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ABSTRACT
Neural networks are increasingly employed in safety-critical do-
mains. This has prompted interest in verifying or certifying logically
encoded properties of neural networks. Prior work has largely fo-
cused on checking existential properties, wherein the goal is to
check whether there exists any input that violates a given property
of interest. However, neural network training is a stochastic process,
and many questions arising in their analysis require probabilistic
and quantitative reasoning, i.e., estimating how many inputs sat-
isfy a given property. To this end, our paper proposes a novel and
principled framework to quantitative verification of logical prop-
erties specified over neural networks. Our framework is the first
to provide PAC-style soundness guarantees, in that its quantitative
estimates are within a controllable and bounded error from the
true count. We instantiate our algorithmic framework by building a
prototype tool called NPAQ1that enables checking rich properties
over binarized neural networks. We show how emerging security
analyses can utilize our framework in 3 applications: quantifying
robustness to adversarial inputs, efficacy of trojan attacks, and
fairness/bias of given neural networks.
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1 INTRODUCTION
Neural networks are witnessing wide-scale adoption, including in
domains with the potential for a long-term impact on human soci-
ety. Examples of these domains are criminal sentencing [1], drug
discovery [87], self-driving cars [11], aircraft collision avoidance
systems [48], robots [10], and drones [37]. While neural networks
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achieve human-level accuracy in several challenging tasks such
as image recognition [43, 50, 80] and machine translation [8, 79],
studies show that these systems may behave erratically in the
wild [7, 12, 28, 31, 61, 62, 73, 83, 85].

Consequently, there has been a surge of interest in the design
of methodological approaches to verification and testing of neural
networks. Early efforts focused on qualitative verification wherein,
given a neural network N and property P , one is concerned with
determining whether there exists an input I to N such that P is
violated [23, 26, 45, 49, 58, 65, 68, 72]. While such certifiability tech-
niques provide value, for instance in demonstrating the existence of
adversarial examples [39, 62], it is worth recalling that the designers
of neural network-based systems often make a statistical claim of
their behavior, i.e., a given system is claimed to satisfy properties
of interest with high probability but not always. Therefore, many
analyses of neural networks require quantitative reasoning, which
determines how many inputs satisfy P.

It is natural to encode properties as well as conditions on inputs
or outputs as logical formulae. We focus on the following formu-
lation of quantitative verification: Given a set of neural networks
N and a property of interest P defined over the union of inputs
and outputs of neural networks in N , we are interested in esti-
mating how often P is satisfied. In many critical domains, client
analyses often require guarantees that the computed estimates be
reasonably close to the ground truth. We are not aware of any prior
approaches that provide such formal guarantees, though the need
for quantitative verification has recently been recognized [89].
Security Applications. Quantitative verification enables many
applications in security analysis (and beyond) for neural networks.
We present 3 applications in which the following analysis questions
can be quantitatively answered:

• Robustness: How many adversarial samples does a given
neural network have? Does one neural network have more
adversarial inputs compared to another one?

• Trojan Attacks: A neural network can be trained to classify
certain inputs with “trojan trigger” patterns to the desired
label. How well-poisoned is a trojaned model, i.e., how many
such trojan inputs does the attack successfully work for?

• Fairness: Does a neural network change its predictions signifi-
cantly when certain input features are present (e.g., when the
input record has gender attribute set to “female” vs. “male”)?

∗Part of the research done while working at National University of Singapore.
1The name stands forNeural PropertyApproximateQuantifier. Code and benchmarks
are available at https://teobaluta.github.io/npaq/
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Note that such analysis questions boil down to estimating how
often a given property over inputs and outputs is satisfied. Esti-
mating counts is fundamentally different from checking whether
a satisfiable input exists. Since neural networks are stochastically
trained, the mere existence of certain satisfiable inputs is not un-
expected. The questions above checks whether their counts are
sufficiently large to draw statistically significant inferences. Sec-
tion 3 formulates these analysis questions as logical specifications.
Our Approach. The primary contribution of this paper is a new
analysis framework, which models the given set of neural networks
N and P as set of logical constraints, φ, such that the problem of
quantifying how oftenN satisfies P reduces to model counting over
φ. We then show that the quantitative verification is #P-hard. Given
the computational intractability of #P , we seek to compute rigorous
estimates and introduce the notion of approximate quantitative
verification: given a prescribed tolerance factor ε and confidence
parameter δ , we estimate how often P is satisfied with PAC-style
guarantees, i.e., the computed result is within a multiplicative (1+ε)
factor of the ground truth with confidence at least 1 − δ .

Our approach works by encoding the neural network into a logi-
cal formula in conjunctive normal form (CNF). The key to achieving
soundness guarantees is our new notion of equicardinality, which
defines a principled way of encoding neural networks into a CNF
formula F , such that quantitative verification reduces to counting
the satisfying assignments of F projected to a subset of the support
of F . We then use approximate model counting on F , which has
seen rapid advancement in practical tools that provide PAC-style
guarantees on counts for F . The end result is a quantitative verifi-
cation procedure for neural networks with soundness and precision
guarantees.

While our framework is more general, we instantiate our analy-
sis framework with a sub-class of neural networks called binarized
neural networks (or BNNs) [46]. BNNs are multi-layered percep-
trons with +/-1 weights and step activation functions. They have
been demonstrated to achieve high accuracy for a wide variety of
applications [51, 56, 70]. Due to their small memory footprint and
fast inference time, they have been deployed in constrained environ-
ments such as embedded devices [51, 56]. We observe that specific
existing encodings for BNNs adhere to our notion of equicardinality
and implement these in a new tool called NPAQ. We provide proofs
of key correctness and composability properties of our general
approach, as well as of our specific encodings. Our encodings are
linear in the size of N and P .
Empirical Results. We show that NPAQ scales to BNNs with
1− 3 internal layers and 20− 200 units per layer. We use 2 standard
datasets namely MNIST and UCI Adult Census Income dataset. We
encode a total of 84 models with 4, 692 − 53, 010 parameters, into
1, 056 formulae and quantitatively verify them.NPAQ encodes prop-
erties in less than a minute and solves 97.1% formulae in a 24-hour
timeout. Encodings scale linearly in the size of the models, and its
running time is not dependent on the true counts. We showcase
how NPAQ can be used in diverse security applications with case
studies. First, we quantify the model robustness by measuring how
many adversarially perturbed inputs are misclassified, and then
the effectiveness of 2 defenses for model hardening with adversar-
ial training. Next, we evaluate the effectiveness of trojan attacks

outside the chosen test set. Lastly, we measure the influence of 3
sensitive features on the output and check if the model is biased
towards a particular value of the sensitive feature.
Contributions.We make the following contributions:

• New Notion.We introduce the notion of approximate quan-
titative verification to estimate how often a property P is
satisfied by the neural net N with theoretically rigorous
PAC-style guarantees.

• Algorithmic Approach, Tool, & Security Applications. We pro-
pose a principled algorithmic approach for encoding neural
networks to CNF formula that preserve model counts. We
build an end-to-end tool called NPAQ that can handle BNNs.
We demonstrate security applications of NPAQ in quantify-
ing robustness, trojan attacks, and fairness.

