes the training very slow (and pointless) to run in full.

5.2. Empirical vs. Theoretical Bias

In Section 4.3, we prove that HIDRA will result in a
bias of at least

√
ϵc
√

ξ
ϵ+(1−ϵ)2 . Since the chunk size is 1000,

the theoretically anticipated bias is
√
ϵd√

1000
·
√

ξ
ϵ+(1−ϵ)2 .

We plot the empirical and the theoretical bias using
HIDRA on all the 3 datasets against FILTERING and NO-
REGRET defenses in Fig. 4. Specifically, for each configu-
ration, consisting of a dataset and a defense, we plot the bias
introduced by HIDRA for increasing number of dimensions.
The empirical bias created by prior attacks KA and IMA
attacks is also shown. We choose an arbitrary training round

0 50 100

0

50

100

Training Rounds

M
od

el
A

cc
ur

ac
y

(%
)

MNIST

0 50 100

0

20

40

60

80

Training Rounds

Fashion-MNIST

0 200 400
0

20

40

60

Training Rounds

CIFAR10

No Attack HIDRA KA IMA

Figure 5: Impact of HIDRA on accuracy against FILTERING

0 50 100

0

50

100

M
od

el
A

cc
ur

ac
y

(%
)

MNIST

0 50 100

0

20

40

60

80

Training Rounds

M
od

el
A

cc
ur

ac
y

(%
)

Fashion-MNIST

No Attack HIDRA KA IMA

Figure 6: Impact of HIDRA on accuracy against NO-
REGRET

number 10 to plot the bias, however, the observations are
largely the same for all training rounds we sampled.

The empirical efficacy of HIDRA aligns almost exactly
with the theoretical bias anticipated. This shows that our
analysis is tight. Our result also shows that when HIDRA is
used against the state-of-the-art strong robust aggregators the
bias increases proportionately to

√
d, confirming our main

claim. Further, observe that the bias introduced by other
attacks is much smaller than HIDRA, highlighting the
drastic efficacy gains achieved. The efficacy of prior attacks
also increases marginally as d, since they introduce some
bias in each chunk that adds up across all chunks. But the
difference in efficiency between HIDRA and prior attacks
widens sharply as d increases.

HIDRA induces bias proportional to
√
ϵd against

strong robust aggregators, showing a contrast to the
idealized analysis of these aggregators. Prior attacks
have efficacy well below that of our attack.

5.3. Impact of HIDRA on Accuracy

The main motivation for untargeted poisoning attacks
is to reduce the overall performance of the trained model
by introducing bias. Therefore, we also measure how the
classification accuracy of the models gets affected after end-
to-end training. We find that HIDRA has a sharp and neg-
ative effect on the model performance, unlike prior attacks
which do not affect the model performance much at all when
trained with strong robust aggregators.

First, we report the results for the full-knowledge setting
and later report the results for the partial-knowledge setting.

HIDRA on FILTERING. Fig. 5 captures the perfor-
mance of all the considered attacks against FILTERING.
HIDRA causes the accuracy of CNN on the MNIST dataset
to drop by 87% (from 94 to 7%). Similarly, on the Fashion-
MNIST dataset and CIFAR10 datasets, the accuracy drops
by 70% and 62%. Existing attacks do not affect the accu-
racy much. We verify that this is because corrupted vectors
created by prior attacks are filtered out by strong robust
aggregator defenses. In contrast, none of the added corrupted
vectors added by HIDRA are filtered out.

HIDRA on NO-REGRET. Fig. 6 illustrates the impact of
HIDRA on the model performance against NO-REGRET.
HIDRA drastically reduces accuracy by 87% and 70% for
MNIST and Fashion-MNIST respectively. NO-REGRET is
computationally d times more expensive than FILTERING,
hence, it is not practical to evaluate it on the CIFAR10
dataset which has at least 5× higher d than the other one.
It would take several days to train one model using NO-
REGRET on CIFAR10 using our testbed. Therefore, we
report results on MNIST and Fashion-MNIST only.

0 50 100

0

50

100

Training Rounds

M
od

el
A

cc
ur

ac
y

(%
)

MNIST

0 50 100

0

20

40

60

80

Training Rounds

Fashion-MNIST

0 200 400
0

20

40

60

Training Rounds

CIFAR10

No Attack HIDRA

Figure 7: Impact of HIDRA (Partial Knowledge) on accuracy against FILTERING.

0 50 100

0

50

100

M
od

el
A

cc
ur

ac
y

(%
)

MNIST

0 50 100

0

20

40

60

80

Training Rounds

M
od

el
A

cc
ur

ac
y

(%
)

Fashion-MNIST

No Attack HIDRA

Figure 8: Impact of HIDRA (Partial-Knowledge) on accu-
racy against NO-REGRET.

HIDRA completely destroys the ML model perfor-
mance for all datasets against robust aggregator de-
fenses we evaluated in the full-knowledge setting.

Partial-knowledge setting. We consider only the gradi-
ents of the first ϵ · n samples chosen randomly in each
SGD round are seen and controlled by the adversary.
HIDRA works effectively in this setting as well as shown
in Fig. 7. HIDRA reduces the model accuracy by 86%,
65%, and 26% in MNIST, Fashion-MNIST, and CIFAR10
datasets respectively against FILTERING. The results are
similar against NO-REGRET (see Fig 8). The impact of
HIDRA in the partial-knowledge setting is much more pro-
nounced than that of prior attacks even with full-knowledge.

HIDRA with partial-knowledge is more effective even
when compared to prior attacks with full-knowledge.

One expects the attack efficacy to reduce in the partial-
knowledge setting compared to the full-knowledge. This
is because the adversary has to estimate the direction of
the benign mean using only points it can see, i.e., its own
vectors. Our result shows that the difference between the two
settings, though visible, is relatively small on real datasets.

HIDRA performance with varying ϵ. We have reported
all the results at ϵ = 0.2 so far. We show the impact of
HIDRA for varying ϵ = {0.01, 0.05, 0.1, 0.2}, the fraction
of corrupted samples, in the full-knowledge setting.

