
(Invited Paper) On The Security of Blockchain
Consensus Protocols

Sourav Das, Aashish Kolluri, Prateek Saxena, and Haifeng Yu?

souravdas1547@gmail.com, {aashish7, prateeks, haifeng}@comp.nus.edu.sg
Computer Science Department, School of Computing

National University of Singapore

1 Introduction

Blockchain protocols, which originated in Bitcoin [57], allow a large network
of computers to agree on the state of a shared ledger. Applications utilizing
blockchains embrace a semantics of immutability: once something is committed
to the blockchain, it can not be reversed without extensive effort from a majority
of computers connected to it. These protocols embody the vision of a global “con-
sensus computer” to which arbitrary machines with no pre-established identities
can connect for offering their computational resources (in return for a fee), with-
out dependence on any centralized authority. Despite this, the computational
infrastructure strives to offer failure resistance against arbitrarily malicious ac-
tors. Security is at the heart of these protocols and applications built on them,
as they now support an economy valued at several hundred billion dollars 1.

Theoretical frameworks should guide the construction of practical systems.
The last decade of work on designing blockchain protocols highlights the im-
portance of this interplay. In this paper, we distill the essence of the problem
of designing secure blockchain consensus protocols, which are striving towards
lower latencies and scalability. Our goal is to present key results that have sur-
faced in the last decade, offering a retrospective view of how consensus protocols
have evolved. We examine a central question: is Bitcoin’s original consensus
protocol—often called Nakamoto consensus— secure, and if so, under which
conditions? There have been many folklore claims, for instance, that Nakamoto
consensus is categorically secure up to 1

2 adversarial power, beyond which “51%
attacks” violate its guarantees [57, 62]. Careful analysis, however, has dispelled
many such claims. The quest for designing more scalable and secure consensus
protocols has ensued. We review some of these construction paradigms and open
problems. We focus mostly on protocols that are designed to operate in the open
or permissionless setting which limit adversaries by computational power only.

? The authors are sorted alphabetically by last name.
1 Total market capitalization of cryptocurrencies is 217, 279, 849, 996 USD at the time

of writing [5].

2 Sourav Das, Aashish Kolluri, Prateek Saxena, and Haifeng Yu

2 The Blockchain Consensus Problem

One of the novel algorithmic advances in Bitcoin is its consensus algorithm called
Nakamoto consensus. The protocol runs between a set of miners (computers),
connected via a peer-to-peer (P2P) overlay over the Internet. Miners agree on the
state of a globally distributed ledger of transactions periodically. Transactions
are broken up into sets of constant size called blocks, and miners broadcast them
to other miners continuously. The essence of the blockchain consensus protocol
is to reach agreement on the total order on a common subset of blocks seen by
all the honest miners. The total ordering of blocks is sufficient to achieve a well-
defined notion of consistency [43]. With this, for instance in a cryptocurrency
application, it is easy to avoid double-spends: the client can always pick the
first 2 transaction that spends a coin, ignoring later (conflicting) transactions
that spend the same coin.

One way to agree on the total order, as proposed in Nakamoto consensus
is to order blocks in a hashchain data structure [2], which coined the term
“blockchain”. In a blockchain, blocks are chained in a sequence using cryp-
tographic hashes, where one block hash binds it to its predecessor in the to-
tal order. Transactions can have any semantics. For instance, in Bitcoin these
transactions represent ownership (and payments) of virtual coins. In more recent
cryptocurrencies, transactions represent the more traditional notion of atomic
state updates for programs called smart contracts [4, 68].

2.1 Threat Model & Assumptions

Miners who follow the prescribed protocol are called honest. This consensus
protocol makes three assumptions, which strikingly differ from prior literature:

(a) honest peers, with no pre-established identities, can broadcast publicly
to all other honest nodes a block synchronously, within a delay δ;

(b) the total computational power of the system is approximately known, out
of which a known fraction f is assumed malicious (Byzantine [44]);

(c) all peers have an unbiased source of local randomness, and a trusted setup
phase creates public parameters in a constant size genesis block.

Bitcoin’s assumptions, especially the combination of (a) and (b), are novel
and minimalistic in a sense. Prior works in the literature study asynchronous
networks which can lose connectivity between honest miners in the P2P overlay
for indefinite periods of time [10,28,51]. We say that the network is “partitioned”
if honest nodes lose connectivity to a significant fraction of other honest miners.
Under this asynchronous model, a deterministic consensus is classically impossi-
ble [28] and most probabilistic consensus algorithms in the classical model have
exponential round complexity [39] 3. This suggests that some more assumptions

2 earliest one in the total order
3 King at el. have presented the first theoretical result with polynomial round complex-

ity recently in the model where no secret channels are constructed; the construction
tolerates less than 1% Byzantine adversary [12,39]

(Invited Paper) On The Security of Blockchain Consensus Protocols 3

are necessary to avoid well-known impossibility results and long-standing prob-
lems. Assumption (a) of δ-synchronous broadcast is stronger than assuming an
arbitrarily asynchronous network, but the protocol designer can estimate an ac-
ceptable network delay δ, and the Nakamoto consensus protocol can be instanti-
ated with a block generation time that is large enough to accommodate it [15,56].
Different blockchains use this flexibility of picking different tolerance to network
partitions [3,4]. Many prior protocols in the literature have assumed much more
complex communication models of strongly synchronized clocks across nodes,
pre-established identities attached to each message, global directories of identi-
ties participating (e.g. PKI), secret communication channels between peers, and
so on [29]. Bitcoin takes a fresh approach assuming none of these.