• Results. We evaluate NPAQ on 1, 056 formulae derived from
properties over BNNs trained on two datasets. We show that
NPAQ presently scales to BNNs of over 50, 000 parameters,
and evaluate its performance characteristics with respect to
different user-chosen parameters.

2 PROBLEM DEFINITION
Definition 2.1. LetN = { f1, f2, . . . , fm } be a set ofm neural nets,

where each neural net fi takes a vector of inputs xi and outputs a
vector yi, such that yi = fi (xi). Let P : {x∪ y} → {0, 1} denote the

property P over the inputs x =
m⋃
i=1

xi and outputs y =
m⋃
i=1

yi. We

define the specification of property P overN as φ(x, y) = (
m∧
i=1

(yi =

fi (xi)) ∧ P(x, y)).

We show several motivating property specifications in Section 3.
For the sake of illustration here, consider N = { f1, f2} be a set of
two neural networks that take as input a vector of three integers
and output a 0/1, i.e., f1 : Z3 → {0, 1} and f2 : Z3 → {0, 1}. We
want to encode a property to check the dis-similarity between f1
and f2, i.e., counting for how many inputs (over all possible inputs)
f1 and f2 produce differing outputs. The specification is defined
over the inputs x = [x1,x2,x3], outputs y1 = f1(x) and y2 = f2(x)
as φ(x,y1,y2) = (f1(x) = y1 ∧ f2(x) = y2 ∧ y1 , y2).

Given a specification φ for a property P over the set of neural
netsN , a verification procedure returns r = 1 (SAT) if there exists a
satisfying assignment τ such that τ |= φ, otherwise it returns r = 0
(UNSAT). A satisfying assignment for φ is defined as τ : {x∪ y} →
{0, 1} such that φ evaluates to true, i.e., φ(τ ) = 1 or τ |= φ.

While the problem of standard (qualitative) verification asks
whether there exists a satisfying assignment to φ, the problem of
quantitative verification asks how many satisfying assignments φ
admits. We denote the set of satisfying assignments for the specifi-
cation φ as R(φ) = {τ : τ |= φ}.

Definition 2.2. Given a specification φ for a property P over the
set of neural netsN , a quantitative verification procedure, NQV(φ),
returns the number of satisfying assignments of φ, r = |R(φ)|.

It is worth noting that |R(φ)| may be intractably large to compute
via naïve enumeration. For instance, we consider neural networks
with hundreds of bits as inputs for which the unconditioned input



space is 2 |x | . In fact, we prove that quantitative verification is #P-
hard, as stated below.

Theorem 2.3. NQV(φ) is #P-hard, where φ is a specification for a
property P over binarized neural nets.

Our proof is a parsimonious reduction of model counting of CNF
formulas, #CNF, to quantitative verification of binarized neural
networks. We show how an arbitrary CNF formula F can be trans-
formed into a binarized neural net fi and a property P such that for
a specification φ for P overN = { fi }, it holds true that R(F) = R(φ).
See Appendix A.2 for the full proof.

Remark 1. The parsimonious reduction from #CNF to NQV im-
plies that fully polynomial time randomized approximation schemes,
including those based on Monte Carlo, cannot exist unless NP=RP.

The computational intractability of #P necessitates a search for
relaxations of NQV. To this end, we introduce the notion of an ap-
proximate quantitative verifier that outputs an approximate count
within ϵ of the true count with a probability greater than 1 − δ .

Definition 2.4. Given a specification φ for a property P over a
set of neural nets N , 0 < ϵ ≤ 1 and 0 < δ ≤ 1, an approximate
quantitative verification procedure (ϵ,δ )-NQV(φ, ϵ,δ ) computes r
such that Pr [(1 + ϵ)−1 |R(φ)| ≤ r ≤ (1 + ϵ)|R(φ)|] ≥ 1 − δ .

The security analyst can set the “confidence” parameter δ and
the precision or “error tolerance” ϵ as desired. The (ϵ,δ )-NQV defi-
nition specifies the end guarantee of producing estimates that are
statistically sound with respect to chosen parameters (ϵ,δ ).
Connection to Computing Probabilities. Readers can naturally
interpret |R(φ)| as a measure of probability. Consider N to be a set
of functions defined over input random variables x. The property
specification φ defines an event that conditions inputs and outputs
to certain values, which the user can specify as desired. The mea-
sure |R(φ)| counts how often the event occurs under all possible
values of x. Therefore, |R(φ) |

2|x| is the probability of the event defined
by φ occurring. Our formulation presented here computes |R(φ)|
weighting all possible values of x equally, which implicitly assumes
a uniform distribution over all random variables x. Our framework
can be extended to weighted counting [14, 15], assigning differ-
ent user-defined weights to different values of x, which is akin to
specifying a desired probability distributions over x. However, we
consider this extension as a promising future work.

3 SECURITY APPLICATIONS
We present three concrete application contexts which highlight
how quantitative verification is useful to diverse security analyses.
The specific property specifications presented here derived directly
from recent works, highlighting that NPAQ is broadly applicable
to analysis problems actively being investigated.
Robustness. An adversarial example for a neural network is an in-
put which under a small perturbation is classified differently [39, 81].
The lower the number of adversarial examples, the more “robust”
the neural network. Early work on verifying robustness aimed at
checking whether adversarial inputs exist. However, recent works
suggest that adversarial inputs are statistically “not surprising” [7,
30, 85] as they are a consequence of normal error in statistical

classification [20, 35, 36, 55]. This highlights the importance of an-
alyzing whether a statistically significant number of adversarial
examples exist, not just whether they exist at all, under desired
input distributions. Our framework allows the analyst to specify a
logical property of adversarial inputs and quantitatively verify it.
Specifically, one can estimate how many inputs are misclassified
by the net (f ) and within some small perturbation distance k from
a benign sample (xb) [13, 61, 62], by encoding the property P1 in
our framework as:

P1(x, y, xb, yb,k) =
|x |∑
j=1

(xb[j] ⊕ x[j]) ≤ k ∧ yb , y (P1)

As a concrete usage scenario, our evaluation reports on BNNs for
image classification (Section 6.2). Even for a small given input
(saym bits), the space of all inputs within a perturbation of k bits
is

(m
k
)
, which is too large to check for misclassification one-by-

one. NPAQ does not enumerate and yet can estimate adversarial
input counts with PAC-style guarantees (Section 6.2). As we permit
larger perturbation, as expected, the number of adversarial samples
monotonically increase, and NPAQ can quantitatively measure how
much. Further, we show how one can directly compare robustness
estimates for two neural networks. Such estimates may also be used
to measure the efficacy of defenses. Our evaluation on 2 adversarial
training defenses shows that the hardened models show lesser
robustness than the plain (unhardened) model. Such analysis can
help to quantitatively refute, for instance, claims that BNNs are
intrinsically more robust, as suggested in prior work [32].
Trojan Attacks. Neural networks, such as for facial recognition
systems, can be trained in a way that they output a specific value,
when the input has a certain “trojan trigger” embedded in it [54].
The trojan trigger can be a fixed input pattern (e.g., a sub-image)
or some transformation that can be stamped on to a benign image.
One of the primary goals of the trojan attack is to maximize the
number of trojaned inputs which are classified as the desired target
output, lattack. NPAQ can quantify the number of such inputs for a
trojaned network, allowing attackers to optimize for this metric. To
do so, one can encode the set of trojaned inputs as all those inputs
x which satisfy the following constraint for a given neural network
f , trigger t, lattack and the (pixel) location of the triggerM :