Fig. 9 shows the results. HIDRA continues to exhibit a
large drop in model accuracy even at lower fractions. For
instance, at ϵ = 0.05, HIDRA lowers the performance by
74% on Fashion-MNIST. At ϵ = 0.1, the drop induced is
over 20% for CIFAR10. The sharpest drops occur at 0.1 ≤
ϵ < 0.2 for MNIST and CIFAR10.

HIDRA can induce over 70% loss of model accuracy
even at smaller ϵ = 0.05 on some datasets. The sharpest
drop in accuracy is between ϵ of 0.1 and 0.2 for others.

6. Related Work

Byzantine Robust aggregation has its roots in robust
statistics, a subject with a rich history [24], [38]. The threat
of poisoning attacks on large neural nets has brought urgent
attention to it, and in particular, to the challenge of mini-
mizing bias when aggregating high-dimensional vectors.

Poisoning attacks. Poisoning attacks are a long-standing
issue for ML in adversarial environments [39]. Their threat
was highlighted early in federated learning systems for gen-
eral ML classifiers [40] and neural networks [29]. Since then
there has been an evolving cat-and-mouse game between
poisoning attacks [1], [2], [13], [41], [42] and defenses to
mitigate them [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53]. Targeted poisoning attacks aim to train
models that misclassify a certain class of inputs [30], [54].

0 50 100

0

50

100

Training Rounds

M
od

el
A

cc
ur

ac
y

(%
)

MNIST

0 50 100

0

20

40

60

80

Training Rounds

Fashion-MNIST

0 200 400
0

20

40

60

Training Rounds

CIFAR10

No Attack 0.01 0.05 0.10 0.20

Figure 9: Impact of HIDRA on accuracy with varying ϵ

Backdoor attacks aim to train models that misclassify inputs
that have planted trigger patterns [1], [41], [42]. These at-
tacks also bias the aggregate gradient of the model, however,
they do not aim to create optimal bias. Therefore, existing
strong robust aggregators have been shown to mitigate these
attacks [14]. Untargeted poisoning attacks, our motivating
application, also create bias but differ in their goal, i.e., to
destroy model performance [20]. The unifying vulnerability
across poisoning attacks is that they bias gradient vectors
used in averaging, with the malicious ones having orienta-
tion and magnitude different from the benign vectors [55].
Knowing something about the distribution of benign vectors,
therefore, is a universal basis to build defenses. The intuition
that outlier removal based on the distributional properties
of benign vectors can increase the robustness of modern
ML models is evident in early work [29], but many such
defenses lack theoretical analysis and evaluation on non-
adaptive attacks. The main issue is how to provably defeat
an adaptive attacker, one which carefully adjusts the attack
strategy with knowledge of the defense.

Weak robust aggregators. Many aggregators are accom-
panied by analyses under adaptive worst-case inputs. They
have weak bounds that are proportional to O(

√
ϵ · d). Yin

et al. proposed coordinate-wise trimmed mean and median
for byzantine robust federated learning [9]. Concurrently,
defenses based on Euclidean distances between vectors,
Krum, and geometric median, were proposed [10], [12]
and subsequently extended [56]. In Krum, for each vector,
the sum of distances of the closest n − nϵ − 1 vectors is
computed, and the vector with the smallest such aggregate
distance is chosen as the mean. Analyses for all of these
aggregators give a bias upper bound of O(

√
ϵ · d) [23], [31].

Poisioning attacks against weak robust aggregators.
Untargeted poisoning attacks, especially in federated learn-
ing, are the prime nemesis for robust aggregators. Bit flip-
ping and label flipping were early attacks that proved to
be effective without any defense in place [9], [57]. Several
weak robust aggregators such as coordinate-wise, trimmed
mean, and Krum have demonstrably mitigated these at-
tacks [9], [12]. Xie et al. [3] and Fang et al. [2] have

proposed several attacks that mitigate known weak robust
aggregators as well. They follow a similar strategy of placing
corrupted gradients to ours along the opposite direction
of the benign gradient and tuning the magnitude of the
corrupted gradients to defeat the specific attacks considered.
Their bias introduced, however, is far from optimal. She-
jwalkar et al. have recently shown that these attacks do not
affect the training process much at all when the corruption
fraction is low (ϵ < 0.01) [58]. Nevertheless, all of these
attacks have been recently shown to be mitigated by much
stronger defenses, even at higher ϵ ∈ [0.1 − 0.5). This is
why our focus has been on strong robust aggregators.

Strong robust aggregators. These aggregators achieve
an Õ(

√
ϵ) upper bound on the bias, thus, removing the

dependence on d [14], [18], [59] (see Section 3 for details).
Zhu et al. show that these aggregators when implemented
in practice mitigate all aforementioned weak robust aggre-
gators. We design HIDRA to break the guarantees offered
strong defenses [14], [18], [59]. We give optimal attacks
in the low dimensional regime and identify a common
computational bottleneck in them. We are not aware of
prior work that carefully explains why the bottleneck is
somewhat fundamental and identifies its existence as an
exploit opportunity. The state-of-the-art practical realization
of strong robust aggregator is given by [14]. Our attack cre-
ates bias proportional to

√
d in these practical realizations.

Our results leave the gap wide open between the ideally
desired robustness and that which is practical presently in
high dimensional settings.

Robust mean estimation. Robust mean estimation in high
dimensions lends a theoretical underpinning to byzantine
robust federated learning, as explained in Section 2. Apart
from the robust aggregators we discussed in Section 3,
Zhu et al. propose a robust aggregator using Generative
Adversarial Networks that are trained to remove the outliers.
This method relies heavily on training and tuning the hyper-
parameters of GANs to provide to optimal bias guarantees
which is not feasible in practical scenarios [14]. Cheng et
al. proposed a robust mean aggregator based on Filtering
with optimal bias guarantees with time complexity O(ndϵ6)

[60]. This aggregator relies on solving a dual SDP problem
with 2-degree constraints in linear time. However, we are
not aware of any such efficient SDP solvers for high d.
Another work proposes a robust aggregator with optimal
bias guarantees with O(nd ·poly(log d)) [61]. The analysis
of this aggregator relies on having auxiliary information
about the number of corrupted directions.