Some form of sybil resistance is necessary to an open system where any
number of computers or miners can connect [23]. Assumption (b) is a form of
Sybil resistance, which is substantially different from prior protocols that assume
pre-established identities or PKI [52]. For instance, popular Byzantine agreement
protocols achieve consensus in a setup that assumes that the set of participants in
the protocol are known to each other in advance [19,44]. Bitcoin does not assume
that miners know identities of other miners in advance. More recently, many
“Proof-of-Stake” (PoS) proposals assume that identities are pre-established and
have an agreed upon fractional ownership in virtual coins (or stake) [20, 32,38].
Such staking assumptions can be bootstrapped from Assumption (b).

Assumption (c) is assumed only once at the start of the blockchain. How-
ever, we believe this assumption is not necessary; it can be constructed directly
from assumptions (a) and (b) using recent works as building blocks [7, 34]. It is
convenient, however, to assume this to avoid complexity of bootstrapping.

Attacking the assumptions. A number of works have shown direct attacks on
these assumptions. Assumption (a) states that all messages from honest nodes
reach other honest within time δ; however, partitioning and eclipse attacks sub-
vert these directly [8,33]. In partitioning attacks, malicious nodes aim to discon-
nect honest miners from each other at the P2P or ISP level. Similarly, eclipse
attacks allow certain malicious miners to delay the propagation of network mes-
sages selectively to other miners. Protecting against these attacks is directly im-
portant to fixing the parameters of the consensus algorithms; however, these are
outside the scope of the design of the consensus protocol itself. It does motivate
building “hard-to-partition” P2P overlays, and defenses to avoid centralization
at the ISP-level on the Internet, upon which blockchain overlays operate.

Assumption (b) has been challenged as well. The assumption that the adver-
sary controls no more than fraction f of the compute power has been subject
to much debate, since centralization of mining power is an acknowledged con-
cern [25, 48]. Mining protocols that force mining pools to run fairly, such as by
executing a smart contract, have been investigated as a practical solution [50].
Prior work has proposed dis-incentives against forming mining pools or coalitions
through non-outsourceable puzzles [53]. However, recently, there have been re-
ports of real attacks that they require short-lived capital to carry out the attacks
on specific public blockchains [14]. Addressing these attacks effectively, through

4 Sourav Das, Aashish Kolluri, Prateek Saxena, and Haifeng Yu

incentives or technical means, is an open problem. Nonetheless, we argue that
some forms of Sybil resilience and network delivery guarantees seem necessary;
therefore, Bitcoin’s assumptions are an acceptable starting point.

2.2 Nakamoto Consensus

Bitcoin’s consensus protocol is a concrete example of a blockchain protocol. The
protocol uses a specific computational puzzle or “proof-of-work” (PoW) puz-
zle [2,24]. The puzzle asks miners to find a nonce such thatH(nonce||seed|| . . .) <
2d, where d is tunable puzzle difficulty parameter and H is a cryptographically
strong hash function. Anyone with the solution to the puzzle < nonce, seed, d >
can verify in one hash evaluation whether the solution is valid. The seed serves
the role of a randomized value for instantiating new puzzles over time. It is use-
ful to think of PoW puzzles as a procedure to sample from the computational
power distribution in the mining network.

Each miner in the protocol keeps minimal state, i.e., the longest chain of
blocks in its local view. Each miner solves a PoW puzzle, which is stateless
computation. The inputs of a puzzle are taken only from miner’s local view,
specifically, the latest block hash value serves as seed of the PoW puzzle. If a
miner receives a block from the network, it inspects the validity of the block.
If the block has a valid PoW solution, the miner extends its local view of the
blockchain by one block, and the next round of mining starts with this new
seed. If the miner receives a valid chain longer than its present chain, the miner
switches its local view to it immediately. A block is confirmed after a constant
number of blocks (k) extend it in the longest chain. The protocol sets k internally
(k = 6 in Bitcoin). This consensus protocol is orthogonal to the representations
of transaction data (UTXO [57] vs. accounts [72]), DoS-prevention checks on
network messages [71], and validity checks (double-spend validation) [17,47,71].