P2(x, y, t, lattack,M) =
∧
j ∈M

(x[j] = t[j]) ∧ y = lattack (P2)

Section 6.3 shows an evaluation on BNNs trained on the MNIST
dataset. Our evaluation demonstrates that the attack accuracy on
samples from the test set can differ significantly from the total set
of trojaned inputs specified as in property P2.
Fairness. The right notion of algorithmic fairness is being widely
debated [19, 24, 29, 41, 91]. Our framework can help quantitatively
evaluate desirable metrics measuring “bias” for neural networks.
Consider a scenario where a neural network f is used to predict
the recommended salary for a new hire in a company. Having
been trained on public data, one may want to check whether f
makes biased predictions based on certain sensitive features such
as race, gender, or marital status of the new hire. To verify this,
one can count how often f proposes a higher salary for inputs
when they have a particular sensitive feature (say “gender”) set to



certain values (say “male”), given all other input features the same.
Formally, this property can be encoded for given sensitive features
denoted by set S along with two concrete sensitive values s1, s2, as:

P3(x1, x2, y1, y2, S, s1, s2) =
∧
i ∈S

(x1[i] = s1[i])∧
i ∈S

(x2[i] = s2[i])
∧
i<S

(x1[i] = x2[i]) ∧ y1 = y2
(P3)

Notice the NPAQ counts over all possible inputs where the non-
sensitive features remain equal, but only the sensitive features
change, which causes no change in prediction. An unbiased model
would produce a very high count, meaning that for most inputs (or
with high probability), changing just the sensitive features results
in no change in outputs. A follow-up query one may ask is whether
inputs having different values for the sensitive features and all
other values the same, determine an increases (or decreases) of the
output salary prediction. This can be encoded as property P4 (or P5)
below.

P4(x1, x2, y1, y2, S, s1, s2) =
∧
i ∈S

(x1[i] = s1[i])∧
i ∈S

(x2[i] = s2[i])
∧
i<S

(x1[i] = x2[i]) ∧ y2 − y1 > 0
(P4)

P5(x1, x2, y1, y2, S, s1, s2) =
∧
i ∈S

(x1[i] = s1[i])∧
i ∈S

(x2[i] = s2[i])
∧
i<S

(x1[i] = x2[i]) ∧ y2 − y1 < 0
(P5)

NPAQ can be used to quantitatively verify such properties, and
compare models before deploying them based on such estimates.
Section 6.4 presents more concrete evaluation details and interpre-
tation of BNNs trained on the UCI Adult dataset [2].

4 APPROACH
Recall that exact counting (as defined in NQV) is #P-hard. Even
for approximate counting, many widely used sampling-based ap-
proaches, such as based on Monte Carlo methods [40, 42, 47, 60], do
not provide soundness guarantees since existence of a method that
only requires polynomially many samples computable in (random-
ized) polynomial time would imply NP = RP (See Remark 1). For
sound estimates, it is well-known that many properties encodable
in our framework require intractably large number of samples—for
instance, to check for distributional similarity of two networks f1
and f2 in the classical model, a lower bound ofO(

√
2x) samples are

needed to obtain estimates with reasonable (ϵ,δ ) guarantees. How-
ever, approximate counting for boolean CNF formulae has recently
become practical. These advances combine the classical ideas of
universal hashing with the advances in the Boolean satisfiability
by invoking SAT solvers for NP queries, i.e., to obtain satisfiable
witnesses for queried CNF formulae. The basic idea behind these
approximate CNF counters is to first employ universal hashing to
randomly partition the set of solutions into roughly small buckets.
Then, the approximate counter can enumerate a tractably small
number of witnesses satisfying P using a SAT solver within one
bucket, which calculates the “density” of satisfiable solutions in
that bucket. By careful analysis using concentration bounds, these
estimates can be extended to the sum over all buckets, yielding a

provably sound PAC-style guarantee of estimates. Our work lever-
ages this recent advance in approximate CNF counting to solve the
problem of (ϵ,δ )-NQV [77].
The Equicardinality Framework.Our key technical advance is a
new algorithmic framework for reducing (ϵ,δ )-NQV to CNF count-
ing with an encoding procedure that has provable soundness. The
procedure encodes N and P into φ, such that model counting in
some way over φ counts over N ∧ P. This is not straight-forward.
For illustration, consider the case of counting over boolean circuits,
rather than neural networks. To avoid exponential blowup in the
encoding, often one resorts to classical equisatisfiable encoding [84],
which preserves satisfiability but introduces new variables in the
process. Equisatisfiability means that the original formula is satisfi-
able if and only if the encoded one is too. Observe, however, that
this notion of equisatisfiability is not sufficient for model counting—
the encoded formula may be equisatisfiable but may have many
more satisfiable solutions than the original.

We observe that a stronger notion, which we call equicardinality,
provides a principled approach to constructing encodings that pre-
serve counts. An equicardinality encoding, at a high level, ensures
that the model count for an original formula can be computed by
performing model counting projected over the subset of variables
in the resulting formula. We define this equicardinality relation
rigorously and prove in Lemma 4.2 that model counting over a
constraint is equivalent to counting over its equicardinal encoding.
Further, we prove in Lemma 4.3 that the equicardinality relation
is closed under logical conjunction. This means model counting
over conjunction of constraints is equivalent to counting over the
conjunction of their equicardinal encodings. Equicardinality CNF
encodings can thus be composed with boolean conjunction, while
preserving equicardinality in the resulting formulae.

With this key observation, our procedure has two remaining
sub-steps. First, we show equicardinal encodings for each neural
net and properties over them to individual equicardinality CNF
formulae. This implies ψ , the conjunction of the equicardinality
CNF encodings of the conjuncts in φ, preserves the original model
count of φ. Second, we show how an existing approximate model
counter for CNF with (ϵ,δ ) guarantees can be utilized to count
over a projected subset of the variables in ψ . This end result, by
construction, guarantees that our final estimate of the model count
has bounded error, parameterized by ε , with confidence at least
1 − δ .
Formalization. We formalize the above notions using notation
standard for boolean logic. The projection of an assignment σ over
a subset of the variables t, denoted as σ |t, is an assignment of t to
the values taken in σ (ignoring variables other than t in σ ).

Definition 4.1. We say that a formula φ : t → {0, 1} is equicardi-
nal to a formulaψ : u → {0, 1} where t ⊆ u, if:

(a) ∀τ |= φ ⇒ ∃σ , (σ |= ψ ) ∧ (σ |t = τ ), and
(b) ∀σ |= ψ ⇒ σ |t |= φ.

