
Finding The Greedy, Prodigal, and Suicidal Contracts at Scale

Ivica Nikolić
School of Computing, NUS

Singapore

Aashish Kolluri
School of Computing, NUS

Singapore

Ilya Sergey
University College London

United Kingdom

Prateek Saxena
School of Computing, NUS

Singapore

Aquinas Hobor
Yale-NUS College

School of Computing, NUS
Singapore

ABSTRACT

Smart contracts—stateful executable objects hosted on blockchains
like Ethereum—carry billions of dollars worth of coins and can-
not be updated once deployed. We present a new systematic char-
acterization of a class of trace vulnerabilities, which result from
analyzing multiple invocations of a contract over its lifetime. We
focus attention on three example properties of such trace vulnera-
bilities: finding contracts that either lock funds indefinitely, leak
them carelessly to arbitrary users, or can be killed by anyone. We
implemented Maian, the first tool for specifying and reasoning
about trace properties, which employs inter-procedural symbolic
analysis and concrete validator for exhibiting real exploits. Our
analysis of nearly one million contracts flags 34, 200 (2, 365 distinct)
contracts vulnerable, in 10 seconds per contract. On a subset of
3, 759 contracts which we sampled for concrete validation and man-
ual analysis, we reproduce real exploits at a true positive rate of
89%, yielding exploits for 3, 686 contracts. Our tool finds exploits
for the infamous Parity bug that indirectly locked $200 million US
worth in Ether, which previous analyses failed to capture.

ACM Reference Format:

Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. 2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale
. In 2018 Annual Computer Security Applications Conference (ACSAC ’18),
December 3–7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3274694.3274743

1 INTRODUCTION

Cryptocurrencies feature a distributed protocol for a set of comput-
ers to agree on the state of a public ledger called the blockchain.
The ledgers map accounts or addresses with quantities of virtual
coins. Miners, or the computing nodes, facilitate recording the state
of a payment network, encoding transactions that transfer coins
from one address to another. A significant number of blockchain
protocols exist, and as of writing the market value of the associated
coins exceeds $300 billion US, creating a lucrative attack target.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274743

Smart contracts extend the idea of a blockchain to a compute plat-
form for decentralized execution of general-purpose applications.
Contracts are programs that run on blockchains: their code and
state is stored on the ledger, and they can send and receive coins.
Smart contracts have been popularized by the Ethereum blockchain.
Recently, sophisticated applications of smart contracts have arisen,
especially in the area of token management due to the development
of the ERC20 token standard. This standard allows the uniformman-
agement of custom tokens, enabling, e.g., decentralized exchanges
and complex wallets. Today, over a million smart contracts operate
on the Ethereum network, and this count is growing.

Smart contracts offer a particularly unique combination of secu-
rity challenges. Once deployed they cannot be upgraded or patched,
unlike traditional consumer device software. Secondly, they are
written in a new ecosystem of languages and runtime environ-
ments (e.g., for Ethereum, the Ethereum Virtual Machine and its
programming language called Solidity). Contracts are relatively dif-
ficult to test, especially since their runtimes allow them to interact
with other smart contracts and external off-chain services; they
can be invoked repeatedly by transactions from a large number of
users. Third, since currency and coins on a blockchain often have
significant value, attackers are highly incentivized to find and ex-
ploit bugs in contracts that process or hold them directly for profit.
The attack on the DAO contract cost the Ethereum community
$60 million US; and several more recent ones have had impact of a
similar scale [1].

In this work, we present a systematic characterization of a class
of vulnerabilities that we call trace vulnerabilities. Unlike many
previous works that have applied static and dynamic analyses to
find bugs in contracts automatically [24, 26, 33, 39], our work fo-
cuses on detecting vulnerabilities across a sequence of invocations
of a contract. We label vulnerable contracts with three categories
— greedy, prodigal, and suicidal — which either lock funds indefi-
nitely, leak them to arbitrary users, or be susceptible to by killed
by any user. These properties capture many well-known examples
of known anecdotal bugs [1, 10, 17], but broadly cover a class of ex-
amples that were not known in prior work or public reports. More
importantly, our characterization allows us to concretely check for
bugs by running the contract, which aids determining confirmed
true positives.

We build an analysis tool called Maian for finding these vulner-
abilities directly from the bytecode of Ethereum smart contracts,
without requiring source code access. In total, across the three cat-
egories of vulnerabilities, Maian has been used to analyze 970, 898
contracts live of the public Ethereum blockchain. Our techniques

653

https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/3274694.3274743

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nikolić et al.

suffice to find the infamous Parity bug that indirectly caused 200
million dollars worth of Ether, which is not found by previous analy-
ses (in part because its detection requires two contract invocations).
A total of 34, 200 (2, 365 distinct) contracts are flagged as potentially
buggy by Maian. As in the case of the Parity bug, they may put a
larger amount to risk, since contracts interact with one another. For
3, 759 contracts we tried to concretely validate,Maian has found
over 3, 686 confirmed vulnerabilities with 89% true positive rate.
All vulnerabilities are uncovered on average within 10 seconds of
analysis per contract.
Contributions. We make the following contributions:
• We identify three classes of trace vulnerabilities, which can be
captured as properties of execution traces — potentially infinite
sequence of invocations of a contract. Previous techniques and
tools [33] are not designed to find these bugs because they only
model behavior for a single call to a contract.

• We provide high-order properties to check which admit a mech-
anized symbolic analysis procedure for detection. We fully im-
plement Maian, a tool for symbolic analysis of smart contract
bytecode (without access to source code).1

• We test close to one million contracts, finding thousands of con-
firmed true positives within a few seconds of analysis time per
contract. Testing trace properties with Maian is practical.

2 PROBLEM

We define a new class of trace vulnerabilities, showing three specific
examples of properties that can be checked in this broader class.
We present our approach and tool to reason about the class of trace
vulnerabilities.

2.1 Ethereum Smart Contracts

In the Ethereum blockchain, smart contracts are a type of accounts
that hold executable code called a bytecode. A contract performs
actions according to the instructions specified by its bytecode. Such
an action, called a contract invocation, occurs when an Ethereum ac-
count sends a transaction (that contains input data) to the contract.
Therefore, a single transaction to a contract triggers one execution
of its bytecode according to the provided input data. Smart contract
can also be invoked by other contract with a message call, which is
implemented as a bytecode instruction. Contracts can be executed
repeatedly over their lifetime. An execution trace is a sequence of
consecutive contract invocations.

Ethereum accounts (also known as addresses), both smart con-
tracts and normal accounts (called externally owned), hold some
amount of Ether, which is the currency of Ethereum. Smart con-
tract may receive Ether from other accounts when invoked, and can
send their Ether to other accounts with message calls. Contracts
can also be removed from the blockchain. This is called killing a
contract and results in completely erasing contract’s logic from the
blockchain and sending its Ether to a predetermined address.

All the actions a contract takes, including sending Ether and
getting killed, occur only when specific bytecode instructions are
executed during its invocation. The Ethereum Virtual Machine
(EVM) is the engine that interprets and executes the bytecode of

1 Available at https://github.com/MAIAN-tool/MAIAN.

1 function payout(address [] recipients ,

2 uint256 [] amounts) {

3 require(recipients.length == amounts.length);
4 for (uint i = 0; i < recipients.length; i++) {

5 /* ... */

6 recipients[i].send(amounts[i]);
7 }}

Figure 1: Bounty contract; payout leaks Ether.

smart contracts when invoked. The bytecode instructions are low-
level and often too complex to be used for directly programming
common logic. Thus, most of smart contracts are written in So-
lidity, a high-level programming language for Ethereum smart
contracts, and later compiled to bytecode and deployed on the
blockchain. In Solidity, a contract can send out its Ether with op-
erations such as send, call, transfer, while it can be killed with
suicide, selfdestruct.