7. Conclusion & Future Work

We have shown nearly optimal attacks against practical
realizations of strong robust aggregators. In our experiments,
untargeted poisoning attacks using our approach against
these algorithms almost completely destroy model perfor-
mance where previous attacks fail to have much impact.
Strong aggregators are thus practically much more vul-
nerable than anticipated by prior theoretical analysis when
working with high-dimensional vectors.

We have argued that the vulnerability is fundamental
to strong aggregators that are deterministic and aim to
work for all feasible distributions generically. Future work
can explore provable algorithms to directly improve the
computational bottlenecks we highlight, consider random-
ized defenses, or specialize for features arising in certain
gradient distributions. HIDRA is not meant to be a stealthy
attack; a specialized defense targeting HIDRA can detect
its signature. Devising stealthier attacks that next adaptation
of defenses cannot detect would be interesting. Extending
HIDRA to other poisoning attacks is another possibility.

Acknowledgements

We are thankful to the anonymous reviewers and our
shepherd on the program committee. We also wish to thank
Ankit Pensia, Kareem Shehata, and Jason Zhijingcheng Yu
for their helpful feedback on previous drafts. This research
is supported by the research funds of the Crystal Centre at
National University of Singapore and the Ministry of Educa-
tion Singapore grants: Tier-2 grant MOE-T2EP20220-0014
and Tier-1 grant T1 251RES2023. All opinions expressed
in the work are those of the authors.

References

[1] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in ICLR, 2019.

[2] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning at-
tacks to {Byzantine-Robust} federated learning,” in USENIX Security,
2020.

[3] C. Xie, O. Koyejo, and I. Gupta, “Fall of empires: Breaking
byzantine-tolerant sgd by inner product manipulation,” in UAI, 2020.

[4] F. Tramèr, R. Shokri, A. San Joaquin, H. Le, M. Jagielski, S. Hong,
and N. Carlini, “Truth serum: Poisoning machine learning models to
reveal their secrets,” in CCS, 2022.

[5] D. Solans, B. Biggio, and C. Castillo, “Poisoning attacks on algorith-
mic fairness,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 2020.

[6] S. Zhang, H. Yin, T. Chen, Z. Huang, Q. V. H. Nguyen, and L. Cui,
“Pipattack: Poisoning federated recommender systems for manipulat-
ing item promotion,” in WSDM, 2022.

[7] P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in statistics: Methodology and distribution. Springer, 1992.

[8] J. W. Tukey, “A survey of sampling from contaminated distributions,”
Contributions to probability and statistics, 1960.

[9] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in ICML, 2018.

[10] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” IEEE Transactions on Signal Processing, 2022.

[11] X. Chen, T. Chen, H. Sun, S. Z. Wu, and M. Hong, “Distributed
training with heterogeneous data: Bridging median-and mean-based
algorithms,” NeurIPS, 2020.

[12] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
NeurIPS, 2017.

[13] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Op-
timizing model poisoning attacks and defenses for federated learning,”
in NDSS, 2021.

[14] B. Zhu, L. Wang, Q. Pang, S. Wang, J. Jiao, D. Song, and M. I.
Jordan, “Byzantine-robust federated learning with optimal statistical
rates,” in AISTATS, 2023.

[15] I. Diakonikolas and D. M. Kane, “Recent advances in algorithmic
high-dimensional robust statistics,” 2019.

[16] E. Amaldi and V. Kann, “The complexity and approximability of
finding maximum feasible subsystems of linear relations,” Theoretical
computer science, 1995.

[17] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and
A. Stewart, “Being robust (in high dimensions) can be practical,”
in ICML, 2017.

[18] S. Hopkins, J. Li, and F. Zhang, “Robust and heavy-tailed mean
estimation made simple, via regret minimization,” NeurIPS, 2020.

[19] P. K. Kothari and D. Steurer, “Outlier-robust moment-estimation via
sum-of-squares,” 2017.

[20] L. Muñoz González, B. Biggio, A. Demontis, A. Paudice, V. Won-
grassamee, E. C. Lupu, and F. Roli, “Towards poisoning of deep
learning algorithms with back-gradient optimization,” in AISec, 2017.

[21] J. J. Cuppen, “A divide and conquer method for the symmetric
tridiagonal eigenproblem,” Numerische Mathematik, 1980.

[22] P. Arbenz, D. Kressner, and D. Zürich, “Lecture notes on solving
large scale eigenvalue problems,” D-MATH, EHT Zurich, 2012.

[23] K. A. Lai, A. B. Rao, and S. Vempala, “Agnostic estimation of mean
and covariance,” in IEEE FOCS, 2016.

[24] P. J. Huber, Robust statistics. John Wiley & Sons, 2004, vol. 523.

[25] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stewart,
“Robust estimators in high-dimensions without the computational
intractability,” SIAM Journal on Computing, 2019.

[26] P. K. Kothari, J. Steinhardt, and D. Steurer, “Robust moment estima-
tion and improved clustering via sum of squares,” in STOC, 2018.

[27] P. K. Kothari, P. Manohar, and B. H. Zhang, “Polynomial-time sum-
of-squares can robustly estimate mean and covariance of gaussians
optimally,” in ALT, 2022.

[28] L. Bottou et al., “Stochastic gradient learning in neural networks,”
Proceedings of Neuro-Nımes, 1991.

[29] S. Shen, S. Tople, and P. Saxena, “Auror: Defending against poisoning
attacks in collaborative deep learning systems,” in ACSAC, 2016.

[30] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in ICML, 2019.

[31] G. Lugosi and S. Mendelson, “Robust multivariate mean estimation:
the optimality of trimmed mean,” Ann. Statist., 2021.