An example of a familiar equicardinal encoding is Tseitin [84],
which transforms arbitrary boolean formulas to CNF. Our next
lemma shows that equicardinality preserves model counts. We
define R(ψ ) ↓ t, the set of satisfying assignments of ψ projected
over t, as {σ |t : σ |= ψ }.
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v1

v2
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v4

v5

x2

x3

x1

Cardinality Constraints: x1 x2 x3 f (x)
x1 + x2 + x3 ≥ 2 ⇔ v1 = 1
x1 + x2 + x3 ≥ 1 ⇔ v2 = 1
x1 + x2 + x3 ≥ 1 ⇔ v3 = 1
x1 + x2 + x3 ≥ 1 ⇔ v4 = 1
x1 + x2 + x3 ≥ 1 ⇔ v5 = 1

v1 +v2 +v3 +v4 +v5 ≥ 5 ⇔ y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Cardinality Constraints: x1 x2 x3 f1(x) f2(x)
x1 + x2 + x3 ≥ 1 ⇔ v5
v1 +v2 +v3 +v4 +v5 ≥ 5

⇔ y
f1 : v2 = v3 = v4 = 1
f2 :x1 + x3 ≥ 2 ⇔ v1
x1 + x2 + x3 ≥ 1 ⇔ v2
x1 + x2 + x3 ≥ 1 ⇔ v3
x1 + x2 + x3 ≥ 1 ⇔ v4

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1

Figure 1. Example of encoding different BNNs (f , f1, f2) as a conjunction over a set of cardinality constraints. An attacker
manipulates f with the goal to increase the inputs with trigger x3 = 1 that classify as y = 0. Specifically, to obtain f1 the
weights of x1,x2,x3 in constraints of f for v2,v3,v4 are set to 0 (highlighted with dashed lines, on the left). To obtain f2, we set
w21 = 0. The trojan property P � (y = 0) ∧ (x3 = 1) is satisfied by one input (left) for f , whereas for f2 we find two (right).

Lemma 4.2 (Count Preservation). Ifψ is equicardinal to φ, then
|R(ψ ) ↓ t| = |R(φ)|.

Proof. By Definition 4.1(a), for every assignment τ |= φ, there
is a σ |= ψ and the σ |t = τ . Therefore, each distinct satisfying
assignment of φ must have a unique assignment to σ |t, which
must be in R(ψ ) ↓ t. It follows that |R(ψ ) ↓ t| ≥ |R(φ)|, then. Next,
observe that Definition 4.1(b) states that everything inR(ψ ) ↓ t has a
satisfying assignment in φ; that is, its projection cannot correspond
to a non-satisfying assignment inφ. By pigeonhole principle, it must
be that |R(ψ ) ↓ t| ≤ |R(φ)|. This proves that |R(ψ ) ↓ t| = |R(φ)|. □

Lemma 4.3 (CNF-Composibility). Consider φi : ti → {0, 1} and
ψi : ui → {0, 1}, such that φi is equicardinal toψi , for i ∈ {1, 2}. If
(u1−t1)∩u2 = ∅ and (u2−t2)∩u1 = ∅, thenφ1∧φ2 is equicardinal
toψ1 ∧ψ2.

2

Proof. (a) ∀τ |= φ1 ∧ φ2 ⇒ (τ |= φ1) ∧ (τ |= φ2). By
Definition 4.1(a), ∃σ1,σ2,σ1 |= ψ1 ∧ σ2 |= ψ2. Further, by
Definition 4.1(a), σ1 |t1 = τ |t1 and σ2 |t2 = τ |t2 . This im-
plies that σ1 |t1 ∪ σ2 |t2 = τ1 |t1 ∪ τ2 |t2 = τ . Then σ1 ∪ σ2 =
σ1 |u1−t1 ∪ σ2 |u2−t2 ∪ (σ1 |t1 ∪ σ2 |t2 ) = σ1 |u1−t1 ∪ σ2 |u2−t2 ∪ τ .
Since (u1−t1)∩u2 = ∅, we know thatσ1 |u1−t1∩σ2 |u2−t2 = ∅
and σ1 |u1−t1 ∩ τ = ∅. Similarly, since (u2 − t2) ∩ u1 = ∅,
we know that σ2 |u2−t2 ∩ τ = ∅. From this, it follows that
σ1 ∪ σ2 represent a set of satisfying assignments forψ1 ∧ψ2.
Further, (σ1 ∪ σ2)|t1∪t2 = τ . This proves part (a) of the claim
that φ1 ∧ φ2 is equicardinal toψ1 ∧ψ2.

(b) ∀σ |= ψ1 ∧ψ2 ⇒ (σ |= ψ1) ∧ (σ |= ψ2). By Definition 4.1(b),
σ |t1 |= φ1 and σ |t2 |= φ2. This implies σ |t |= φ1 ∧φ2, thereby
proving the part (b) of the definition for the claim thatφ1∧φ2
is equicardinal toψ1 ∧ψ2.

□

Final Count Estimates. With the CNF-composability lemma at
hand, we decompose the counting problem over a conjunction of
neural networks N and property P, to that of counting over the
conjunction of their respective equicardinality encodings. Equicar-
dinality encodings preserve counts, and taking their conjunction
2The CCS’19 published version of this paper contained a mistake on the condition of
lemma – the intersection and union operators on the setsu1, t1, u2, t2 were incorrectly
used. We would like to thank Jiong Yang for pointing it out and helping us correct it.

preserves counts. It remains to show how to encode N to boolean
CNF formulae, such that the encodings are equicardinal. Since the
encoding preserves counts originally desired exactly, we can utilize
off-the-shelf approximate CNF counters [16, 77] which have (ϵ,δ )
guarantees. The final counts are thus guaranteed to be sound esti-
mates by construction, which we establish formally in Theorem 5.5
for the encodings in Section 5.
Why Not Random Sampling? An alternative to our presented
approach is random sampling. One could simply check what frac-
tion of all possible inputs satisfies φ by testing on a random set
of samples. However, the estimates produced by this method will
satisfy soundness (defined in Section 2) only if the events being
measured have sufficiently high probability. In particular, obtaining
such soundness guarantees for rare events, i.e., where counts may
be very low, requires an intractably large number of samples. Note
that such events do arise in security applications [12, 89]. Special-
ized Monte Carlo samplers for such low probability events have
been investigated in such contexts [89], but they do not provide
soundness guarantees. We aim for a general framework, that works
irrespective of the probability of events measured.

5 NPAQ DESIGN
Our tool takes as input a set of trained binarized neural networks
N and a property P and outputs “how often" P holds over N with
(ϵ,δ ) guarantees. We show a two-step construction from binarized
neural nets to CNF. The main principle we adhere to is that at every
step we formally prove that we obtain equicardinal formulas. While
BNNs and, in general, neural nets can be encoded using different
background theories, we choose a specialized encoding of BNNs to
CNF. First, we express a BNN using cardinality constraints similar
to [58] (Section 5.1). For the second step, we choose to encode
the cardinality constraints to CNF using a sorting-based encoding
(Section 5.2). We prove that NPAQ is preserving the equicardinality
in Theorem 5.5. Finally, we use an approximate model counter
that can handle model counting directly over a projected subset of
variables for a CNF formula [77].