For clarity reasons, in the paper we provide examples of smart
contracts in Solidity. However, we note that all of our analysis
applies to smart contract specified directly in bytecode.

2.2 Contracts with Trace Vulnerabilities

While trace vulnerabilities are a broader class, we focus our at-
tention on three example properties to check of contract traces.
Specifically, we flag contracts which (a) release Ether to arbitrary
addresses carelessly, (b) can be killed by arbitrary addresses, and
(c) have no way to release Ether after a certain execution state.

Note that any characterization of bugs must be taken with a
grain of salt, since one can always argue that the exposed behavior
embodies intent — as was debated in the case of the DAO bug [10].
Our characterization of vulnerabilities is based, in part, on anecdotal
incidents reported publicly [2, 10, 17]. To the best of our knowledge,
however, our characterization is the first to precisely define check-
able properties of such incidents and measure their prevalence.
There are several valid reasons for contracts for being killable or
giving them out to addresses not known at the time of deployment.
For instance, benign contracts such as bounties or games, often
hold funds for long periods of time (until a bounty is awarded)
and release them to addresses that are not known statically. Our
characterization admits these benign behaviors and flags egregious
violations described next, for which we are unable to find justifiable
intent.
Prodigal Contracts. Contracts often return funds to owners (ac-
counts that deployed them), to addresses that have sent Ether to
them in past (e.g., in lotteries), or to addresses that exhibit a specific
solution (e.g., in bounties). However, when a contract gives away
Ether to an arbitrary address, we deem this as a vulnerability. We
are interested in finding such contracts, which we call prodigal.

Consider the Bounty contract with code fragment given in Fig-
ure 1. This contract collects Ether from different sources and re-
wards bounty to a selected set of recipients. The function payout

sends to a list of recipients specified amounts of Ether. From its def-
inition, it is clear that the recipients and the amounts are specified
by the inputs, and anybody can call the function (i.e., the function
does not have a restriction on the sender). Therefore, any user can
invoke this function, and send all of contract’s Ether to addresses
of her choice.

654

https://github.com/MAIAN-tool/MAIAN

Finding The Greedy, Prodigal, and Suicidal Contracts at Scale ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

1 function initMultiowned(address [] _owners ,

2 uint _required){

3 if (m_numOwners > 0) throw;
4 m_numOwners = _owners.length + 1;

5 m_owners [1] = uint(msg.sender);
6 m_ownerIndex[uint(msg.sender)] = 1;

7 m_required = _required;

8 /* ... */

9 }

10

11 function kill(address _to) {

12 uint ownerIndex = m_ownerIndex[uint(msg.sender)];
13 if (ownerIndex == 0) return;
14 var pending = m_pending[sha3(msg.data)];
15 if (pending.yetNeeded == 0) {

16 pending.yetNeeded = m_required;

17 pending.ownersDone = 0;

18 }

19 uint ownerIndexBit = 2** ownerIndex;

20 if (pending.ownersDone & ownerIndexBit == 0) {

21 if (pending.yetNeeded <= 1)

22 suicide(_to);
23 else {

24 pending.yetNeeded --;

25 pending.ownersDone |= ownerIndexBit;

26 }

27 }

28 }

Figure 2: Simplified fragment of ParityWalletLibrary contract,

which can be killed.

The above contract requires a single function invocation to leak
its Ether. However, there are examples of contracts which need two
or more invocations (calls with specific arguments) to cause a leak.
Such examples are presented in Section 5.
Suicidal Contracts. A contract often enables a security fallback
option of being killed by its owner (or trusted addresses) in emer-
gency situations like when being drained of its Ether due to attacks,
or when malfunctioning. However, if a contract can be killed by
any arbitrary account, we consider it vulnerable and call it suicidal.

The recent Parity fiasco[1] is a concrete example of such type
of a contract. A supposedly innocent Ethereum account [34] killed
a library contract on which the main Parity contract relies, thus
rendering the latter non-functional and locking all its Ether. To
understand the suicidal side of the library contract, focus on its
shortened code fragment given in Figure 2. To kill the contract, an
arbitrary account invokes two different contract functions: one to
set the ownership,2 and one to actually kill it. That is, the account
first calls initMultiowned, providing empty array for _owners, and
zero for _required. (This effectively means that the contract has no
owners and that nobody has to agree to execute a specific contract
function.) Then the account invokes the contract function kill.
This function needs _required number of owners to agree to kill the
contract, before the actual suicide command at line 22 is executed.
However, since in the previous call to initMultiowned, the value of
_requiredwas set to zero, suicide is executed, and thus the contract
is killed.

2The bug would have been prevented has the function initMultiowned been properly
initialized by the authors.

1 contract AddressReg{

2 address public owner;

3 mapping (address=>bool) isVerifiedMap;

4 function setOwner(address _owner){

5 if (msg.sender ==owner)
6 owner = _owner;

7 }

8 function AddressReg (){ owner = msg.sender; }

9 function verify(address addr){

10 if (msg.sender ==owner)
11 isVerifiedMap[addr] = true;
12 }

13 function deverify(address addr){

14 if (msg.sender ==owner)
15 isVerifiedMap[addr] = false;
16 }

17 function hasPhysicalAddress(address addr)

18 constant returns(bool){
19 return isVerifiedMap[addr];

20 }

21 }

Figure 3: AddressReg contract locks Ether.

Greedy Contracts. We refer to contracts that remain alive and
lock Ether indefinitely, allowing it be released under no condi-
tions, as greedy. In the example of the Parity contract, many other
multisigWallet-like contracts which held Ether, used functions
from the Parity library contract to release funds to their users. Af-
ter the Parity library contracts was killed, the wallet contracts could
no longer access the library, thus became greedy. This vulnerability
resulted in locking of $200M US worth of Ether indefinitely!

Greedy contracts can arise out of more direct errors as well.
The most common such errors occur in contracts that accept Ether
but either completely lack instructions that send Ether out (e.g.
bytecode instructions corresponding to send, call, transfer), or
such instructions are not reachable. An example of contract that
lacks instructions that release Ether, that has already locked Ether
is given in Figure 3.
Posthumous Contracts. When a contract is killed, its code and
global variables are cleared from the blockchain, thus preventing
any further execution of its code. However, all killed contracts
continue to receive transactions. Although such transactions can
no longer invoke the code of the contract, if Ether is sent along
them, it is added to the contract balance, and similarly to the above
case, it is locked indefinitely. Killed contract or contracts that do
not contain any code, but have non-zero Ether we call posthumous.
It is the onus of the sender to check if the contract is alive before
sending Ether, and evidence shows that this is not always the case.
Because posthumous contracts require no further static analysis
beyond that for identifying suicidal contracts, we do not treat this
as a separate class of bugs. We merely list all posthumous contracts
on the live Ethereum blockchain we have found in Section 5.

2.3 Our Approach

Each run of the contract, called an invocation, may exercise an
execution path in the contract code under a given input context.
Note that prior works have considered bugs that are properties of
one invocation, ignoring the chain of effects across a trace of invo-
cations [7, 26, 27, 30, 31, 39]. We develop a tool that uses systematic

655

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nikolić et al.