2.3 The Problem

The blockchain consensus protocol allows each miner to periodically output a set
of blocks that it deems as confirmed or final. The security goal of the consensus
protocols is to ensure that honest miners (a) agree on the same total order for
all confirmed blocks, and (b) the set of confirmed blocks includes those proposed
by all miners fairly, i.e., in proportion to their contributed computation power
for mining. We consider a protocol secure up to a fraction f of adversarial power
if it can guarantee its security goals with high probability (w.h.p.) 4. The un-
derlying constraint is δ, the time taken for honest miners to receive a fixed size
block, which is pre-determined by the network bandwidth of the miners. The
performance criterion is how quickly blocks proposed by miners are agreed upon
by the honest network.

4 For any security parameter λ > 0, an event happening with high probability (w.h.p)
implies that event happens with probability 1−O(1/2λ)

(Invited Paper) On The Security of Blockchain Consensus Protocols 5

Protocols can be compared both on their block confirmation rate and their
tolerance to adversarial fraction f . If a protocol A includes strictly more blocks
in its agreed total order per unit time than protocol B, tolerating the same
adversarial power, then A is strictly better in performance. Likewise, if proto-
col A agrees on the same number of blocks per unit time as B, but tolerates
strictly more adversarial power, then A is strictly better in security. One can
even compare different configurations of the same protocol. Taking Nakamoto
consensus as an example, the parameter k (number of confirmation blocks) offers
a tradeoff between security tolerance and confirmation time. If we compare two
configurations of Nakamoto consensus, with different values of k, it turns out the
configuration with larger values of k offer slower confirmation times but higher
security tolerance.

Security Properties of Blockchain consensus Protocols. The foremost question
for any blockchain consensus protocol is which security guarantees it provides
when a fraction f of power is controlled by a Byzantine adversary. One can think
of the blockchain the protocol as a continuous time protocol, where at any time
instant, each miner reports a set of blocks as confirmed and a total ordering
relation over them. The first security goal is to ensure that an honest miner does
not change its set of confirmed blocks over time, captured by a stability property:

Stability: For any honest miner, the set of confirmed blocks output at time
t1 is a subset of the set of confirmed blocks at time t2 w.h.p, if t2 > t1. The
order of confirmed blocks does not change over time w.h.p.

One oft-cited strategy for the attacker to subvert the stability property in
Nakamoto consensus is to introduce an alternate longer chain starting at a block
that is at least k blocks deep. If successful, this causes honest miners to switch
their view on what is confirmed. This strategy was analyzed in the original
Bitcoin paper [57]. However, this is not the only strategy to consider; the protocol
must remain secure under all adversarial strategies [16].

The second security goal is to prove that miners following the protocol reach
agreement: for any two honest miners, the confirmed blocks of one are also con-
firmed by the other, and that the order of the confirmed blocks is identical for
both. Specifically, the following agreement property captures this:

Agreement: Let C1 and C2 be the set of confirmed blocks reported by any
two honest miners, then w.h.p:

(A) Either C1 ⊆ C2 or C2 ⊆ C1; and
(B) the blocks in C1 ∩ C2 are ordered identically by both miners.
At any time instant, note that requirement (A) above allows one miner to

not have confirmed all the blocks of the other honest miner. But, it disallows
the case where two honest miners confirm two blocks, each one of which is only
confirmed by one miner and not the other. Requirement (B) ensures blocks that
are confirmed by both will necessarily be in the same order.

In Nakamoto consensus, satisfying the agreement property implies that the
longest chain, discarding the last k blocks, of an honest miner should be a prefix
of the longest chain of other honest miners [17]. Ensuring a common prefix
satisfies both requirement (A) and (B) above. These properties (and others)

6 Sourav Das, Aashish Kolluri, Prateek Saxena, and Haifeng Yu

are used to prove rigorous analytical bounds on the fraction f tolerated under
different attack models by Nakamoto consensus and its variants [30,36,58].

A third critical property of the blockchain protocols is fairness. In a fair
protocol, if the adversary controls fraction f of the computational power, the
expected fraction of blocks contributed by it in the confirmed set blocks should
be close to f . However, the adversary can deviate from the honest protocol to
mine more blocks [27, 31, 63]. It may do so to increase its mining rewards, to
favor or censor transactions of its choice, or bias the fairness of the application
running on top of the blockchain in some way. The following property captures
this security notion of fairness:

Fairness: There is a negligible probability that the fraction of blocks pro-
posed by the adversary in the set of confirmed blocks, over any time interval
t > c . δ, for some constant c, is more than f .

The constant c in the above definition specifies whether the protocol is fair
over a small time windows or larger ones. Protocols that minimize c are desirable,
as they sample from the computational power distribution in the mining network
frequently. To understand the importance of minimizing this constant, consider
the following proposal: one could run any fair consensus protocol to agree on a
leader (say) once a week who broadcasts a massive block for the rest of the week.
This is sufficient to utilize the bandwidth available, and in expectation over a
large time window (say 1 year), it would be fair in picking leaders. However, such
a protocol is not desirable as that leader may favor its own transaction blocks
for a week. Further, the leader may be targeted for Denial-of-Service (DoS) or
eclipse attacks during its tenure. Therefore, blockchain protocols that agree of
(lots of) small blocks, sampling often from the computation power distribution,
are better as fairness holds over shorter time windows.