[32] S. O. Gharan, “Power method, spectral sparsification,” Lecture Notes,
2018, cSE 521: Design and Analysis of Algorithms I, University of
Washington.

[33] I. Diakonikolas and D. M. Kane, in Algorithmic high-dimensional
robust statistics. Cambridge university press, 2023.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
1998.

[35] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[36] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:18268744

[37] “HIDRA,” 2024. [Online]. Available: https://github.com/
sarthak-choudhary/HIDRA

[38] R. A. Maronna, R. D. Martin, V. J. Yohai, and M. Salibián-Barrera,
Robust statistics: theory and methods (with R). John Wiley & Sons,
2019.

[39] J. Newsome, B. Karp, and D. Song, “Paragraph: Thwarting signature
learning by training maliciously,” in RAID, 2006.

[40] G. Wang, T. Wang, H. Zheng, and B. Y. Zhao, “Man vs. machine:
Practical adversarial detection of malicious crowdsourcing workers,”
in USENIX Security, 2014.

[41] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in AISTATS, 2020.

[42] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal,
J.-y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes,
you really can backdoor federated learning,” NeurIPS, 2020.

[43] T. D. Nguyen, P. Rieger, R. De Viti, H. Chen, B. B. Brandenburg,
H. Yalame, H. Möllering, H. Fereidooni, S. Marchal, M. Miettinen
et al., “{FLAME}: Taming backdoors in federated learning,” in
USENIX Security, 2022.

[44] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you re-
ally backdoor federated learning?” arXiv preprint arXiv:1911.07963,
2019.

[45] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks
in federated learning,” arXiv preprint arXiv:2011.01767, 2020.

[46] C. Xie, O. Koyejo, and I. Gupta, “Zenops: A distributed learning sys-
tem integrating communication efficiency and security,” Algorithms,
2022.

[47] J. Jia, X. Cao, and N. Z. Gong, “Intrinsic certified robustness of
bagging against data poisoning attacks,” in AAAI, 2021.

[48] J. Jia, Y. Liu, X. Cao, and N. Z. Gong, “Certified robustness of nearest
neighbors against data poisoning and backdoor attacks,” in AAAI,
2022.

[49] A. Levine and S. Feizi, “Deep partition aggregation: Provable defense
against general poisoning attacks,” arXiv preprint arXiv:2006.14768,
2020.

[50] E. Rosenfeld, E. Winston, P. Ravikumar, and Z. Kolter, “Certified
robustness to label-flipping attacks via randomized smoothing,” in
ICML. PMLR, 2020.

[51] M. Weber, X. Xu, B. Karlaš, C. Zhang, and B. Li, “Rab: Provable
robustness against backdoor attacks,” in IEEE SP, 2023.

[52] T. Krauß and A. Dmitrienko, “Mesas: Poisoning defense for federated
learning resilient against adaptive attackers,” in CCS, 2023.

[53] C. Xie, Y. Long, P.-Y. Chen, Q. Li, S. Koyejo, and B. Li, “Unraveling
the connections between privacy and certified robustness in federated
learning against poisoning attacks,” in CCS, 2023.

[54] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in ESORICS, 2020.

[55] S. Hong, V. Chandrasekaran, Y. Kaya, T. Dumitraş, and N. Paper-
not, “On the effectiveness of mitigating data poisoning attacks with
gradient shaping,” arXiv preprint arXiv:2002.11497, 2020.

[56] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of dis-
tributed learning in byzantium,” in ICML. PMLR, 2018.

[57] A. Paudice, L. Muñoz-González, and E. C. Lupu, “Label sanitization
against label flipping poisoning attacks,” in ECML PKDD, 2019.

[58] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the drawing board: A critical evaluation of poisoning attacks on
production federated learning,” in IEEE SP, 2022.

[59] B. Zhu, J. Jiao, and D. Tse, “Deconstructing generative adversarial
networks,” IEEE Transactions on Information Theory, 2020.

[60] Y. Cheng, I. Diakonikolas, and R. Ge, “High-dimensional robust mean
estimation in nearly-linear time,” in ACM-SIAM SODA, 2019.

[61] Y. Dong, S. Hopkins, and J. Li, “Quantum entropy scoring for fast
robust mean estimation and improved outlier detection,” NeurIPS,
2019.

[62] R. Vershynin, “How close is the sample covariance matrix to the
actual covariance matrix?” Journal of Theoretical Probability, 2012.

Appendix A.
Theoretical Analysis: Complete Proofs

Here we provide the complete proofs for Lemmas in
Sections 4.3 and 4.4.

Lemma 1.1. Let ŝ be any direction, µŝ be the component
of benign mean along ŝ, and σŝ be the variance along ŝ.
Then, replacing an ϵ · n vectors in X with −z(ŝ), where

z =
√

ξ−σ2
ŝ

ϵ2+ϵ·(1−ϵ)2−µ
ŝ ± δ·σŝ√

n
, results in bias of Ω(

√
ϵ)||Σ|| 12

with probability at least 1− exp(−δ2), for all δ > 1.

Proof. We are given X : {x1, x2, . . . , xn} and Y :
{y1, y2, . . . , yn} and a direction ŝ. Without loss of general-
ity, let’s assume that we corrupt the first n · ϵ update vectors
in the following manner:

yi = −zŝ, i ∈ [1, . . . , ϵn] (4)

We have to find this value of z.

bias =
1

n
||
∑

xi −
∑

yi||2 (5)

≥ 1

n

[∑
⟨xi, ŝ⟩ −

∑
⟨yi, ŝ⟩

]
(6)

≥ µŝ − µŝ
c (7)

µŝ
c =

1

n

(
nϵ∑
i=1

⟨yi, ŝ⟩+
n∑

i=nϵ+1

⟨xi, ŝ⟩

)
(8)

= ϵ(−z) + 1

n

n∑
i=nϵ+1

⟨xi, ŝ⟩ (9)

= ϵ(−z) + (1− ϵ)

(
µŝ ± δσŝ√

n

)
(10)

where
δσŝ√
n

is the error with probability 1− e−δ
2

using chernoff bound, we will add this to z at the end

=⇒ µŝ − µŝ
c = ϵ(z + µŝ) (11)

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://github.com/sarthak-choudhary/HIDRA
https://github.com/sarthak-choudhary/HIDRA

We find that value of z for which the variance along ŝ
goes from σ2

ŝ to ξ and does not exceed it.