07/02/2018 tool - Vectr

https://vectr.com/ashgeek/b4JRQBQTAY 1/1

Symbolic
 Analysis

Sample Exploit

Concrete
Validation

Bytecode

 Analysis
Specifications

Result

Maian

Figure 4: Maian

techniques to find contracts that violate specific properties of traces.
The violations are either:
(a) of safety properties, asserting that there exists a trace from a

specified blockchain state that causes the contract to violate
certain conditions; and

(b) of liveness properties, asserting whether some actions cannot
be taken in any execution starting from a specified blockchain
state.

We formulate the three kinds of vulnerable contracts as these safety
and liveness trace properties in Section 3. Our technique of finding
vulnerabilities, implemented as a tool called Maian and described
in Section 4, consists of two major components: symbolic analysis
and concrete validation. The symbolic analysis component takes
contract bytecode and analysis specifications as inputs. The specifi-
cations include vulnerability category to search for and depth of the
search space, which further we refer to as invocation depth, along
with a few other analysis parameters we outline in Section 4. To
develop our symbolic analysis component, we implement a custom
Ethereum Virtual Machine, which facilitates symbolic execution
of contract bytecode [33]. With every contract candidate, our com-
ponent runs possible execution traces symbolically, until it finds a
trace which satisfies a set of predetermined properties. The input
context to every execution trace is a set of symbolic variables. Once
a contract is flagged, the component returns concrete values for
these variables. Our final step is to run the contract concretely and
validate the result for true positives; this step is implemented by our
concrete validation component. The component takes the inputs
generated by symbolic analysis component and checks the exploit
of the contract on a private fork of Ethereum blockchain. Essen-
tially, it is a testbed environment used to confirm the correctness of
the bugs. As a result, at the end of validation the candidate contract
is determined as true or false positive, but the contract state on
main blockchain is not affected since no changes are committed to
the official Ethereum blockchain.

3 TRACE VULNERABILITIES

We consider three types of bugs in smart contracts which are ex-
ploitable via execution traces and which belong to two standard
categories. The first category regards a contract buggy with respect
to a certain class of unwelcome high-level scenarios (e.g., “leaking”
funds) if some of its finite execution traces fail to satisfy a certain
condition. Trace properties characterised this way are traditionally

regarded as safety, meaning that “during the execution nothing
bad happens”. The second category is related to contracts where
proving the absence of some other high-level bugs requires estab-
lishing a statement of a different kind, namely, “something good
must eventually happen”. Such properties are known as liveness
and require reasoning about progress in executions.

In this section, we introduce the execution model of Ethereum
smart contracts and define the three types of bugs.

3.1 EVM Semantics and Traces

In Ethereum, a smart contract is identified by its 160-bit address.
For each contract, the blockchain stores its three distinguished
fields: balance represents the amount of Ether in possession, code
specifies the program logic of the contract in bytecode, and storage
is allocated to save global variables of the program.

The code field is immutable3 – once a contract is deployed on
the blockchain its logic cannot be updated. Its bytecode is run
on Ethereum Virtual Machine (EVM), a stack-based execution run-
time [43]. Different source languages compile to the EVM semantics,
the predominant of them being Solidity [42]. A run of the code,
i.e., invocation of the smart contract, is triggered by initiating a
transaction (a call) with a message to a contract, referred to via its
address, so the message’s payload includes input arguments for the
contract’s call and a fee (known as gas) [43]. The mining network
executes replicated instances of the contract code and agrees on the
outputs of the invocation via the standard blockchain consensus
protocol, i.e., Nakamoto consensus [32, 36]. The result of the com-
putation is replicated via the blockchain and grants a transaction
fee to the miners as per block reward rates established periodically.
Contracts can invoke other contracts via message calls usually im-
plemented as the bytecode instruction CALL; outputs of these calls,
considered to be a part of the same transaction, are returned to
the caller during the runtime. The invoked contracts can find their
CALLER, i.e., they have access to the account (contract) that sends
the transaction (message call), and CALLVALUE, i.e., the amount of
sent Ether.

During the execution of the bytecode, the EVM may change
the contract storage, i.e., the values of the global variables used in
the bytecode. If the execution successfully completes, the updated
storage is written to the blockchain. Thus the field storage is muta-
ble; its value can change according to properly executed bytecode
instructions. The execution of a bytecode is proper, if it reaches
the instructions STOP or RETURN. On the other hand, the execution
may "throw" if it reaches a non-existing instruction code or invalid
jump destination. In such a case, it terminates and all the global
updates are reverted.

The balance of a contract can be read by anyone, but it is updated
via calls to and from other contracts (i.e., by executing the CALL
instruction) or via transactions send to the contract. Contracts
live perpetually unless they are explicitly terminated (or killed)
by executing the SUICIDE bytecode instruction, which clears their
storage and code fields from the blockchain, and sends their balance
to an account specified as a parameter of the instruction.

When alive, contracts can be invoked many times. Further we
consider contract invocations via transactions, i.e., an externally

3The code field may change only if a contract is killed – see further.

656

Finding The Greedy, Prodigal, and Suicidal Contracts at Scale ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

owned account sends a transaction (with possibly non-zero Ether
amount) to the contract address. The transaction contains some
data which is passed as an input to the the contract’s code. When
such a transaction is mined, it gets executed by the EVM. This
engine takes the contract’s code, the provided input data, as well
as the storage of the contract. It executes the code and, if properly,
writes the updated values of the contract’s storage, possibly clears
its code field if the contract is killed, and it updates all balance fields
(of all accounts to which the contract sent Ether according to the
executed instructions) on the blockchain.

It is critical to understand that a contract invocation depends
as well on the storage of the contract. Hence, we reason about the
security of contracts not only depending on their code, but on their
value of the blockchain. Thus we talk about blockchain state σ (C)
of a contract C , i.e., the value of its three fields on the blockchain.

Finally, instead of focusing on a single invocation, we can talk
about a trace of invocations, i.e., a consecutive sequence of transac-
tions, invoking calls to a contract from the same Ethereum account
(caller). An invocation depth of a trace is the number of transactions
in the trace. Below, we focus on the traces whose all transactions
are from the same caller, and are mined one after another and that
there are no other transactions (from other callers) mined in be-
tween. Zero-Ether traces are composed of transactions that do not
send any Ether.

3.2 Safety Violations

Given the notion of contract traces we can define the first two types
of vulnerable smart contracts, namely prodigal and suicidal. The
two bugs are due to safety violations, i.e., execution of specially
constructed traces reach bytecode instructions that violate certain
properties expected from secure smart contracts.

Definition 3.1 (Prodigal contracts). A contract C at blockchain
state σ (C) is called prodigal if an arbitrary account A can send a
zero-Ether trace to C , which when executed results in transfer of
Ether from the C to A.

In short, prodigal contracts, without receiving, send Ether to
an arbitrary account. (Note, we simulate an arbitrary account by
assuming its address is any fixed 160-bit string A). To detect if a
contract is prodigal, we try to build an execution trace in which
all of the transaction have CALLVALUE = 0 and the last transaction
triggers one of the bytecode instructions that transfer Ether to A.
More specifically, we assume that in all of the transactions the
execution of the last transaction should either:
• reach the CALL instruction with recipient being the transaction
CALLER and the transfer amount non-zero, and afterwards reach a
normal stopping instruction such as STOP or RETURN. This assures
that the contract sends some Ether to A and afterwards does not
throw (otherwise, the whole transaction is ignored and the Ether
transfer is reverted); or

• reach the SUICIDE instruction with recipient being the CALLER.
Such instruction will immediately kill the contract and transfer
all of its funds to A

Definition 3.2 (Suicidal contracts). A contract C at blockchain
state σ (C) is called suicidal if an arbitrary account can send a trace
to C , which when executed, kills the contract.