Existing blockchain protocols can be compared directly on the minimum
time window (or c) over which their fairness holds. Existing scalable blockchain
protocol compete on lowering c for better decentralization and DoS-resilience.

3 Security Analysis of Nakamoto Consensus

Stability & Agreement Properties. Different strategies to subvert the stability
and agreement properties of Nakamoto consensus have been studied, both ex-
perimentally and analytically, in prior works [30, 58, 66]. One key observation
from these analyses is that Nakamoto consensus protocol exhibits poor tolerance
to adversarial power when the block interval reduces significantly, especially as it
starts to approach the broadcast latency. Intuitively, at low block intervals, many
miners will start to mine blocks nearly simultaneously; these will be received in
an unpredictable order by other miners. Consequently, some miners will mine
on one block while the others on other blocks. This results having temporary
“forks” in the chain. The rate of forks, often measured by the creation rate of
“stale blocks” (which do not end up on the longest chain), is measured empiri-
cally by Gervais et al. for various configurations of Nakamoto consensus [31].

(Invited Paper) On The Security of Blockchain Consensus Protocols 7

The security of Nakamoto consensus protocol hinges primarily on the ratio
of the block interval to the broadcast latency. Several analyses have shown that
there exists a large enough k (number of block confirmations) for which the
protocol is secure for some large values of the block interval [30, 58, 66]. For
certain high block interval rates (e.g., 10 minutes as in Bitcoin) for broadcast
delay δ of a few tens of seconds observed empirically [22], prior analysis shows
that the agreement property holds close to f = 1

2 adversarial power fraction.
However, this adversarial power tolerated drops as block interval rates reduce.
Specific attack strategies have shown that the f drops to well-below 40%, even
when the ratio of block interval rate to δ is close to 1, as in Ethereum [36,58]. The
theoretical security tolerance thresholds for which security is guaranteed drops
quickly as block interval decreases further. These results explain that Nakamoto
consensus is not categorically secure under arbitrary block interval rates, unlike
what folklore claims portray. More effective attack strategies and models than
those proposed in prior works are possible and an open area of investigation.

Fairness Property. The fairness property has been extensively studied as well.
The selfish mining and short-term block withholding strategies (c.f. Eyal and
Sirer [27]) provide prominent results. This work shows that even a miner with
25% of the computation power can bias the agreed chain with its blocks (gain-
ing more reward than expected). This shows that Nakamoto consensus cannot
withstand a 1

3 or 1
2 adversarial power, as is assumed by the folklore claims of

“51% attacks”. This is relevant because a number of works rely on this fair-
ness property for application-specific security guarantees (e.g. beacons [13, 16],
lotteries [7, 13], bounties [18], samplers [6, 41, 47, 73]), assuming that fairness
property holds for certain adversarial power.

When studying the fairness property, many works have emphasized a subclass
of rational adversaries, i.e., miners incentivized to optimize some utility function
(e.g. maximizing their expected profits, maximize blocks mined by it, censor
certain transactions, and so on) [27, 31, 63]. There have been various results
showing the coin reward structures are not incentive-compatible, and rational
miners can maximize their utility by deviating from the protocol [35,49,69,70].

Remarks. We remind readers that assuming that no miners are Byzantine, just
that miners are either rational or honest, has some limitations. Rationality ar-
guments are often made in virtual coin incentives and there are real markets
today where coins are traded for fiat currencies. An attack may seem irrational
(not incentivized) viewed from the objective of an assumed utility function for
the attacker, whereas it may be incentivized as it may impact the valuation of
virtual coins. Early works on the Goldfinger attacks [42] and feather-forking [1]
discuss this issue of how reasonable it is to assume that miners will be rational
versus Byzantine. Nakamoto protocol safety merits a study independently of the
model of incentives, directly in the threat model of Byzantine adversaries.

8 Sourav Das, Aashish Kolluri, Prateek Saxena, and Haifeng Yu

4 Scalability Extensions To Nakamoto Consensus

Increasing Block Sizes. One natural way of increasing transaction rates is to have
large blocks in Nakamoto consensus that consume all the bandwidth available. In
such a design, optimal bandwidth utilization is achieved by picking large block
sizes. Therefore, in such a solution, the constant c of the fairness property is
directly dependent on the block sizes sufficient to saturate the entire network’s
bandwidth. As discussed earlier, this may not guarantee fairness in short time
windows, and the attacker can target a single block proposer in each epoch.
Several proposals utilize this design choice, such as the use of key blocks in
Bitcoin-NG [26] and the identity establishment step of [21], implicitly inheriting
the issue of ensuring fairness.