1

n

(
nϵ∑
i=1

(
−z − µŝ

c

)2
+

n∑
i=nϵ+1

(
xŝ
i − µŝ

c

)2) ≤ ξ (12)

1

n

(
nϵ∑
i=1

(
−z − µŝ

c

)2
+

n∑
i=1

(
xŝ
i − µŝ

c

)2
−

nϵ∑
i=1

(
xŝ
i − µŝ

c

)2) ≤ ξ (13)

We solve for the Equation 14 since it implies 13

1

n

(
nϵ∑
i=1

(
−z − µŝ

c

)2
+

n∑
i=1

(
xŝ
i − µŝ

c

)2)
= ξ

(14)

1

n

(
nϵ(−z − µŝ

c)
2 +

n∑
i=1

(
xŝ
i − µŝ + µŝ − µŝ

c

)2)
(15)

1

n

(
nϵ
(
−z − µŝ

c

)2
+Σn

i=1

(
xŝ
i − µŝ

)2
+ n

(
µŝ − µŝ

c

)2)
(16)

=⇒ ϵ
(
−z − µŝ

c

)2
+ σ2

ŝ + ϵ2
(
z + µŝ

)2
= ξ
(17)

after substituting from 11

ϵ
(
−z + ϵ

(
z + µŝ

)
− µŝ + δ

)2
+ σ2

ŝ + ϵ2
(
z + µŝ

)2
= ξ
(18)(

z + µŝ
)2 · (ϵ2 + ϵ(1− ϵ)2

)
= ξ − σ2

ŝ

(19)

z + µŝ =

√
ξ − σ2

ŝ

ϵ2 + ϵ(1− ϵ)2

(20)

Therefore,

z =

√
ξ − σ2

ŝ

ϵ2 + ϵ(1− ϵ)2
− µŝ ± δσŝ√

n
(21)

Substituting the value of z+µŝ in Equation 11, we can
bound the bias as follows.

bias ≥
√
ϵ ·

√
ξ − σ2

ŝ

ϵ+ (1− ϵ)2
(22)

bias ≥ Ω(
√
ϵ) ·
√

ξ, {∵ ξ > 9||Σ||2, σŝ < ||Σ||
1
2
2 } (23)

Lemma 1.2. Let ŝ be in the direction of the benign ag-
gregate mean µ = 1

n

∑n
i=1 xi and Y be ϵ-corrupted set

of vectors. Let the corrupted vectors be along −ŝ with

magnitude z =
√

ξ−σ2
max

ϵ2+ϵ(1−ϵ)2 −µ
ŝ. Then, ||ΣY ||2 ≤ ξ, where

||ΣY ||2 is the spectral norm of the covariance matrix of Y .

Proof. Consider a random direction t̂ and say the corrup-
tions are −z′t̂ (notice that z′ and t̂ are different from z and
ŝ). Let’s also consider ξ as the final variance σ̄2

t̂
that will be

attained along the direction t̂. Then as long as σ̄2
t̂
> σ2

max,
the equation 19 from Lemma 1.1 can be rewritten as

σ̄2
t̂
= K · (µt̂ + z′)2 + σ2

t̂
, {K =

√
ϵ2 + ϵ(1− ϵ)2} (24)

Now, say ŝ is the direction of benign mean µ and we
place the corruptions along −ŝ rather than −t̂. Therefore,

σ̄2
ŝ = K · (µŝ + z)2 + σ2

ŝ , {K =
√

ϵ2 + ϵ(1− ϵ)2} (25)

In this scenario, the corruptions will have a projection
along −t̂ which with be z′ = ⟨−zŝ,−t̂⟩ and µ will have a
component µt̂ = ⟨µ, t̂⟩ along t̂. So, if we add corruptions
along ŝ then the final variance in the direction t̂ can be
computed by substituting these projections z′ and µt̂ in
equation 22. Hence we get,

σ̄2
t̂
= K · (⟨µ, t̂⟩+ ⟨−zŝ,−t̂⟩)2 + σ2

t̂

σ̄2
ŝ = K · (µŝ + z)2 + σ2

ŝ

Notice that, if we choose σ2
ŝ = σ2

max then,

σ2
t̂
≤ σ2

ŝ , ∵ σ2
ŝ = σ2

max

(⟨−zŝ, −̂t⟩+ ⟨µ, t̂⟩)2 ≤ (µŝ + z)2

=⇒ σ̄2
ŝ ≥ σ̄2

t̂
, ∀t̂

=⇒ ||ΣY ||2 = σ2
ŝ ≤ ξ

Lemma 1.3. If strong robust aggregators are used to ro-
bustly aggregate over c chunks, as in Algorithm 6 with a
single threshold ξ, then HIDRA performed over each chunk,
as in Algorithm 5, will result in a bias of Ω(

√
ϵc) ·
√
ξ.

Proof. For each chunk i,

biasi ≥ k
√
ϵ ·
√

ξ

Therefore,

bias ≥

√√√√ c∑
i=1

(biasi)

bias ≥ k ·
√
ϵc ·
√

ξ

Lemma 2.1. Given an ϵ-corrupted set of vectors Y ′, as
constructed using the elements of construction (EC), the
direction of maximum variance of Y ′ lies with a small angle

of cos−1
(√

1−O(δ
2

n)

)
from the difference of vectors in

set B with probability at least 1−2 exp(−δ
2

2), for all δ > 2.