The definitions of suicidal and prodigal contracts are similar, and
so are their detection techniques. To check if a contract is suicidal,
we try to build a trace where the last transaction has to only reach
the SUICIDE instruction in the bytecode.

3.3 Liveness Violations

A contract at a certain blockchain state is considered locking, if no
execution trace will trigger release of its Ether. Since disproving
liveness properties of this kind with a finite counterexample is
impossible in general, we formulate our definition as an under-
approximation of the property of interest, considering only traces
up to a certain depth:

Definition 3.3 (Greedy contracts). A contractC at blockchain state
σ (C) with a non-zero balance is called k-greedy if execution of any
trace with invocation depth k for C and sent by any account, does
not result in transfer of Ether from C (to any account).

Interestingly, the definition of a greedy contract is dual to the
notion of a prodigal, that is, the contract will not release its Ether
regardless of the sender of the transactions. To detect greedy con-
tracts we show that executions of all traces with up to k invocations
do not reach the instructions that transfer Ether such as CALL.

4 THE ALGORITHM AND THE TOOL

Maian is a symbolic analyzer for smart contract execution traces,
for the properties defined in Section 3. It takes as input a contract in
its bytecode form and contract’s state at concrete block value from
the Ethereum blockchain, flagging contracts with bugs outlined in
Section 2.2. Depending on the category of bugs, Maian either tries
to build or shows an absence of particular type of traces according to
conditions from Section 3. To reason about traces, the tool executes
them symbolically. For the sake of tractability of the analysis, it does
not keep track of the entire blockchain contextσ (including the state
of other contracts), treating only the contract’s transaction inputs
and certain block parameters as symbolic. To reduce the number
of false positives and confirm concrete exploits for vulnerabilities,
Maian calls its concrete validation routine, which we outline in
Section 4.2.

4.1 Symbolic Analysis

Our work concerns finding properties of traces that involve multi-
ple invocations of a contract. We leverage static symbolic analysis
to perform this step in a way that allows reasoning across contract
calls and across multiple blocks. We start our analysis given a con-
tract bytecode and a starting concrete context capturing values of
the blockchain. Maian reasons about values read from input trans-
action fields and block parameters4 in a symbolic way—specifically,
it denotes the set of all concrete values that the input variable can
take as a symbolic variable. It then symbolically interprets the rela-
tionship of other variables computed in the contract as a symbolic
expression over symbolic variables. For instance, the code y := x

+ 4 results in a symbolic value for y if x is a symbolic expression;
otherwise it is executed as concrete value. Conceptually, one can

4Those being CALLVALUE, CALLER, NUMBER, TIMESTAMP, BLOCKHASH, BALANCE, ADDRESS,
and ORIGIN.

657

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nikolić et al.

imagine the analysis as maintaining two memories mapping vari-
ables to values: one is a symbolic memory mapping variables to
their symbolic expressions, the other mapping variables to their
concrete values.
Execution Path Search. The symbolic interpretation searches the
space of all execution paths in a trace with a depth-first search. The
search is a best effort to increase coverage and find property violat-
ing traces. Our goal is neither to be sound, i.e., search all possible
paths at the expense of false positives, nor to be provably complete,
i.e., have only true positives at the expense of coverage [16]. From a
practical perspective, we make design choices that strike a balance
between these two goals.

The symbolic execution starts from the entry point of the con-
tract, and considers all functions which can be invoked externally
as an entry point. More precisely, the symbolic execution starts at
the first instruction in the bytecode, proceeding sequentially until
the execution path ends in terminating instruction. Such instruc-
tion can be valid (e.g., STOP, RETURN), in which case it assumes to
have reached the end of the contract invocations, and thus restart
the symbolic execution again from the first bytecode instruction to
simulate the next invocation. On the other hand, the terminating
instruction can be invalid (e.g., non-existing instruction code or
invalid jump destination), in which case it terminates the search
down this path and backtracks in the depth-first search procedure
to try another path. When execution reaches a branch, Maian con-
cretely evaluates the branch condition if all the variables used in the
conditional expression are concrete. This uniquely determines the
direction for continuing the symbolic execution. If the condition
involves a symbolic expression, Maian queries an external SMT
solver to check for the satisfiability of the symbolic conditional
expression as well as its negation. Here, if the symbolic conditional
expression as well as its negation are satisfiable, both branches
are visited in the depth-first search; otherwise, only the satisfi-
able branch is explored in the depth first search. On occasions, the
satisfiability of the expression cannot be decided in a pre-defined
timeout used by our tool; in such case, we terminate the search
down this path and backtrack in the depth-first search procedure
to try another path. We maintain a symbolic path constraint which
captures the conditions necessary to execute the path being ana-
lyzed in a standard way. Maian implements support for 121 out of
the 133 bytecode instructions in Ethereum’s stack-based low-level
language. More precisely, it supports all but the instructions that
cannot be realized with the symbolic execution engine (for instance,
the CREATE instruction, which deploys a new contract). When the
tool encounters an unsupported instruction, it proceeds on a best
effort basis by stopping exploration of that branch but continues to
explore other contract branches via backtracking.

At a call instruction, control follows transfer to the target. If the
target of the transfer is a symbolic expression,Maian backtracks
in its depth-first search. Calls outside a contract, however, are not
simulated and returns are marked symbolic. Therefore, Maian
depth-first search is inter-procedural, but not inter-contract.
Handling data accesses. The memory mappings, both symbolic
and concrete, record all the contract memory as well blockchain
storage. During the symbolic interpretation, when a global or blockchain
storage is accessed for the first time on a path, its concrete value is
read from the main Ethereum blockchain into local mappings. This

ensures that subsequent reads or writes are kept local to the path
being presently explored.

The EVM machine supports a flat byte-addressable memory, and
each address has a bit-width of 256 bits. The accesses are in 32-byte
sized words which Maian encodes as bit-vector constraints to the
SMT solver. Due to unavailability of source code, Maian does not
have any prior information about higher-level datatypes in the
memory. All types default to 256-bit integers in the encoding used
byMaian. Furthermore,Maian attempts to recover more advanced
types such as dynamic arrays by using the following heuristic: if a
symbolic variable, say x , is used in constant arithmetic to create an
expression (say x + 4) that loads from memory (as an argument to
the CALLDATALOAD instruction), then it detects such an access as a
dynamic memory array access. Here, Maian uses the SMT solver
to generate k concrete values for the symbolic expression, making
the optimistic assumption that the size of the array to be an integer
in the range [0,k]. The parameter k is configurable, and defaults to
2. Apart from this case, whenever accesses in the memory involve
a symbolic address,Maian does not do alias analysis and simply
terminates the explored path, backtracking in its depth-first search.
Handlingnon-deterministic inputs. Contracts have several sources
of non-deterministic inputs such as the block timestamp, etc. While
these are treated as symbolic, they are not exactly under the control
of the external users. Maian does not use their concrete values
because it still needs to reason about invocations of the contract
across multiple invocations, i.e., at different blocks.
Flagging Violations. When the depth-first search in the space
of the contract execution reaches a state where the desired safety
property is violated, it flags the contract as a buggy candidate.
The symbolic path constraint, along with the necessary property
conditions, are asserted for satisfiability to the SMT solver. We
use Z3 [9] as our solver, which provides concrete values so satisfy
an input formula. We use these values as the concrete data for
symbolic inputs, including the symbolic transaction data.
Bounding the path search space. Maian takes the following
steps to bound the search in the (potentially infinite) path space.
First, the call depth is limited to the constant called max_call_depth,
which defaults to 3 but can be configured for empirical tests. Second,
we limit the total number of jumps or control transfers on one path
explored to a configurable constant max_cfg_nodes, default set to
60. This is necessary to avoid being stuck in loops, for instance.
Third, we set a timeout of 10 seconds per call to our SMT solver.
Lastly, the total time spent on a contract is limited to configurable
constant max_analysis_time, default set to 300 seconds.
Pruning. To speed up the state search, we implement pruning with
memorization. Whenever the search encounters that the particular
configuration (i.e., contract storage, memory, and stack) has been
seen before, it does not further explore that part of the path space.