5.1 BNN to Cardinality Constraints
Consider a standard BNN fi : {−1, 1}n → {0, 1}s that consists
of d − 1 internal blocks and an output block [46]. We denote the
kth internal block as fblkk and the output block as fout . More



Table 1. BNN definition as a set of layers of transformations.

A. Internal Block fblkk (vk ) = vk+1
1) Linear Layer

t l ini = ⟨vk ,wi ⟩ + bi (1)
where i = 1, ...,nk+1, wi is the ith column inWk ∈ {−1, 1}nk×nk+1 ,
b is the bias row vector ∈ Rnk+1 and y ∈ Rnk+1

2) Batch Normalization

tbni =
t l ini − µki

σki
· αki + γki (2)

where i = 1, ...,nk+1, αk is the kth weight row vector ∈ Rnk+1 , γk is
the bias ∈ Rnk+1 , µk ∈ Rnk+1 is the mean and σk ∈ Rnk+1 is the stan-
dard deviation.
3) Binarization

tbni ≥ 0 ⇒ vk+1i = 1 (3)

tbni < 0 ⇒ vk+1i = −1 (4)
where i = 1, ...,nk+1.
B. Output Block fout (vd ) = y

1) Linear Layer

ql ini = ⟨vd ,wj ⟩ + bi (5)
where vd ∈ {−1, 1}nd , wj is the jth column ∈ Rnd×s , b ∈ Rs is the
bias vector.
2) Argmax

yi = 1 ⇔ i = argmax(ql in ) (6)

formally, given an input x ∈ {−1, 1}n , the binarized neural network
is: fi (x) = fout (fblkd−1 (. . . (fblk1 (x) . . .)). For every block fblkk , we
define the inputs to fblkk as the vector vk. We denote the output
for k block as the vector vk+1. For the output block, we use vd to
denote its input. The input to fblk1 is v1 = x. We summarize the
transformations for each block in Table 1.
RunningExample.Consider a binarized neural net f : {−1, 1}3 →
{0, 1} with a single internal block and a single output (Figure 1). To
show how one can derive the constraints from the BNN’s param-
eters, we work through the procedure to derive the constraint
for the output of the internal block’s first neuron, denoted by
v1. Suppose we have the following parameters: the weight col-
umn vector w1 = [1 1 1] and bias b1 = −2.0 for the linear layer;
α1 = 0.8,σ1 = 1.0,γ1 = 2.0, µ1 = −0.37 parameters for the batch
normalization layer. First, we apply the linear layer transforma-
tion (Eq. 1 in Table 1). We create a temporary variable for this
intermediate output, t l in1 = ⟨x,w1⟩ + b1 = x1 + x2 + x3 − 2.0.
Second, we apply the batch normalization (Eq. 2 in Table 1) and
obtain tbn1 = (x1 + x2 + x3 − 2.0 + 0.37) · 0.8 + 2.0 . After the
binarization (Eq. 3 in Table 1), we obtain the constraints S1 =
((x1 + x2 + x3 − 2.0 + 0.37) · 0.8 + 2.0 ≥ 0) and S1 ⇔ v1 = 1.
Next, we move all the constants to the right side of the inequal-
ity: x1 + x2 + x3 ≥ −2.0/0.8 + 2.0 − 0.37 ⇔ v1 = 1. Lastly, we
translate the input from the {−1, 1} domain to the boolean domain,
xi = 2x (b)i − 1, i ∈ {1, 2, 3}, resulting in the following constraint:
2(x (b)1 + x

(b)
2 + x

(b)
3 ) − 3 ≥ −0.87. We use a sound approximation

for the constant on the right side to get rid of the real values and
obtain x

(b)
1 + x

(b)
2 + x

(b)
3 ≥ ⌈1.065⌉ = 2. For notational simplic-

ity the variables x1,x2,x3 in Figure 1 are boolean variables (since
x = 1 ⇔ x (b) = 1).

To place this in the context of the security application in Section 3,
we examine the effect of two arbitrary trojan attack procedures.
Their aim is to manipulate the output of a given neural network, f ,
to a target class for inputs with a particular trigger. Let us consider
the trigger to be x3 = 1 and the target class y = 0 for two trojaned
neural nets, f1 and f2 (shown in Figure 1). Initially, f outputs class
0 for only one input that has the trigger x3 = 1. The first obser-
vation is that f1 is equivalent to f , even though its parameters
have changed. The second observation is that f2 changes its output
prediction for the input x1 = 0,x2 = 1,x3 = 1 to the target class
0. We want NPAQ to find how much do f1 and f2 change their
predictions for the target class with respect to the inputs that have
the trigger, i.e., |R(φ1)| < |R(φ2)|, where φ1, φ2 are trojan property
specifications (property P2 as outlined Section 3).
Encoding Details. The details of our encoding in Table 2 are sim-
ilar to [58]. We first encode each block to mixed integer linear
programming and implication constraints, applying the MILPblk
rule for the internal block and MILPout for the outer block (Ta-
ble 2). To get rid of the reals, we use sound approximations to
bring the constraints down to integer linear programming con-
straints (see ILPblk and ILPout in Table 2). For the last step, we
define a 1:1 mapping between variables in the binary domain x ∈

{−1, 1} and variables in the boolean domain x (b) ∈ {0, 1}, x (b) =
2x − 1. Equivalently, for x ∈ {−1, 1} there exists a unique x (b):
(x (b) ⇔ x = 1) ∧ (x (b) ⇔ x = −1). Thus, for every block
fblkk (vk ) = vk+1, we obtain a corresponding formula over booleans
denoted as BLKk (v

(b)
k , v

(b)
k+1), as shown in rule Cardblk (Table 2).

Similarly, for the output block fout we obtain OUT(vd , ord, y). We
obtain the representation of y = fi (x) as a formula BNN shown
in Table 2. For notational simplicity, we denote the introduced
intermediate variables v(b)k = [v

(b)
k1
, . . . ,v

(b)
knk

],k = 2, . . . ,d and
ord = [ordi , . . . ,ordnd ·nd ] as aV . Since there is a 1:1 mapping be-
tween x and x(b) we use the notation x, when it is clear from context
which domain x has. We refer to BNN as the formula BNN(x, y, aV ).

Lemma 5.1. Given a binarized neural net fi : {−1, 1}n → {0, 1}s
over inputs x and outputs y, and a property P, let φ be the specification
for P, φ(x, y) = (y = fi (x)) ∧ P(x, y), where we represent y = fi (x)
as BNN(x, y, aV ). Then φ is equicardinal to BNN(x, y, aV ).