Proof. For set Y = {y1, . . . , yn−nϵ} and Y ′ =
{y1, . . . , yn−nϵ, yn−nϵ, . . . , yn}. Consider,

µ =
1

n− nϵ

n−nϵ∑
i=1

yi = µ̂ (26)

µ′ =
1

n

n∑
i=1

yi = (1− ϵ)µ̂+
1

n

n∑
i=n−nϵ+1

yi (27)

µ′ = (1− ϵ)µ̂+ µc where µc =
1

n

n∑
i=n−nϵ+1

yi (28)

Each yi for i ∈ [n − nϵ + 1, n] aligns along one of the
directions in B = {b1, b2}, so

µc =
1

n

 nϵ
2∑

j=1

(
√
d+ l1j) · b1 +

nϵ
2∑

j=1

(
√
d+ l2j) · b2

 (29)

µc =
ϵ
√
d

2
(b1 + b2) (30)

Given the set B is chosen randomly without any correlation
to Y , without loss of generality, we can consider B as unit
vectors along any 2 axes in Rd. For simplicity, we consider
B as the unit vectors along the first 2 axes. Following this,
µc ∈ Rd has first 2 components as ϵ

√
d

2 and rest as 0.

µc =
[ϵ√d

2
,
ϵ
√
d

2
, 0, . . . , 0

]
(31)

To find the direction of the maximum variance of Y ′,
first, we compute the covariance matrix of Y ′ as follows.

ΣY ′ =
1

n

n∑
i=1

(yi − µ′)T · (yi − µ′) (32)

Substitute µ′ from eq. 28

ΣY ′ =
1

n

n∑
i=1

(yi − (1− ϵ)µ̂− µc)
T · (yi − (1− ϵ)µ̂− µc)

(33)

To simplify the eq. 33 , consider the following equations.

Cov(Y) =
1

n− nϵ

n−nϵ∑
i=1

(yi − µ̂)T · (yi − µ̂) = Î (34)

1

n− nϵ

(
n−nϵ∑
i=1

yTi · yi

)
− µ̂T · µ̂ = Î (35)

n−nϵ∑
i=1

yTi · yi = (n− nϵ)(Î + µ̂T · µ̂) (36)

Further from eq. 28, we can write
n∑

i=1

yi = (n− nϵ)µ̂+ nµc (37)

Now, expand the RHS of eq. 33 by multiplying each term
and replacing the following terms using eq. 36 and 37

n∑
i=1

yTi · yi → (n− nϵ)(Î + µ̂T · µ̂) +
n∑

i=n−nϵ+1

yTi · yi

n∑
i=1

yi → (n− nϵ)µ̂+ nµc

The simplified expression of ΣY ′ would be:

ΣY ′ =
1

n

n∑
i=n−nϵ+1

yTi · yi − µT
c µc

+(1− ϵ)Î − (1− ϵ)(µT
c · µ̂+ µ̂T · µc) + (1− ϵ)(ϵ)µ̂T · µ̂

(38)

Notice the last three terms of the above expression
contain the errors due to sampling from the spherical Gaus-
sian in µ̂ and Î . Next, we write the matrix expression of
all terms and bound the variance incurred by the error
terms by a constant which is negligible compared to the
total. Hence, we show that the unit vector direction that
maximizes the variance of ΣY ′ including the error terms
will be approximately close to the exact maximum variance
direction computed without them.

As all the corrupted vectors are along one of the first
2 axes in Rd,

∑n
i=n−nϵ+1 y

T
i · yi is a diagonal matrix with

the first 2 as non-zero and equal to
∑nϵ

2
j=1(
√
d + lij)

2 for
i ∈ [1, 2]. Therefore, the first term of eq. 38 can be written
as following where γ =

∑nϵ
2
j=1 l

2
ij , fori ∈ [1, 2]:

1

n

n∑
i=n−nϵ+1

yTi · yi =
(
ϵd

2
+

γ

n

)
1 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
0 0 0 0 0

(39)

Further, from eq. 31, µT
c ·µc has first 2×2 terms as non-zero

and equal to ϵ
√
d

2 ×
ϵ
√
d

2 . So, we have:

µT
c · µc =

ϵ2d

4

1 1 0 . . . 0
1 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
0 0 0 0 0

 (40)

Now, for the sampling error terms in eq. 38, assume the
sampling error in the first 2 component of µ̂ is µ̂1, µ̂2. Then,
the matrix form of the sampling error terms is as follows:

(1− ϵ)(µT
c · µ̂+ µ̂T · µc)

=
(1− ϵ)ϵ

√
d

2
·

2µ̂1 µ̂1 + µ̂2 0 . . . 0

µ̂1 + µ̂2 2µ̂2 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
0 0 0 0 0

(41)

As set Y is sampled from a spherical Gaussian, it implies
that both µ̂1 and µ̂2 is less than O(δ√

n
) with probability at

least (1 − 2e
−δ2

2) using Chernoff bound. Using Frobenius
norm as bound for Spectral norm, we can claim the variance
incurred by this is O(δ√

n
) ·
√
d. Similarly, the variance

incurred by the error term µ̂T ·µ̂ is O(δ
2

n)·d with probability
at least (1− (δ√

n
)d) using Chernoff bound. And for Î , the

spectral norm is bounded by O(dn) [62].
Now, we combine the exact and sampling terms in eq. 38

and write them in matrix form where α = ϵd
2 (1 −

ϵ
2) +

γ
n ,

β = − ϵ2d
4 , and Σerr is the combined covariance matrix for

sampling error terms.