Reducing Block Interval. For achieving fairness in shorter intervals, one promi-
nent re-configuration of Nakamoto consensus is to reduce the block interval. In
Nakamoto consensus, this is achieved by lowering the puzzle difficulty for the
known computational power. This tack is utilized in many cryptocurrencies. Bit-
coin fixes the interval to be approximately 10 minutes, whereas Litecoin reduces
it by four times and Ethereum brings it to 10-17 seconds. The lower the block
interval rate, the better the fairness in choosing how many block proposal are
generated per unit time. However, as explained in Section 2.3, the longest chain
rule for selecting the total order does not remain secure. Lowering the block
interval lowers the adversarial power f that the protocol tolerates significantly.

When block intervals are reduced in Nakamoto consensus, the open problem
is how to order the blocks received by a miner. Various ordering rules have been
proposed in the literature, but a solution that provably achieves optimal security
and confirmation rate is not yet known. We summarize existing proposals next.

GHOST Rule. Sompolinsky and Zohar proposed the GHOST rule, an alternative
to the longest chain rule of counting the number of blocks [66]. In the GHOST
rule, miners retain information of all blocks they obtain from the network in
their local view. These blocks thus form a block tree-like structure i.e., each
block contains a subtree of blocks mined upon it. The weight of a block is the
number of blocks in all forks belonging to its subtree. The GHOST rule dictates
that heaviest chain consists of the heaviest block, by weight, at each depth in the
tree of forks, thus, allowing blocks that are not on the heaviest to contribute to
the weights of blocks on it. Hence, in essence, it picks the “heaviest” chain (with
evidence of the most mining work contributed to it), rather than the longest.

A security analysis of the GHOST rule for certain attack strategies is pre-
sented in the proposal of Sompolinsky and Zohar [66]. Kaiyias et al. establish that
GHOST rule is secure for certain parameters when block intervals are large [37].
The security analysis of the GHOST rule, especially when the block interval is
smaller than the broadcast delay, merits a careful analysis, like in the case of Bit-
coin’s longest chain rule. Specifically, the security depends on how ties between
heaviest blocks of equal weight are resolved. Several tie-breaking rules have been
proposed, picking (a) uniformly between candidate blocks, (b) the first one that

(Invited Paper) On The Security of Blockchain Consensus Protocols 9

the miner receives, (c) the one with the smallest timestamp, and (d) the one with
the smallest PoW puzzle solution. Different attacker models have been studied
showing that GHOST is not unilaterally superior to the long chain rule [37,66].
It has been suggested that strategy (a) is preferred to strategy (b) for certain
range of block intervals when the adversary uses a selfish mining strategy for
fairness [27]. We conjecture that, in fact, strategy (a) is not universally better
because it splits the available honest mining power across various forks. This
reduces the power necessary for the adversary to create the heaviest chain by
mining selfishly on its own fork, impacting the stability and agreement property.

Much like the longest chain rule, the final selected chain in GHOST dis-
cards all blocks that are not along the heaviest chain. So, the throughput of
the GHOST protocol is within a small factor of that resulting from the longest
chain rule. This is sub-optimal since many blocks seen by the honest miners are
eventually discarded, lowering the average confirmation rate per block.

Directed Acyclic Graphs (DAGs). Recent works have proposed mechanisms to
include blocks that are not on the longest or the heaviest chain in Nakamoto
consensus. One line of work proposes that instead of keeping a chain, the miners
can keep a directed acyclic graph (DAG) of blocks seen in their local view [45,
46,60,64,65]. Each miner has its view of the blocks it has seen, partially ordered
in the DAG. The DAG has edges called “reference edges” that point to those
blocks that the miner saw before it mined the present block, in addition to usual
hashchain edges. The protocol specifies how miners order the blocks at the same
depth in their local views of the DAG, and agree on their diverging DAG views.

A number of rules have been proposed to agree and order DAGs, such as
SPECTRE [65], PHANTOM [64], and Conflux [46]. For instance, the Conflux
protocol shows one mechanism for achieving this by finding a pivot chain using
the GHOST rule and then topologically sorting the blocks that are at the same
depth as a block on the pivot chain. Miners union the DAG views they receive
from other nodes. Blocks at the same depth are ordered on hash value of PoW
puzzle difficulty solved. The security of Conflux reduces to that of the GHOST
rule. The PHANTOM protocol selects a subtree rather than a single chain and
sorts topologically. The Conflux paper presents a liveness attack on the PHAN-
TOM protocol, which is shown to be effective with an adversary that controls
15% computational power. DAG based schemes are relatively recent, and their
rigorous scrutiny deserves further attention.

5 Scalability Solutions Based on Byzantine Agreement

The difficulty of securing variants of Nakamoto consensus has led to an alterna-
tive line of protocols that leverage classical Byzantine agreement (or BA) proto-
cols instead. Consensus in a Byzantine network has been extensively studied, see
surveys [9, 29, 39]. However, directly applying BA algorithms in the assumption
model of Bitcoin is not straightforward. One key difficulty is that commonly
BA protocols assume a pre-established set of identities known to all participants
running the protocol.