4.2 Concrete Validation

In the concrete validation step, Maian creates a private fork of
the original Ethereum blockchain with the last block as the input
context. It then runs the contract with the concrete values of the
transactions generated by the symbolic analysis to check if the
property holds in the concrete execution. If the concrete execu-
tion fails to exhibit a violation of the trace property, we mark the

658

Finding The Greedy, Prodigal, and Suicidal Contracts at Scale ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

contract as a false positive; otherwise, the contract is marked as a
true positive. To implement the validating framework, we added a
new functionality to the official go-ethereum package [15] which
allows us to fork the Ethereum main chain at a block height of our
choice. Once we fork the main chain, we mine on that fork without
connecting to any peers on the Ethereum network, and thus we are
able to mine our own transactions without committing them to the
main chain.
Prodigal Contracts. The validation framework checks if a contract
indeed leaks Ether by sending to it the transactions with inputs
provided by the symbolic analysis engine. The transactions are sent
by one of our accounts created previously. Once the transactions are
executed, the validation framework checks whether the contract
has sent Ether to our account. If a verifying contract does not have
Ether, our framework first sends Ether to the contract and only
then runs the exploit.
Suicidal Contracts. In a similar fashion, the framework checks if
a contract can be killed after executing the transactions provided
by the symbolic analysis engine on the forked chain. Note, once a
contract is killed, its bytecode is reset to ’0x’. Our framework uses
precisely this test to confirm the correctness of the exploit.
Greedy Contracts. A strategy similar to the above two cannot be
used to validate the exploits on contracts that lock Ether. However,
during the bug finding process, our symbolic execution engine
checks firsthand whether a contract accepts Ether. The validation
framework can, thus, check if a contract is true positive by con-
firming that it accepts Ether and does not have CALL, CALLCODE,
DELEGATECALL, or SUICIDE opcodes in its bytecode. In Section 5
we give examples of such contracts.

5 EVALUATION

We analyzed 970, 898 smart contracts, obtained by downloading
the Ethereum blockchain from the first block until block number
4, 800, 000. Ethereum blockchain has only contract bytecodes. To
obtain the original (Solidity) source codes, we refer to the Etherscan
service [13] and obtain source for 9, 825 contracts. Only around 1%
of the contracts have source code, highlighting the utility of Maian
as a bytecode analyzer.

Recall that our concrete validation component can analyze a
contract from a particular block height where the contract is alive
(i.e., initialized, but not killed). To simplify the validation process
for a large number of contracts flagged by the symbolic analysis
component, we perform our concrete validation at block height
of 4, 499, 451, further denoted as BH. At this block height, we find
that most of the flagged contracts are alive, including the Parity
library contract [1] that our tool successfully finds. This contract
was killed at a block height of 4, 501, 969. All contracts existing
on blockchain at a block height of 4, 499, 451 are tested, but only
contracts that are alive at BH are concretely validated.5
Experimental Setup andPerformance.Maian supports parallel
analysis of contracts, and scales linearly in the number of available
cores. We run it on a Linux box, with 64-bit Ubuntu 16.04.3 LTS,
64GB RAM and 40 CPUs Intel(R) Xeon(R) E5-2680 v2@2.80GHz. In
most of our experiments we run the tool on 32 cores. On average,
Maian requires around 10.0 seconds to analyze a contract for the

5We also concretely validate flagged candidates that were killed before BH as well.

Category
#Candidates

flagged

(distinct)

Candidates
without
source

#Validated
% of

true pos-
itives

Prodigal 1504 (438) 1487 1253 97
Suicidal 1495 (403) 1487 1423 99
Greedy 31,201 (1524) 31,045 1083 69
Total 34, 200 (2, 365) 34, 019 3, 759 89

Table 1: Results for invocation depth 3 at block height BH.
Column 1 reports number of flagged contracts, and the dis-

tinct ones among these. Column 2 shows the number of

flagged without source code. Column 3 is the subset we sam-

pled for concrete validation. Column 4 reports true positive

rates; the total here is the average TP rate weighted by the

number of validated contracts.

three aforementioned bugs: 5.5 seconds to check if a contract is
prodigal, 3.2 seconds for suicidal, and 1.3 seconds for greedy.

5.1 Results

Table 1 summarizes the contracts flagged by Maian. Given the
large number of flagged contracts, we select a random subset for
concrete validation, and report on the true positive rates obtained.
We report the number of distinct contracts, calculated by comparing
the hash of the bytecode; however, all percentages are calculated
on the original number of contracts (with duplicates).
Prodigal contracts. Our tool has flagged 1, 504 candidates con-
tracts (438 distinct) which may leak Ether to an arbitrary Ethereum
address, with a true positive rate of around 97%. At block height
BH, 46 of these contracts hold some Ether. The concrete validation
described in Section 4.2 succeeds for exploits for 37 out of 46 —
these are true positives, whereas 7 are false positives. The remain-
ing 2 contracts leak Ether to an address different from the caller’s
address. Note that all of the 37 true positive contracts are alive as
of this writing. For ethical reasons, no exploits were done on the
main blockchain.

Of the remaining 1, 458 contracts which presently do not have
Ether on the public Ethereum blockchain, 24 have been killed and
42 have not been published (as of block height BH). To validate
the remaining alive contracts (in total 1392) on a private fork, first
we send them Ether from our mining account, and find that 1, 183
contracts can receive Ether.6 We then concretely validate whether
these contract leak Ether to an arbitrary address. A total of 1, 156
out of 1, 183 (97.72%) contracts are confirmed to be true positives;
27 (2.28%) are false positives.

For each of the 24 contracts killed by the block height BH, the
concrete validation proceeds as follows. We create a private test
fork of the blockchain, starting from a snapshot at a block height
where the contract is alive. We send Ether to the contract from one
of our addresses address, and check if the contract leaks Ether to
an arbitrary address. We repeat this procedure for each contract,
and find that all 24 candidate contracts are true positives.
Suicidal contracts. Maian flags 1, 495 contracts (403 distinct),
including the ParityWalletLibrary contract, as found susceptible
to being killed by an arbitrary address, with a nearly 99% true
6These are live and we could update them with funds in testing.

659

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nikolić et al.

1 bytes20 prev;

2 function tap(bytes20 nickname) {

3 prev = nickname;

4 if (prev != nickname) {

5 msg.sender.send(this.balance);
6 }

7 }
Figure 5: A prodigal contract.

positive rate. Out of 1, 495 contracts, 1, 398 are alive at BH. Our
concrete validation engine on a private fork of Ethereum confirm
that 1, 385 contracts (or 99.07%) are true positives, i.e., they can
be killed by any arbitrary Ethereum account, while 13 contracts
(or 0.93%) are false positives. The list of true positives includes
the recent ParityWalletLibrary contract which was killed at block
height 4, 501, 969 by an arbitrary account. Of the 1, 495 contracts
flagged, 25 have been killed by BH; we repeat the procedure de-
scribed previously and confirmed all of them as true positives.
Greedy contracts. Our tool flags 31, 201 greedy candidates (1, 524
distinct), which amounts to around 3.2% of the contracts present
on the blockchain. The first observation is that Maian deems all
but these as accepting Ether but having states that release them
(not locking indefinitely). To validate a candidate contract as a true
positive one has to show that the contract does not release/send
Ether to any address for any valid trace. However, concrete valida-
tion may not cover all possible traces, and thus it cannot be used
to confirm if a contract is greedy. Therefore, we take a different
strategy and divide them into two categories:
(i) Contracts that accept Ether, but in their bytecode do not have any

of the instructions that release Ether (such instructions include
CALL, CALLCODE, SUICIDE, or DELEGATECALL).