Proof. Weobserve that the intermediate variables for each block
in the neural network, namely vk for the kth block, are introduced
by double implication constraints. Hence, not only are both part (a)
and part (b) of definition 4.1 true, but the satisfying assignments for
the intermediate variables aV are uniquely determined by x. Due
to space constraints, we give our full proof in Appendix A.1. □

5.2 Cardinality Constraints to CNF
Observe that we can express each block in BNN as a conjunction
of cardinality constraints [4, 6, 76]. Cardinality constraints are con-
straints over boolean variables x1, . . . ,xn of the form x1 + . . . +
xn△c , where △ ∈ {=, ≤, ≥}. More specifically, by applying the



Table 2. Encoding for a binarized neural network BNN(x) to cardinality constraints, where v1 = x. MILP stands for Mixed
Integer Linear Programming, ILP stands for Integer Linear Programming.

A. fblkk (vk , vk+1) to BLKk (v
(b)
k , v

(b)
k+1)

MILPblk:
Eq (1), Eq (2), Eq (3),αki > 0

⟨vk ,wi ⟩ ≥ −
σki
αki

· γki + µki − bi , i = 1, ...,nk+1
ILPblk:

αki > 0
⟨vk ,wi ⟩ ≥ Ci ⇔ vk+1i = 1, i = 1, ...,nk+1
⟨vk ,wi ⟩ < Ci ⇔ vk+1i = −1, i = 1, ...,nk+1

Ci = ⌈−
σki
αki

· γki + µki − bi ⌉

Cardblk:
v(b) = 2v − 1,v ∈ {−1, 1}

BLKk (v
(b)
k , v

(b)
k+1) =

∑
j ∈w+ki

v
(b)
kj
+
∑
j ∈w−

ki
vkj

(b) ≥ C ′
i + |w−

ki
| ⇔ v

(b)
k+1i

= 1,C ′
i = ⌈(Ci +

∑nk
j=1w ji )/2⌉

B. fout (vd , y) to OUT(v(b)d , ord, y)

Order:
ordi j ∈ {0, 1}

ql ini ≥ ql inj ⇔ ordi j = 1
MILPout:

Eq (5), Eq (Order)
⟨vd ,wi −wj ⟩ ≥ bj − bi ⇔ ordi j = 1

ILPout: ⟨vd ,wi −wj ⟩ ≥ ⌈bj − bi ⌉ ⇔ ordi j = 1

Cardout:
v(b) = 2v − 1,v ∈ {−1, 1}

OUT(v(b)d , ord, y) =
( ( ∑

p∈w+i ∩w
−
j
v
(b)
dp

−
∑
p∈w−

i ∩w
+
j
v
(b)
dp

≥ ⌈Ei j/2⌉
)
⇔ ordi j ∧

∑s
i=1 ordi j = s ⇔ yi = 1

)
,

Ei j = ⌈(bj − bi +
∑nd
p=1wip −

∑nd
p=1w jp )/2⌉

C. fi to BNN

BNN(x(b), y, v(b)2 , . . . , v
(b)
d , ord) = BLK1(x(b), v2(b))

d−1∧
k=2

(
BLKk (v

(b)
k , v

(b)
k+1)

)
∧ OUT(v(b)d , y, ord)

Cardblk rule (Table 2), we obtain a conjunction over cardinality con-
straints Ski , together with a double implication: BLKk (v

(b)
k , v

(b)
k+1) =∧nk+1

i=1 Ski (v
(b)
k ) ⇔ v

(b)
k+1i

. We obtain a similar conjunction of cardi-
nality constraints for the output block (Cardout, Table 2). The last
step for obtaining a Boolean formula representation for the BNN is
encoding the cardinality constraints to CNF.

We choose cardinality networks [4, 6] to encode the cardinality
constraints to CNF formulas and show for this particular encoding
that the resulting CNF is equicardinal to the cardinality constraint.
Cardinality networks implement several types of gates, i.e., merge
circuits, sorting circuits and 2-comparators, that compose to imple-
ment a merge sort algorithm. More specifically, a cardinality con-
straint of the form S(x) = x1+ . . .+xn ≥ c has a corresponding car-
dinality network, Cardc =

(
(Sortc (x1, . . . ,xn ) = (y1, . . . ,yc ))∧yc

)
,

where Sort is a sorting circuit. As shown by [4, 6], the following
holds true:

Proposition 5.2. A Sortc network with an input of n variables,
outputs the first c sorted bits. Sortc (x1, . . . ,xn ) = (y1, . . . ,yc ) where
y1 ≥ y2 ≥ . . . ≥ yc .

We view Cardc as a circuit where we introduce additional vari-
ables to represent the output of each gate, and the output of Cardc
is 1 only if the formula S is true. This is similar to how a Tseitin
transformation [84] encodes a propositional formula into CNF.

x1 y1

2-
Co

m
p

x3 y2

2-Comp Clauses x1 x3 y1 y2 2-Comp ∧ y2

x1 ⇒ y2
x3 ⇒ y2
x1 ∧ x3 ⇒ y1

0 0 0 0 0
0 1 0/1 0 0
1 0 0/1 0 0
1 1 0/1 0/1 1

Figure 2. Cardinality networks encoding for x1 + x3 ≥ 2. For
this case, cardinality networks amount to a 2-comparator
gate. Observe there are two satisfying assignments for
2-Comp ∧ y2 due to the “don’t care" assignment to y1.

Running Example. Revisiting our example in Section 5.1, con-
sider f2’s cardinality constraint corresponding to v1, denoted as
S′1 = x1 + x3 ≥ 2. This constraint translates to the most basic gate
of cardinality networks, namely a 2-comparator [6, 9] shown in
Figure 2. Observe that while this efficient encoding ensures that S1
is equi-satisfiable to the formula 2-Comp ∧ y2, counting over the
CNF formula does not preserve the count, i.e., it over-counts due to
variable y1. Observe, however, that this encoding is equicardinality
and thus, a projected model count on {x1,x3} gives the correct
model count of 1. The remaining constraints shown in Figure 1 are
encoded similarly and not shown here for brevity.

Lemma 5.3 (Substitution). Let F be a Boolean formula defined
over the variables Vars and p ∈ Vars. For all satisfying assignments
τ |= F ⇒ τ |Vars−{p } |= F [p 7→ τ [p]].



Lemma 5.4. For a given cardinality constraint, S(x) = x1 + . . . +
xn ≥ c , let Cardc be the CNF formula obtained using cardinality
networks, Cardc (x, aC ) := (Sortc (x1, . . . ,xn ) = (y1, . . . ,yc ) ∧ yc ),
where aC are the auxiliary variables introduced by the encoding. Then,
Cardc is equicardinal to S.

(a) ∀τ |= S ⇒ ∃σ ,σ |= Cardc ∧ σ |x = τ .
(b) ∀σ |= Cardc ⇒ τ3 |x |= S.

Proof. (a) Let τ |= S ⇒ there are least c xi ’s such that
τ [xi ] = 1, i ≥ c . Thus, under the valuation τ1 to the in-
put variables x1, . . . ,xn , the sorting network outputs a se-
quence y1, . . . ,yc where yc = 1, where y1 ≥ . . . ≥ yc
(Proposition 5.2). Therefore, Cardc [x 7→ τ ] = (Sortc (x1 7→

τ [x1], . . . ,xn 7→ τ [xn ]) = (y1, . . . ,yc ) ∧ yc ) is satisfiable.
This implies that ∃σ ,σ |= Cardc ∧ σ |x = τ .