10 Sourav Das, Aashish Kolluri, Prateek Saxena, and Haifeng Yu

To achieve this starting point, several protocols propose different designs
to establish identities from the assumptions (a)-(c). Wattenhofer et al. use the
Nakamoto consensus protocol to arrive at a common prefix of blocks, which
contain public keys (identities) of the participants [21]. The security of this step
directly relies directly on the security of Nakamoto consensus variants utilized.

The use of Nakamoto consensus to establish identities as a pre-step is not
necessary. A number of works including Elastico [47], Omniledger [41], and
RapidChain [73] directly establish identities from PoW or related cryptographic
constructs5. A number of these solutions further shard identities, i.e., assign
different clusters/committees to identities implicitly which can operate in paral-
lel [6,41,47,73]. More recent works show how to use more general cryptographic
puzzles to bootstrap a reconciled view of the set of participants in a mining net-
work without Nakamoto consensus and even without assumption (c) outlined in
Section 1 [7, 34,53].

The security of these designs depends directly on the size of the set of iden-
tities established to run the BA protocol. The larger the size of the identity set,
the higher is the communication cost of establishing the identity sets between the
participants and subsequently running the BA protocol instances. This sample
size establishes limits on how often the identity establishment protocol can run,
which is directly related to the constant c for which the fairness property holds.
There is a trade-off in choosing the sample size that different designs make. The
sample sizes picked in various designs vary, but typically are in hundreds, for
acceptable levels of security and confirmation times in tens of seconds [32,41,47].

The set of identities is supposed to be chosen randomly by sampling the
computational power or stake distribution. Therefore, the fraction of adversarial
identities in the chosen set is f in expectation. For sets of size s, the probability
of the adversarial identities deviating from the mean f is bounded by a func-
tion exponentially small in s, which follows from the standard Chernoff bounds
(Chapter 4. [55]). We point out that these analyses of sample sizes for establish-
ing identity sets are often the same for proof-of-work systems and proof-of-stake
systems [32]. This is because the process of creating identities based on random
sampling, and counting how many identities (Byzantine and honest) end up in
an identity set, is the same for many PoS- or PoW-based systems. In all these
different protocols for establishing identities, the role of a formal framework to
model the sampling process (often a Binomial random variable 6) guides the
robust choice of sample size parameters.

A second factor that dictates the set size is the fraction of adversaries the
BA algorithm can tolerate in one instance. BA protocols designed original for

5 Verifiable random functions (VRFs) have been used to probabilistically select iden-
tity sets without eagerly revealing the identities selected [32,41]

6 The probability of a picked identity being Byzantine in the sample set is f , and
honest is 1− f . The analysis examines two Binomial random variables, the number
of honest and Byzantine adversaries picked in an indentity set, such that their ratio
does not exceed the tolerance of the BA algorithm. When Nakamoto-style PoW is
used to create identities, the number of identities created per unit time (by setting
an appropriate puzzle difficulty), is approximated well by a Poisson random variable.

(Invited Paper) On The Security of Blockchain Consensus Protocols 11

fully asynchronous networks like PBFT [19] tolerate 1
3 adversary or their more

efficient versions (ByzCoin [40],Omniledger [41]). Recent works use synchronous
BA protocols which can tolerate the optimal 1

2 Byzantine fraction [29,61]. Pro-
tocols that can tolerate better adversarial fractions (e.g. 1

2 vs. 1
3) require further

smaller sets of identities [73].
The use of BA agreement in blockchains has spurred further research in de-

signing faster BA protocols. The trade-offs in designing BA protocols which are
fast when the network delay δ is small while degrading gracefully on slower net-
works have been actively studied [41, 54, 59, 61]. Several works have improved
the communication costs of BA agreement protocols, trading off the perfor-
mance between the honest case and when the overlay P2P graphs have Byzan-
tine adversaries [40, 67]. More efficient broadcast primitives have emerged, for
instance, using collective signing [67] or erasure-coded information dispersal tech-
niques [54,73].

As blockchains run continuously, multiple rounds of BA protocol are implic-
itly composed in sequence. In sharded blockchains, BA protocol instances are
often composed in parallel as well. Some care must be taken when composing
instances, especially for BA protocols that have probabilistic termination time
like the BA? algorithm [32] or PBFT 7 [19]. When BFT protocol instances are
running in parallel — as in sharding-based blockchain protocols — the expected
running time for all of the instances generation may not be constant in expec-
tation, as the slowest instance (out of many) dominates the stopping time [11].
Optionally, to mitigate this delay, a protocol may choose to run a BA proto-
col instance to synchronize the output of the parallel instances running on each
shard [47]. Specifically, a final committee determines whether a shard has agreed
upon a block or not within a predetermined time bound. This bounds the delay
at each shard, however, it admits the possibility that in some rounds, empty
blocks will be mined. However, the probability that the protocol does not make
progress for a few rounds under the assumption (a) of Section 2.3 is negligibly
small. Protocols may not choose to synchronize outputs of shards at each epoch,
but then additional mechanisms to ensure atomicity of cross-shard commits in
an epoch are often utilized [41].