(ii) Contracts that accept Ether, and in their bytecode have at least
one of CALL, CALLCODE, SUICIDE or DELEGATECALL.
Maian flagged 1, 058 distinct contracts from the first category.

We validate that these contracts can receive Ether (we send Ether to
them in a transaction with input data according to the one provided
by the symbolic execution routine). Our experiments show that
1, 057 out of 1, 058 (e.g., 99.9%) can receive Ether and thus are true
positives. On the other hand, the tool flagged 466 distinct contracts
from the second category, which are harder to confirm by testing
alone. We resort to manual analysis for a subset of these which
have source code. Among these, only 25 have Solidity source code.
With manual inspection we find that none of them are true positive
— some traces can reach the CALL code, butMaian failed to reach
it in its path exploration. The reasons for these are mentioned in
the Section 5.3. By extrapolation (weighted average across 1, 083
validated), we obtain true positive rate among greedy contracts of
approximately 69%.
Posthumous Contracts. Recall that posthumous are contracts
that are dead on the blockchain (have been killed) but still have
non-zero Ether balance. We can find such contracts by querying
the blockchain, i.e., by collecting all contracts without executable
code, but with non-zero balance. We found 853 contracts at a block
height of 4, 800, 000 that do not have any compiled code on the
blockchain but have positive Ether balance. Interestingly, among
these, 294 contracts have received Ether after they became dead.

1 contract Mortal {

2 address public owner;

3 function mortal () {

4 owner = msg.sender;
5 }

6 function kill() {

7 if (msg.sender == owner){

8 suicide(owner);
9 }

10 }

11 }

12 contract Thing is Mortal { /*...*/ }

Figure 6: The prodigal contract Thing, derived from Mortal,
leaks Ether to any address by getting killed.

5.2 Case Studies: True Positives

Apart from examples presented in section 2.2, we now present
true and false positive cases studies. Note that we only present the
contracts with source code for readability. However, the fraction of
flagged contracts with source codes is very low (1%).
Prodigal contracts. In Figure 5, we give an example of a prodigal
contract. Note that the function tap seems to lock Ether since the
condition in line 4, semantically, can never be true. However, the
compiler optimization of Solidity allows this condition to pass when
an input greater than 20 bytes is used to call the function tap. The
EVM always loads 32 bytes from the input data and decodes it
according to the type of argument. In this case, the first 20 bytes of
nickname are assigned to the global variable prev, thus neglecting
the remaining 12 bytes. The error occurs because EVM at line 4,
correctly nullifies the 12 bytes in prev, but not in nickname. Thus if
nickname has non-zero values in these 12 bytes then the inequality is
true. This contract so far has lost 5.0001 Ether to different addresses
on real Ethereum blockchain.

A contract may also leak Ether by getting killed since the se-
mantic of SUICIDE instruction enforce it to send all of its balance
to an address provided to the instruction. In Figure 6, the contract
Thing[29] is inherited from a base contract Mortal. This contract
implements a review system in which public reviews an ongoing
topic. Among others, it has a kill function inherited from its base
contract which is used to send its balance to its owner if its killed.
The function mortal, supposedly a constructor, is misspelled, and
thus anyone can call mortal to become the owner of the contract.
Since the derived contract Thing inherits functions from contract
Mortal, this vulnerability in the base contract allows an arbitrary
Ethereum account to become the owner of the derived contract, to
kill it, and to receive its Ether. Hence, a trace composed of two
functions calls, to mortal and to kill, makes the contract prodigal.
Suicidal contracts. A contract can be killed by exploiting an un-
protected SUICIDE instruction. A trivial example is a public kill
function which hosts this instruction. Sometimes, SUICIDE is pro-
tected by a weak condition, such as in the contract Dividend given in
Figure 7. This contract allows users to buy shares or withdraw their
investment. The logic of withdrawing investment is implemented by
the withdraw function. However, this function has a self_destruct

command which can be executed once the last investment has been

660

Finding The Greedy, Prodigal, and Suicidal Contracts at Scale ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

1 function withdraw () public returns (uint) {

2 Record storage rec = records[msg.sender];
3 uint balance = rec.balance;
4 if (balance > 0) {

5 rec.balance = 0;

6 msg.sender.transfer(balance);
7 Withdrawn(now , msg.sender , balance);
8 }

9 if (now - lastInvestmentTime > 4 weeks) {

10 selfdestruct(funder);
11 }

12 return balance; }

Figure 7: The Dividend contract can be killed by invoking

withdraw if the last investment has been made at least 4

weeks ago.

made more than 4 weeks ago. Hence, if an investor calls this func-
tion after 4 weeks of the last investment, all the funds go to the
owner of the contract and all the records of investors are cleared
from the blockchain. Though the Ether is safe with the owner, there
would be no record of any investment for the owner to return ether
to investors.

In the previous example, one invocation of withdraw function
was sufficient to kill the contract. There are, however, contracts
which require two or more function invocations to be killed, i.e.
they require a trace to be killed. For example, the mentioned Parity
bug requires a trace composed of two function invocations [1]. It
is interesting to note that the bug produced byMaian is slightly
different from the actual bug used to kill the Parity library contract7.
Greedy contracts. The contract SimpleStorage, given in Figure 8,
is an example of a contract that locks Ether indefinitely. When an
arbitrary address sends Ether along with a transaction invoking
the set function, the contract balance increases by the amount of
Ether sent. However, the contract does not have any instruction to
release Ether, and thus locks it on the blockchain.

The payable keyword has been introduced in Solidity recently to
prevent functions from accepting Ether by default, i.e., a function
not associated with payable keyword throws if Ether is sent in a
transaction. However, although this contract does not have any
function associated with the payable keyword, it accepts Ether since
it had been compiled with an older version of Solidity compiler
(with no support for payable).

5.3 Case Studies: False Positives

We manually analyze cases where Maian’s concrete validation
fails to trigger the necessary violation with the produced concrete
values, if source code is available.
Prodigal and Suicidal contracts. In both of the classes, false pos-
itives arise due to two reasons:
(i) The tool performs inter-procedural analysis within a contract,

but does not transfer control in cross-contract calls. For calls
from one contract to a function of another contract, Maian
assigns symbolic variables to the return values. This is imprecise,

7Maian produced simpler inputs to the functions: instead of using one so-called
multi-owner address for approving actions as in the original bug,Maian used zero
multi-owners.

1 contract SimpleStorage {

2 uint storedData; address storedAddress;

3 event flag(uint val , address addr);

4

5 function set(uint x, address y) {

6 storedData = x; storedAddress = y;

7 }

8 function get() constant
9 returns(uint retVal , address retAddr) {

10 return (storedData ,storedAddress);

11 }

12 }

Figure 8: A contract that locks Ether.

1 function confirmTransaction(uint tId)

2 ownerExists(msg.sender) {

3 confirmations[tId][msg.sender] = true;
4 executeTransaction(tId);

5 }

6 function executeTransaction(uint tId) {

7 // In case of majority

8 if (isConfirmed(tId)) {

9 Transaction tx = transactions[tId];

10 tx.executed = true;
11 if (tx.destination.call.value(tx.value) (tx.data))
12 /*....*/

13 }}

Figure 9: False positive, flagged as a greedy contract.