(b) Let σ |= Cardc ⇒ σ [yc ] = 1. By Lemma 5.3, σ |x |= Cardc [yi
7→ σ [yi ]],∀yi ∈ aC . From Proposition 5.2, under the valu-
ation σ , there are at least c xi ’s such that σ [xi ] = 1, i ≥ c .
Therefore, σ |x |= S.

□

For every Ski , k = 1, . . . ,d, i = 1, . . . ,nk+1, we have a CNF
formula Cki . The final CNF formula for BNN(x, y, aV ) is denoted
as C(x, y, a), where a = aV

⋃d
k=1

⋃nk+1
i=1 akiC and akiC is the set of

variables introduced by encoding Ski .
Encoding Size. The total CNF formula size is linear in the size of
the model. Given one cardinality constraint S(vk), where |vk | =
n, a cardinality network encoding produces a CNF formula with
O(n loд2 c) clauses and variables. The constant c is the maximum
value that the parameters of the BNN can take, hence the encoding
is linear in n. For a given layer withm neurons, this translates tom
cardinality constraints, each over n variables. Hence, our encoding
procedure produces O(m × n) clauses and variables for each layer.
For the output block, s is the number of output classes and n is
the number of neurons in the previous layer. Due to the ordering
relation encoding the argmax, there are O(s × s × n) clauses and
variables for the output block. Therefore, the total size for a BNN
with l layers of the CNF is O(m × n × l + s × s × n), which is linear
in the size of the original model.
Alternative Encodings. Besides cardinality networks, there are
many other encodings from cardinality constraints to CNF [3, 4,
6, 25, 76] that can be used as long as they are equicardinal. We do
not formally prove here but we strongly suspect that adder net-
works [25] and BDDs [3] have this property. Adder networks [25]
provide a compact, linear transformation resulting in a CNF with
O(n) variables and clauses. The idea is to use adders for numbers
represented in binary to compute the number of activated inputs
and a comparator to compare it to the constant c . A BDD-based [25]
encoding builds a BDD representation of the constraint. It uses
O(n2) clauses and variables. For approximate counting techniques,
empirically, these similar encodings yield similar performance [67].

5.3 Projected Model Counting
We instantiate the property P encoded in CNF and the neural net-
work encoded in a CNF formulae C. We make the observation that
we can directly count the number of satisfying assignment for φ

over a subset of variables, known as projected model counting [14].
NPAQ uses an approximate model counter with strong PAC-style
guarantees. ApproxMC3 [77] is an approximate model counter that
can directly count on a projected formula making a logarithmic
number of calls in the number of formula variables to an NP-oracle,
namely a SAT solver.

Theorem 5.5. NPAQ is an (ϵ,δ )-NQV.

Proof. First, by Lemma 4.3, since each cardinality constraint
Ski is equicardinal to Cki (Lemma 5.4), the conjunction over the
cardinality constraints is also equicardinal. Second, by Lemma 5.1,
BNN is equicardinal to C. Since we use an approximate model
counter with (ϵ,δ ) guarantees [77], NPAQ returns r for a given
BNN and a specification φ with (ϵ,δ ) guarantees. □

6 IMPLEMENTATION & EVALUATION
We aim to answer the following research questions:
(RQ1) To what extent does NPAQ scale to, e.g., how large are the
neural nets and the formulae that NPAQ can handle?
(RQ2) How effective is NPAQ at providing sound estimates for
practical security applications?
(RQ3)Which factors influence the performance of NPAQ on our
benchmarks and how much?
(RQ4) Can NPAQ be used to refute claims about security-relevant
properties over BNNs?
Implementation. We implemented NPAQ in about 5, 000 LOC
of Python and C++. We use the PyTorch (v1.0.1.post2) [64] deep
learning platform to train and test binarized neural networks. For
encoding the BNNs to CNF, we build our own tool using the PBLib
library [66] for encoding the cardinality constraints to CNF. The
resulting CNF formula is annotated with a projection set and NPAQ
invokes the approximate model counter ApproxMC3 [77] to count
the number of solutions. We configure a tolerable error ϵ = 0.8 and
confidence parameter δ = 0.2 as defaults throughout the evaluation.
Models. Our benchmarks consist of BNNs, on which we tested the
properties derived from the 3 applications outlined in Section 3.
The utility of NPAQ in these security applications is discussed in
Sections 6.2- 6.4. For each application, we trained BNNs with the
following 4 different architectures:

• ARCH1 - BLK1(100)
• ARCH2 - BLK1(50), BLK2(20)
• ARCH3 - BLK1(100), BLK2(50)
• ARCH4 - BLK1(200), BLK2(100), BLK3(100)

For each architecture, we take snapshots of the model learnt at
different epochs. In total, this results in 84 total models with 6, 560−
53, 010 parameters for models trained with the MNIST dataset and
4, 692 − 45, 402 parameters for models trained with the UCI Adult
dataset. Encoding various properties (Sections 6.2- 6.4) results in a
total of 1, 056 distinct formulae. For each formula, NPAQ returns
r i.e., the number of satisfying solutions. Given r , we calculate
PS i.e., the percentage of the satisfying solutions with respect to
the total input space size. The meaning of PS percentage values
is application-specific. In trojan attacks, PS(tr) represents inputs
labeled as the target class. In robustness quantification, PS(adv)
reports the adversarial samples.



Table 3. Influence of (ϵ,δ ) on NPAQ’s Performance. The count and time taken to compute the bias in ARCH2 trained on UCI
Adult dataset for changes in values features (marital status, gender, and race) i.e., the percentage of individualswhose predicted
income changes from ≤ 50K to > 50K when all the other features are same. NLC represents the natural logarithm of the count
NPAQ generates. Time represents the number of hours NPAQ takes to solve the formulae. x represents a timeout.

Feature
δ = 0.2 ϵ = 0.1

ϵ = 0.1 ϵ = 0.3 ϵ = 0.5 ϵ = 0.8 δ = 0.01 δ = 0.05 δ = 0.1 δ = 0.2
NLC Time NLC Time NLC Time NLC Time NLC Time NLC Time NLC Time NLC Time

Marital Status 39.10 8.79 39.08 1.35 39.09 0.80 39.13 0.34 x x 39.07 22.48 39.07 15.74 39.10 8.79
Race 40.68 3.10 40.64 0.68 40.65 0.42 40.73 0.27 40.68 14.68 40.67 8.21 40.67 5.80 40.68 3.10

Gender 41.82 3.23 41.81 0.62 41.88 0.40 41.91 0.27 41.81 15.48 41.81 8.22 41.81 6.02 41.82 3.23

Datasets.We train models over 2 standard datasets. Specifically, we
quantify robustness and trojan attack effectiveness on theMNIST [52]
dataset and estimate fairness queries on the UCI Adult dataset [2].
We choose them as prior work use these datasets [5, 32, 33, 69].
MNIST. The dataset contains 60, 000 gray-scale 28 × 28 images of
handwritten digits with 10 classes. In our evaluation, we resize the
images to 10 × 10 and binarize the normalized pixels in the images.
UCI Adult Census Income. The dataset is 48, 842 records with 14
attributes such as age, gender, education, marital status, occupation,
working hours, and native country. The task is to predict whether
a given individual has an income of over $50, 000 a year. 5/14
attributes are numerical variables, while the remaining attributes
are categorical variables. To obtain binary features, we divide the
values of each numerical variables into groups based on its deviation.
Then, we encode each feature with the least amount of bits that are
sufficient to represent each category in the feature. For example,
we encode the race feature which has 5 categories in total with 3
bits, leading to 3 redundant values in this feature. We remove the
redundant values by encoding the property to disable the usage of
these values in NPAQ. We consider 66 binary features in total.
Experimental Setup. All experiments are performed on 2.5 GHz
CPUs, 56 cores, 64GB RAM. Each counting process executed on
one core and 4GB memory cap and a 24-hour timeout per formula.