6 Conclusions

We survey known results about how well Nakamoto consensus guarantees de-
sired security, when configured for faster confirmations. Guided by theoretical
analyses, new designs and variants of the Nakamoto consensus protocol are un-
der active investigation, searching for an optimal protocol. Careful analyses have
dispelled folklore claims of safety against 51% attacks hold categorically when
re-configuring the Nakamoto consensus protocol. We further summarize another
recent paradigm of constructions that are based on using established Byzantine

7 PBFT is a leader-based protocol and may have multiple rounds, which depends on
the probability of a dishonest leader being chosen at a particular round triggering a
“view change” sub-step.

12 Sourav Das, Aashish Kolluri, Prateek Saxena, and Haifeng Yu

agreement protocols. We explain some of the commonalities and the factors that
determine their confirmation latencies and security trade-offs.

7 Acknowledgements

We thank Hung Dang for his helpful comments on the work. We thank sponsors
of the Crystal Center at NUS, which has supported this work. All opinions
presented in this work are those of the authors only.

References

1. Feather-forks: enforcing a blacklist with sub-50https://bitcointalk.org/index.
php?topic=312668.0

2. Hash chain wiki, https://en.wikipedia.org/wiki/Hash_chain
3. Litecoin wiki, https://en.wikipedia.org/wiki/Litecoin
4. A next-generation smart contract and decentralized application platform https:

//github.com/ethereum/wiki/wiki/White-Paper

5. Total market capital of cryptourrencies (2018), https://coinmarketcap.com
6. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: A

sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)
7. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-

party computations on bitcoin. In: Security and Privacy (SP), 2014 IEEE Sympo-
sium on. pp. 443–458. IEEE (2014)

8. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on
cryptocurrencies. In: Security and Privacy (SP), 2017 IEEE Symposium on. pp.
375–392. IEEE (2017)

9. Aspnes, J.: Randomized protocols for asynchronous consensus. Distributed Com-
puting 16(2-3), 165–175 (2003)

10. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In: Proceedings of the second annual ACM
symposium on Principles of distributed computing. pp. 27–30. ACM (1983)

11. Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant
time. Distributed Computing 16(4), 249–262 (2003)

12. Ben-Or, M., Pavlov, E., Vaikuntanathan, V.: Byzantine agreement in the full-
information model in o (log n) rounds. In: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing. pp. 179–186. ACM (2006)

13. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv preprint
arXiv:1605.04559 (2016)

14. Bitcoinst: 51 percent attack on bitcoin cash (2018), https://bitcoinist.com/

roger-ver-bitpico-hard-fork-bitcoin-cash/

15. Bolot, J.C.: End-to-end packet delay and loss behavior in the internet. In: ACM
SIGCOMM Computer Communication Review. vol. 23, pp. 289–298. ACM (1993)

16. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
IACR Cryptology ePrint Archive 2015, 1015 (2015)

17. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok:
Research perspectives and challenges for bitcoin and cryptocurrencies. In: Security
and Privacy (SP), 2015 IEEE Symposium on. pp. 104–121. IEEE (2015)

https://bitcointalk.org/index.php?topic=312668.0
https://bitcointalk.org/index.php?topic=312668.0
https://en.wikipedia.org/wiki/Hash_chain
https://en.wikipedia.org/wiki/Litecoin
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://coinmarketcap.com
https://bitcoinist.com/roger-ver-bitpico-hard-fork-bitcoin-cash/
https://bitcoinist.com/roger-ver-bitpico-hard-fork-bitcoin-cash/

(Invited Paper) On The Security of Blockchain Consensus Protocols 13

18. Breidenbach, L., Cornell Tech, I., Daian, P., Tramer, F., Juels, A.: Enter the hydra:
Towards principled bug bounties and exploit-resistant smart contracts

19. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance
20. Daian, P., Pass, R., Shi, E.: Snow white: Robustly reconfigurable consensus and

applications to provably secure proofs of stake. Tech. rep.
21. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Pro-

ceedings of the 17th International Conference on Distributed Computing and Net-
working. p. 13. ACM (2016)

22. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference
on. pp. 1–10. IEEE (2013)

23. Douceur, J.R.: The sybil attack. In: International workshop on peer-to-peer sys-
tems. pp. 251–260. Springer (2002)

24. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Annual
International Cryptology Conference. pp. 139–147. Springer (1992)

25. Eyal, I.: The miner’s dilemma. In: Security and Privacy (SP), 2015 IEEE Sympo-
sium on. pp. 89–103. IEEE (2015)

26. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-ng: A scalable
blockchain protocol. In: NSDI. pp. 45–59 (2016)

27. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Com-
munications of the ACM 61(7), 95–102 (2018)

28. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

29. Garay, J., Kiayias, A.: Sok: A consensus taxonomy in the blockchain era
30. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and

applications. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 281–310. Springer (2015)

31. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
pp. 3–16. ACM (2016)

32. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles. pp. 51–68. ACM (2017)

33. Heilman, E., Kendler, A., Zohar, A.: Eclipse attacks on bitcoin’s peer-to-peer net-
work.

34. Hou, R., Jahja, I., Luu, L., Saxena, P., Yu, H.: Randomized view reconciliation in
permissionless distributed systems (2017)

35. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: Proceedings of the 27th USENIX Conference
on Security Symposium. pp. 1353–1370. USENIX Association (2018)

36. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
(2015)

37. Kiayias, A., Panagiotakos, G.: On trees, chains and fast transactions in the
blockchain. (2016)

38. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual International Cryptology Confer-
ence. pp. 357–388. Springer (2017)

39. King, V., Saia, J.: Byzantine agreement in expected polynomial time. Journal of
the ACM (JACM) 63(2), 13 (2016)

14 Sourav Das, Aashish Kolluri, Prateek Saxena, and Haifeng Yu

40. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing

41. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: Omniledger:
A secure, scale-out, decentralized ledger. IACR Cryptology ePrint Archive 2017,
406 (2017)

42. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin
in the presence of adversaries

43. Lamport, L.: How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979).
https://doi.org/10.1109/TC.1979.1675439, https://doi.org/10.1109/TC.1979.

1675439

44. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 4(3), 382–401 (1982)

45. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
International Conference on Financial Cryptography and Data Security. pp. 528–
547. Springer (2015)

46. Li, C., Li, P., Xu, W., Long, F., Yao, A.C.c.: Scaling nakamoto consensus to thou-
sands of transactions per second. arXiv preprint arXiv:1805.03870 (2018)

47. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 17–30. ACM (2016)

48. Luu, L., Saha, R., Parameshwaran, I., Saxena, P., Hobor, A.: On power split-
ting games in distributed computation: The case of bitcoin pooled mining. In:
Computer Security Foundations Symposium (CSF), 2015 IEEE 28th. pp. 397–411.
IEEE (2015)

49. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 706–719. ACM (2015)

50. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: Smart pool: Practical decentralized
pooled mining. IACR Cryptology ePrint Archive 2017, 19 (2017)

51. Lynch, N.A.: Distributed algorithms. Elsevier (1996)

52. Maurer, U.: Modelling a public-key infrastructure. In: European Symposium on
Research in Computer Security. pp. 325–350. Springer (1996)

53. Miller, A., Kosba, A., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. pp. 680–691. ACM (2015)

54. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft pro-
tocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 31–42. ACM (2016)

55. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge university press (2005)

56. Moon, S.B., Skelly, P., Towsley, D.: Estimation and removal of clock skew from
network delay measurements. In: INFOCOM’99. Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings. IEEE.
vol. 1, pp. 227–234. IEEE (1999)

57. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

58. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. pp. 643–673. Springer (2017)

https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439

(Invited Paper) On The Security of Blockchain Consensus Protocols 15

59. Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirmation. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 3–33. Springer (2018)

60. Popov, S.: The tangle. cit. on p. 131 (2016)
61. Ren, L., Nayak, K., Abraham, I., Devadas, S.: Practical synchronous byzantine

consensus. arXiv preprint arXiv:1704.02397 (2017)
62. Rosenfeld, M.: Analysis of hashrate-based double spending. arXiv preprint

arXiv:1402.2009 (2014)
63. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. In: International Conference on Financial Cryptography and Data Security.
pp. 515–532. Springer (2016)

64. Sompolinsky, Y., Zohar, A.: Phantom: A scalable blockdag protocol (2018)
65. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: Spectre: A fast and scalable cryptocur-

rency protocol. IACR Cryptology ePrint Archive 2016, 1159 (2016)
66. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin.

In: International Conference on Financial Cryptography and Data Security. pp.
507–527. Springer (2015)

67. Syta, E., Tamas, I., Visher, D., Wolinsky, D.I., Jovanovic, P., Gasser, L., Gailly,
N., Khoffi, I., Ford, B.: Keeping authorities” honest or bust” with decentralized
witness cosigning. In: Security and Privacy (SP), 2016 IEEE Symposium on. pp.
526–545. Ieee (2016)

68. Szabo, N.: Smart contracts (1994), http://www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.

vwh.net/smart.contracts.html

69. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: International Conference on Financial Cryptography and Data Security. pp.
499–514. Springer (2016)

70. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains. url:
https://people. cs. uchicago. edu/teutsch/papers/truebit pdf (2017)

71. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: International Conference on Financial Cryptography
and Data Security. pp. 57–71. Springer (2014)

72. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger
73. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: A fast blockchain protocol

via full sharding

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

	(Invited Paper) On The Security of Blockchain Consensus Protocols