1 function RandomNumber () returns(uint) {

2 /*....*/

3 last =

4 seed^(uint(sha3(block.blockhash(block.number),
5 nonces[msg.sender])) * 0x000b0007000500030001);

6 }

7 function Guess(uint _guess) returns (bool) {

8 if (RandomNumber () == _guess) {

9 if (!msg.sender.send(this.balance)) throw;
10 /*....*/

11 }

12 /*....*/

13 }

Figure 10: False positive, flagged as a prodigal contract.

because real executions may only return a single value (say true)
when the call succeeds.

(ii) Maian may assign values to symbolic variables related to block
state (e.g., blocknumber) in cases where these values are used to
decide the control flow. Thus, we may get false positives because
those values may be different at the concrete validation stage. For
instance, in Figure 10, the _guess value depends on the values of
block parameters, which cannot be forced to take on the concrete
values found by our analyzer.

Greedy contracts. The large share of false positives is attributed
to two causes:
(i) Detecting a trace which leads to release of Ether may need three

or more function invocations. For instance, in Figure 9, the func-
tion confirmTransaction has to be executed by the majority of
owners for the contract to execute the transaction. Our default

661

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nikolić et al.

invocation depth is the reason for missing a possible reachable
state.

(ii) The tool is not able to recover the subtype for the generic bytes
type in the EVM semantics.

(iii) Some contracts release funds only if a random number (usually
generated using transaction and block parameters) matches a
predetermined value unlike in the case of the contract in Fig-
ure 10. In that contract the variable _guess is also a symbolic
variable, hence, the solver can find a solution for condition on
line 7. If there is a concrete value in place of _guess, the solver
times out since the constraint involves a hash function (hard to
invert by the SMT solver).

5.4 Summary and Observations

The symbolic execution engine of Maian flags 34, 200 contracts.
With concrete validation engine or manual inspection, we have
confirmed that around 97% of prodigal, 97% of suicidal and 69% of
greedy contracts are true positive. The importance of analyzing
the bytecode of the contracts, rather than Solidity source code, is
demonstrated by the fact that only 1% of all contracts have source
code. Further, among all flagged contracts, only 181 have verified
source codes according to the widely used platform Etherscan, or
in percentages only 1.06%, 0.47% and 0.49%, in the three categories
of prodigal, suicidal, and greedy, respectively. We refer the reader
to Table 1 for the exact summary of these results.

Furthermore, the maximal amount of Ether that could have been
withdrawn from prodigal and suicidal contracts, before the block
height BH, is nearly 4, 905 Ether, or 3.4million US dollars8 according
to the exchange rate at the time of this writing. In addition, 6, 239
Ether (4.3million US dollars) is locked inside posthumous contracts
currently on the blockchain, of which 313 Ether (216, 000US dollars)
were sent to dead contracts after they have been killed.

Finally, the analysis given in Table 2 shows the number of flagged
contracts for different invocation depths from 1 to 4. We tested
25, 000 contracts being for greedy, and 100, 000 for remaining cate-
gories, inferring that increasing depth improves results marginally,
and an invocation depth of 3 is an optimal tradeoff point. Table 2
clearly shows that reasoning about contract traces, rather than a
single contract invocation, reveals more vulnerabilities of prodigal
and suicidal type. Compared to a single invocation, analysis based
on two invocations detects an additional 10% − 20% contracts with
potential bugs. Besides this quantitative increase, there is as well a
particular qualitative increase of flagged contracts. Specifically, con-
tracts that can be exploited by executing a two-invocation trace on
average tend to be more complex and thus finding the vulnerability
manually requires more effort.

Note, we have contacted the Ethereum Foundation for an ethical
disclosure procedure, and we have given then the full list of found
vulnerable contracts.

6 RELATEDWORK

Security and safety properties of smart contracts have received a lot
of attention since several costly bugs and exploits took place [2, 10].
Dichotomy of smart contract bugs. The majority of the bugs in
Ethereum-style smart contracts are due to the de-facto high-level
8Calculated at 693 USD/ETH [12].

Inv. depth Prodigal Suicidal Greedy
1 131 127 682
2 156 141 682
3 157 141 682
4 157 141 682

Table 2: The table shows number of contracts flagged for var-

ious invocation depths. This analysis is done on a random

subset of 25, 000–100, 000 contracts.

implementation language, Solidity [42], whose runtime behaviour
that diverge from the “intuitive understanding” of the language by
the developers.

The early work by Delmolino et al. [11] distinguishes the fol-
lowing classes of problems: (a) contracts that do not refund their
users, (b) missing encryptions of sensitive user data and (c) lack
of incentives for the users to take certain actions. The property
(a) is the closest to our notion of greedy. While that outlines the
problem and demonstrates it on series of simple examples taught in
a class, they do not provide a systematic approach for detection of
smart contracts prone to this issue. Later works on contract security
identify potential bugs, related to the concurrent transactions [40],
mishandled exceptions [26], overly extensive gas consumption [7]
and implementations of fraudulent financial schemes [5].9

In contrast to all those work, which focus on bad implementation
practices or misused language semantics, we believe, our character-
isation of several classes of contract bugs, such as greedy, prodigal,
etc, is novel, as they are stated in terms of properties execution
traces rather than particular instructions taken/states reached.
Reasoning about smart contracts. Several tools have been pro-
posed to automatic detection of vulnerabilities in smart contracts,
as well as for formal contract verification.

Oyente [26, 33] was the first tool that provided analysis targeting
several specific issues: (a) mishandled exceptions, (b) transaction-
ordering dependence, (c) timestamp dependence and (d) reentrancy [41],
thus remedying the corner cases of Solidity/EVM semantics as well
as some programming anti-patterns.

Other tools for symbolic analysis of EVM and/or Solidity have
been developed more recently:Manticore [27],Mythrill [30, 31],
Securify [39], teEther [25], and KEVM [21, 38], all focusing on
detecting low-level safety violations and vulnerabilities, such as
integer overflows, reentrancy, and unhandled exceptions, etc, nei-
ther of them requiring reasoning about contract execution traces.
While it does not seem impossible to extend all these frameworks
for handling trace-based properties discussed in this work, this
has not been done yet, thus we cannot conduct a formal compari-
son. A very recent work by Grossman et al. [19] similar to our in
spirit and providing a dynamic analysis of execution traces, focuses
exclusively on detecting non-callback-free contracts (i.e., prone to
reentrancy attacks)—a vulnerability that is by now well studied.

Concurrently with our work, Kalra et al. developed Zeus [24],
a framework for automated verification of smart contracts using
abstract interpretation and symbolic model checking, accepting
user-provided policies to verify for. Unlike Maian, Zeus conducts

9See the works [4, 8] for a survey of known contract issues.

662

Finding The Greedy, Prodigal, and Suicidal Contracts at Scale ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

policy checking at a level of LLVM-like intermediate representation
of a contract, obtained from Solidity code, and leverages a suite of
standard tools, such as off-the-shelf constraint and SMT solvers [9,
20, 28]. Although Zeus also flags some contracts as “suicidal” (due to
incorrect uses of selfdestruct), it does not provide a framework for
checking other trace properties, or under-approximating liveness
properties, i.e., for detecting prodigal or greedy contracts.

Various versions of EVM semantics [43] were implemented in
Coq [23], Isabelle/HOL [3, 22], F⋆ [6, 18], Idris [35], and Why3 [14,
37], followed by subsequent mechanised contract verification ef-
forts. However, none of those efforts considered trace properties in
the spirit of what we defined in Section 3.