ΣY ′ =

α β 0 . . . 0
β α 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
0 0 0 0 0

+Σerr (42)

Finally, we have a matrix form of the exact covariance term
and upper bound of the error terms. Next, take an arbitrary
unit vector v = [v1, v2, . . . , vd] and the variance of set Y ′
along v, denoted by σ2

v , is as follows:

σ2
v = ⟨v,ΣY ′ · v⟩ (43)

σ2
v = α(v21 + v22) + 2β(v1v2) + ⟨v,Σerr · v⟩ (44)

Notice the exact part of the variance scales with d which
is much larger than the variance incurred by error terms.
Since α is positive and β is negative, the exact part is
maximum when v21 + v22 gets equal to 1 and v1v2 attains its
minimum value. Hence, the exact part attains its maximum
value at v1 = 1√

2
, v2 = − 1√

2
or vice-versa which is the

direction of difference of vectors in set B. Now, we argue
that the maxima of the whole expression should be close
to the above solution. Consider another unit vector v′ ∈ Rd

close to the above solution v = [1√
2
,− 1√

2
] such that their

dot product is ρ, we can write

v′1 − v′2 =
√
2ρ (45)

v′21 + v′22 − 2v′1v
′
2 = 2ρ2 (46)

Given α > |β|, the decrease in variance incurred by exact
terms is at least 2(1−ρ2)|β|. v′ is the maxima for the whole
expression as long this decrease is less than the variance
incurred by error terms. As shown earlier, the maximum
value of ⟨v,Σerr · v⟩ is O(δ

2

n · d) with probability at least

1−2e
−δ2

2 . For v′ to be the direction of maximum variance,

2(1− ρ2)|β| ≤ O

(
δ2

n

)
· d (47)

2(1− ρ2)
ϵ2d

4
≤ O

(
δ2

n

)
· d (48)√

1− 2

ϵ2
O

(
δ2

n

)
≤ ρ (49)

Hence, ignoring 2
ϵ2 we have shown that the direction of

the maximum variance of Y ′ has an angle of less than

cos−1
(√

1−O(δ
2

n)

)
from the difference of vectors in set

B with probability at least 1− 2e
−δ2

2 .

Lemma 2.2. Let f(Y ′) = µ̃ and µ′ = 1
n

∑n
i=0 Y

′[i],
then Alg. 7 returns the difference of vectors in set B with
probability at least 1− n · exp(−nδ

2

2), for all δ > 1.

Proof. Similar to the proof of Lemma 2.1, since the set B
is chosen randomly without any correlation to Y , we can
take B as any 2 axes in Rd. For simplicity of calculations,
let’s take B as the first 2 axes. Then, we can write µ′ can
be written as the following using eq.28 and 31,

µ′ = [
ϵ
√
d

2
,
ϵ
√
d

2
, 0, . . . , 0] + (1− ϵ)µ̂ (50)

Notice for all yi ∈ Y ′, ⟨ yi

||yi||2 , µ̂⟩ follows a 1-D Gaussian
distribution with mean 0 and variance 1√

n
. Therefore, it

would be O(δ) with probability of 1 − e
−nδ2

2 So, for all
corrupted vectors yi ∈ Y ′ with probability 1− e

−nδ2

2 ,

⟨ yi
||yi||2

, µ′⟩ = ⟨bj , µ′⟩ bj ∈ B (51)

⟨ yi
||yi||2

, µ′⟩ = ϵ
√
d

2
± (1− ϵ)O(δ) (52)

For uncorrupted yi ∈ Y ′, consider y1 = [y11, y12, . . . , y1d],

⟨ y1
||y1||2

, µ′⟩ = ϵ
√
d

2||y1||2
(y11 + y12) + (1− ϵ)O(δ) (53)

For such uncorrupted yi in Y ′,
√
d

||yi||2 is a constant t ≈ 1
since each of them is a random sample from d-dimensional
spherical gaussian with mean as 0 and covariance as I , hence
each of them has an L2 norm of

√
d on expectation.

⟨ y1
||y1||2

, µ′⟩ = ϵt

2
(y11 + y12) + (1− ϵ)O(δ) (54)

For the projection in eq. 54 to be more than ϵ
√
d

2 , at least one
of the two components should be greater than

√
d

2t − O(δ).
But all components of an uncorrupted vector in Y ′, as y1,
follow a single dimensional Gaussian distribution with mean
as 0 and variance as 1. Then, using Chernoff bounds for 1-
D Gaussian, we can calculate the probability of any of the
first 2 components being more than

√
d

2t −O(δ) as follows,

Pr(y11 or y12 ≥
√
d

2t
−O (δ)) ≤ 2 · e(−

d
8t2

+O(δ2)) (55)

Note that the probability of the event mentioned above is
exponentially small in d. Hence, we can claim that the
projection of µ′ along corrupted vectors in Y is larger
compared to the uncorrupted vectors with extremely high
probability. Furthermore, given ||f(Y ′) − µ||2 ≤ τ

√
ϵ for

some constant τ , for µ = 0 we can write,

⟨µ̃, v⟩ ≤ τ
√
ϵ ∀v ∈ Rd, ||v||2 = 1 (56)

From eq. 52 and eq. 56, for all corrupted vectors in Y ′

⟨µ′ − µ̃,
yi
||yi||2

⟩ ≥
(ϵ
2

√
d− τ

√
ϵ+ (1− ϵ)O(δ)

)
(57)

And for all other uncorrupted vectors in Y ′ with probability
1− ne

−nδ2

2 (ignoring negligibly small terms than ne
−nδ2

2),

⟨µ′ − µ̃,
yi
||yi||2

⟩ <
(ϵ
2

√
d− τ

√
ϵ+ (1− ϵ)O(δ)

)
(58)

It implies that if we arrange all the vectors of Y ′ in the
order of projection of µ′ − µ̃ along them, then top n · ϵ
vectors will be the set of corrupted vectors C with very
high probability. Given the corrupted set contains nϵ

2 along
each vector in B. It implies that for each corrupted vector
there will be nϵ

2 other corrupted vectors perpendicular to it.
For any such mutually perpendicular corrupted vectors, one
of them is along b1 and the other is along b2. Then,

ci
||ci||2

− cj
||cj ||2

= ±(b1 − b2) ci, cj ∈ C, ⟨ci, cj⟩ = 0

(59)

This confirms that ci
||ci||2 −

cj
||cj ||2 equals to the difference

of vectors in set B and hence aligns with the direction
of maximum variance of Y ′ as well (Lemma 2.1). The
reduction algorithm 7 creates the set C and finds two
perpendicular vectors in C. Finally, the algorithm returns
the difference of these vectors normalized by their norm
which is equal to the difference of vectors in B.