7 CONCLUSION

We characterize vulnerabilities in smart contracts that are checkable
as properties of an entire execution trace (possibly infinite sequence
of their invocations). We show three examples of such trace vulner-
abilities, leading to greedy, prodigal and suicidal contracts. and built
a symbolic analysis toolMaian to find these. Analyzing 970, 898
contracts, Maian flags thousands of contracts vulnerable at a high
true positive rate. At a scale of nearly one million contracts,Maian
flags thousands of contracts as vulnerable, and successfully gener-
ates exploits for 69–99% of the subset we sample for validation.

ACKNOWLEDGMENTS

We thank Shruti Tople, Loi Luu, Shweta Shinde, Muoi Tran, Andreea
Costea, Teodora Baluta, and the anonymous reviewers of the paper
for their feedback. Ivica Nikolić is supported by the Ministry of
Education, Singapore under Grant No. R-252-000-560-112. Aquinas
Hobor was partially supported by Yale-NUS College grant R-607-
265-322-121. This work is supported in part by the Crystal center
at the National University of Singapore.

REFERENCES

[1] Anthony Akentiev. 2018. Parity Multisig Github. https://github.com/paritytech/
parity/issues/6995

[2] JD Alois. 2017. Ethereum Parity Hack May Impact ETH 500,000 or $146 Million.
[3] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards

Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL. In CPP. ACM,
66–77.

[4] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts (SoK). In POST (LNCS), Vol. 10204. Springer, 164–
186.

[5] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia. 2017.
Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact.
CoRR abs/1703.03779 (2017).

[6] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. Formal
Verification of Smart Contracts: Short Paper. In PLAS. ACM, 91–96.

[7] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized
smart contracts devour your money. In IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering, SANER. 442–446.

[8] ConsenSys Diligence. 2018. Ethereum Smart Contract Security Best Practices.
https://consensys.github.io/smart-contract-best-practices

[9] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In TACAS (LNCS), Vol. 4963. Springer, 337–340.

[10] Michael del Castillo. June 17, 2016. The DAO Attacked: Code Issue Leads to $60
Million Ether Theft.

[11] Kevin Delmolino, Mitchell Arnett, Ahmed E. Kosba, Andrew Miller, and Elaine
Shi. 2016. Step by Step Towards Creating a Safe Smart Contract: Lessons and
Insights from a Cryptocurrency Lab. In FC 2016 International Workshops (LNCS),
Vol. 9604. Springer, 79–94.

[12] Etherscan 2018. https://etherscan.io/

[13] Etherscan verified source codes 2018. Etherscan verified source codes. https:
//etherscan.io/contractsVerified

[14] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where Programs
Meet Provers. In ESOP (LNCS), Vol. 7792. Springer, 125–128.

[15] Go-ethereum 2018. https://github.com/ethereum/go-ethereum
[16] Patrice Godefroid. 2011. Higher-order Test Generation. In PLDI. ACM, 258–269.
[17] Governmental bug 2018. GovernMental’s 1100ETH jackpot payout is stuck

because it uses too much gas. https://www.reddit.com/r/ethereum/comments/
4ghzhv/

[18] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. In POST
(LNCS), Vol. 10804. Springer, 243–269.

[19] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online detection of effectively
callback free objects with applications to smart contracts. PACMPL 2, POPL
(2018), 48:1–48:28.

[20] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.
2015. The SeaHorn Verification Framework. In CAV, Part I (LNCS), Vol. 9206.
Springer, 343–361.

[21] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip
Daian, Dwight Guth, Daejun Park, Yi Zhang, Brandon Moore, and Grigore Rosu.
2018. KEVM: A Complete Semantics of the Ethereum Virtual Machine. In CSF.
IEEE. To appear.

[22] Yoichi Hirai. 2017. Defining the Ethereum Virtual Machine for Interactive The-
orem Provers. In 1st Workshop on Trusted Smart Contracts (LNCS), Vol. 10323.
Springer, 520–535.

[23] Yoichi Hirai. 2017. Ethereum Virtual Machine for Coq (v0.0.2). Published online
on 5 March 2017. https://goo.gl/DxYFwK

[24] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:
Analyzing Safety of Smart Contracts. In NDSS. To appear.

[25] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum
to Automatically Exploit Smart Contracts. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 1317–1333. https:
//www.usenix.org/conference/usenixsecurity18/presentation/krupp

[26] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. In CCS. ACM, 254–269.

[27] Manticore 2018. https://github.com/trailofbits/manticore
[28] Kenneth L. McMillan. 2007. Interpolants and Symbolic Model Checking. In

VMCAI (LNCS), Vol. 4349. Springer, 89–90.
[29] Mortal 2018. Contract mortal. https://etherscan.io/address/

0x4671ebe586199456ca28ac050cc9473cbac829eb#code
[30] Bernhard Mueller. January 2018. How Formal Verification Can Ensure Flawless

Smart Contracts. https://goo.gl/9wUFE1
[31] Mythril 2018. https://github.com/b-mueller/mythril/
[32] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. http:

//bitcoin.org/bitcoin.pdf
[33] Oyente 2018. Oyente: An Analysis Tool for Smart Contracts. https://github.

com/melonproject/oyente
[34] Parity bug 2018. The guy who blew up Parity didn’t know what he was doing.

https://www.reddit.com/r/CryptoCurrency/comments/7beos3/
[35] Jack Pettersson and Robert Edström. 2016. Safer Smart Contracts through Type-

Driven Development. Master’s thesis. Chalmers University of Technology, Swe-
den.

[36] George Pîrlea and Ilya Sergey. 2018. Mechanising blockchain consensus. In CPP.
ACM, 78–90.

[37] Christian Reitwiessner. 2015. Formal Verification for Solidity Contracts. https://
forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts

[38] Grigore Rosu. December 2017. ERC20-K: Formal Executable Specification of
ERC20. https://runtimeverification.com/blog/?p=496

[39] Securify 2018. Securify: Formal Verification of Ethereum Smart Contracts. http:
//securify.ch/

[40] Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart
Contracts. In 1stWorkshop on Trusted Smart Contracts (LNCS), Vol. 10323. Springer,
478–493.

[41] Emin Gün Sirer. 2016. Reentrancy Woes in Smart Contracts. http://
hackingdistributed.com/2016/07/13/reentrancy-woes/

[42] Solidity 2018. Solidity: High-Level Language for Implementing Smart Contracts.
http://solidity.readthedocs.io/

[43] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. https://ethereum.github.io/yellowpaper/paper.pdf

663

https://github.com/paritytech/parity/issues/6995
https://github.com/paritytech/parity/issues/6995
https://consensys.github.io/smart-contract-best-practices
https://etherscan.io/
https://etherscan.io/contractsVerified
https://etherscan.io/contractsVerified
https://github.com/ethereum/go-ethereum
https://www.reddit.com/r/ethereum/comments/4ghzhv/
https://www.reddit.com/r/ethereum/comments/4ghzhv/
https://goo.gl/DxYFwK
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://github.com/trailofbits/manticore
https://etherscan.io/address/0x4671ebe586199456ca28ac050cc9473cbac829eb#code
https://etherscan.io/address/0x4671ebe586199456ca28ac050cc9473cbac829eb#code
https://goo.gl/9wUFE1
https://github.com/b-mueller/mythril/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/melonproject/oyente
https://github.com/melonproject/oyente
https://www.reddit.com/r/CryptoCurrency/comments/7beos3/
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://runtimeverification.com/blog/?p=496
http://securify.ch/
http://securify.ch/
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
http://solidity.readthedocs.io/
https://ethereum.github.io/yellowpaper/paper.pdf