Appendix B.
Addressing Meta-Review Comments

We address the noteworthy concern 2) raised in the meta-
review by explaining why we did not evaluate DnC defense
(Alg. 2 in [13]). This is because DnC does not satisfy the
definitions of a strong robust aggregator, to the best of our
knowledge.

We point readers to our meta Algorithm 1 outlined a
framework for strong robust aggregators, featuring a loop
(Line 3) for the iterative removal of corrupted vectors. DnC
does not have such an iterative step. Note that prior analyses
of strong robust aggregators underscore that iterations at
least equal to the number of corrupted vectors are necessary
to provide provable guarantees in the worst-case scenario
(i.e. where all corruptions are mutually orthogonal).

To illustrate, we give a straightforward attack against
DnC. The absence of the iterative steps means DnC can only
eliminate corrupted vectors aligned with the direction of the
maximum eigenvector. It fails to detect corrupted vectors
aligned with other eigenvectors, such as the eigenvector
with the second-highest variance. This limitation arises be-
cause DnC never recalculates eigenvectors after removing
corrupted vectors along the eigenvector direction with the
largest variance, unlike other existing strong aggregators.

Building on this insight, our attack works as follows:
Begin by choosing vector, b1, of dimension d (the dimen-
sion of benign gradients) with binary values {0, 1} chosen

0 1,000 2,000
0

1

2

·10−3

β (parameter in the attack)

bi
as

(L
2

no
rm

)

Figure 10: Bias (in L2 norm) incurred by the proposed attack
against DnC with varying β (parameter in the attack).

randomly, and its complement vector, b2. This strategy
ensures that the dot product of b1 and b2 is zero, as well
as the dot product of any subset of dimensions of b1 and
b2. Next, place a single corrupted vector in the direction
of b1 from the mean, at a distance of β · ||avg||, where
||avg|| represent the average distance of benign vectors from
the mean. Subsequently, position the remaining corrupted
vectors in the direction of b2 from the mean, at a distance
of c ·β · ||avg||. Select a small value for c to ensure that the
maximum eigenvector after corruption aligns closely with
the direction of b1 from the mean. Under this attack, DnC
only detects and filters out a single corrupted vector along
b1 from the mean, while marking the remaining vectors
as inliers and computing the arithmetic mean with them
included. The magnitude of the resulting bias incurred by
such a corruption strategy depends on the parameter β
chosen by the attacker and can be scaled arbitrarily. We have
experimentally verified this claim by considering a subset
of 1000 dimensions of gradients while training a CNN on
CIFAR10 with ϵ = 0.2, as described in section 5.1. We
corrupted this set using the aforementioned attack strategy
with c = 0.02 and employed DnC to compute its robust
mean at one step. Fig. 10 illustrates the bias incurred by the
attack on the same set with varying β. It scales up with β and
can be further scaled arbitrarily. Furthermore, we confirmed
that all vectors along b2 from the mean are marked as inliers
by DnC for all the varying values of β. The code for our
attack and our implementation8 of DnC is provided in [37].

The DnC defense also proposes to sample a subset of
dimensions and considers only them to compute the largest
eigenvector to filter outlier vectors in one shot. This is
fundamentally different from iterative removal of corrupted
vectors by computing a maximum eigenvector in every
iteration as done in strong robust aggregators. Our presented
attack here will work even if a smaller or larger subset of
dimensions are used to compute eigenvectors.

8. The artefacts of the original paper did not have the algorithm’s
implementation. Hence, we re-implemented it and privately corresponded
with one of the authors of that work to check its correctness.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper introduces HIDRA, a novel attack that tar-
gets strong robust aggregators in high-dimensional federated
learning environments. Such aggregators provide an upper
bound on the bias against poisoning attacks that aim to
corrupt a fraction of inputs. However, they introduce a com-
putational bottleneck that limits their application to high-
dimensional data like those present in most deep learning
settings. To address the bottleneck, practical adaptations
split dimensions into disjoint chunks and operate on each
chunk individually. HIDRA biases the aggregate of each
chunk in the dimensionally split robust aggregators, and
the paper shows analytically and experimentally that the
resulting total bias approaches theoretical upper bounds and
degrades model performance.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Identifies an Impactful Vulnerability

C.3. Reasons for Acceptance

1) HIDRA reveals a new vulnerability in the practical
implementation of strong robust aggregators.

2) The paper provides solid theoretical analysis and
empirical results that match the theory.

3) The results demonstrate that HIDRA achieves near-
optimal bias against robust aggregators in untar-
geted poisoning attacks.

C.4. Noteworthy Concerns

1) The paper does not propose countermeasures or
mitigation strategies against HIDRA.

2) The performance of HIDRA against DnC-based
federated learning, a potential defense, is not eval-
uated.

3) The evaluation focuses on a single architecture, and
the impact that this has on the severity of the attack
remains uncertain.

Appendix D.
Response to the Meta-Review

Thank you reviewers for providing helpful reviews. We
have addressed the meta-review comment 2) above regard-
ing DnC in our Appendix B, showing that it does not satisfy

the guarantees of a strong aggregator. We leave addressing
the remaining comments for future work.

	Introduction
	Background & Problem Setup
	The Problem: Byzantine Robust Aggregation
	Application: Untargeted Poisoning in SGD

	Robust Aggregators
	The HiDRA Attack
	Warm up: Attack in Low Dimensions
	Vulnerability in High Dimensions
	Theoretical Optimality Analysis
	Is Computational Bottleneck Fundamental?

	Evaluation
	Experimental Setup
	Empirical vs. Theoretical Bias
	Impact of HiDRA on Accuracy

	Related Work
	Conclusion & Future Work
	References
	Appendix A: Theoretical Analysis: Complete Proofs
	Appendix B: Addressing Meta-Review Comments
	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix D: Response to the Meta-Review