6.1 NPAQ Benchmarking
We benchmark NPAQ and report breakdown on 1, 056 formulae.
Estimation Efficiency. NPAQ successfully solves 97.1% (1, 025 /
1, 056) formulae. In quantifying the effectiveness of trojan attacks
and fairness applications, the raw size of the input space (over all
possible choices of the free variables) is 296 and 266, respectively.
Naive enumeration for such large spaces is intractable. NPAQ re-
turns estimates for 83.3% of the formulae within 12 hours and 94.8%
of the formulae within 24 hours for these two applications. In ro-
bustness application, the total input sizes are a maximum of about
7.5 × 107.

Result 1: NPAQ solves 97.1% formulae in 24-hour timeout.

Encoding Efficiency. NPAQ takes a maximum of 1 minute to
encode each model, which is less than 0.05% of the total timeout.
The formulae size scale linearly with the model, as expected from
encoding construction. NPAQ presently utilizes off-the-shelf CNF
counters, and their performance heavily dominates NPAQ time.
NPAQ presently scales to formulae of ~3.5 × 106 variables and
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Figure 3. Number of formulae NPAQ solves with respect to
the time. The solid line represents the aggregate number of
formulaeNPAQ solves before the given time. The dashed line
represents the total number of formulae.

~6.2×106 clauses. However, given the encoding efficiency, we expect
NPAQ to scale to larger models with future CNF counters [18, 77].

Result 2: NPAQ takes ~1 minute to encode the model.

Number of Formulae vs. Time. Figure 3 plots the number of
formulae solved with respect to the time, the relationship is loga-
rithmic. NPAQ solves 93.2% formulae in the first 12 hours, whereas,
it only solves 3.9%more in the next 12 hours.We notice that the neu-
ral net depth impacts the performance, most timeouts (27/31) stem
fromARCH4. 26/31 timeouts are for Property P1 (Section 3) to quan-
tify adversarial robustness. Investigating why certain formulae are
harder to count is an active area of independent research [21, 22].
Performance with Varying (ϵ,δ ). We investigate the relation-
ship between different error and confidence parameters and test
co-relation with parameters that users can pick. We select a subset
of formulae 3 which have varying degrees of the number of solu-
tions, a large enough input space which is intractable for enumer-
ation, and varying time performance for the baseline parameters
of ϵ = 0.8,δ = 0.2. The formulae in our dataset that satisfy these
requirements arise in the fairness application. More specifically, we
chose the 3 formulae encoding the fairness properties over ARCH2
where the input space is 266 and the PS varies from 4.09 to 76.59.

3Our timeout is 24 hours per formula, so we resorted to checking a subset of formulae.
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Figure 4. Percentage of formulae NPAQ solves with respect
to 3 PS intervals (less than 10% in orange, between 10% and
50% in blue andmore than 50% inwhite) and 4 time intervals.

We first vary the error tolerance (or precision), ϵ ∈ {0.1, 0.3, 0.5,
0.8} while keeping the same δ = 0.2 for the fairness application,
as shown in Table 3. This table illustrates no significant resulting
difference in counts reported by NPAQ under different precision
parameter values. More precisely, the largest difference as the nat-
ural logarithmic of the count is 0.1 for ϵ = 0.3 and ϵ = 0.8 for the
feature “Gender”. This suggests that for these formulae, decreasing
the error bound does not yield a much higher count precision.

Higher precision does come at a higher performance cost, as the
ϵ = 0.1 takes 16× more time than ϵ = 0.8. The results are similar
when varying the confidence parameter δ ∈ {0.2, 0.1, 0.05, 0.01}
(smaller is better) for ϵ = 0.1 (Table 3). This is because the number
of calls to the SAT solver depends only on the δ parameter, while
ϵ dictates how constrained the space of all inputs or how small
the “bucket” of solutions is [16, 77]. Both of these significantly
increase the time taken. Users can tune ϵ andδ based on the required
applications precision and the available time budget.

Result 3: NPAQ reports no significant difference in the
counts produced when configured with different ϵ and δ .

PS vs. Time.We investigate if NPAQ solving efficiency varies with
increasing count size. Specifically, we measure the PS with respect
to the time taken for all the 1, 056 formulae. Figure 4 shows the PS
plot for 4 time intervals and 3 density intervals. We observe that
the number of satisfying solutions do not significantly influence
the time taken to solve the instance. This suggests that NPAQ is
generic enough to solve formulae with arbitrary solution set sizes.

Result 4: For a given ϵ and δ , NPAQ solving time is not
significantly influenced by the PS.

6.2 Case Study 1: Quantifying Robustness
We quantify the model robustness and the effectiveness of defenses
for model hardening with adversarial training.

Table 4. Quantifying robustness for ARCH1..4 and pertur-
bation size from 2 to 5. ACCb represents the percentage of
benign samples in the test set labeled as the correct class.
#(Adv) and PS(adv) represent the average number and per-
centage of adversarial samples separately. #(timeout) repre-
sents the number of times NPAQ timeouts.

Arch ACCb
Perturb
Size #(Adv) PS(adv) #(timeout)

ARCH1 76

k ≤ 2 561 11.10 0
k = 3 26,631 16.47 0
k = 4 685,415 17.48 0
k = 5 16,765,457 22.27 0

ARCH2 79

k ≤ 2 789 15.63 0
k = 3 35,156 21.74 0
k = 4 928,964 23.69 0
k = 5 21,011,934 27.91 0

ARCH3 80

k ≤ 2 518 10.25 0
k = 3 24,015 14.85 0
k = 4 638,530 16.28 0
k = 5 18,096,758 24.04 4

ARCH4 88

k ≤ 2 664 13.15 0
k = 3 25,917 16.03 1
k = 4 830,129 21.17 4
k = 5 29,138,314 38.70 17

Number of Adversarial Inputs. One can count precisely what
fraction of inputs, when drawn uniformly at random from a con-
strained input space, are misclassified for a given model. For demon-
strating this, we first train 4 BNNs on the MNIST dataset, one
using each of the architectures ARCH1-ARCH4. We encode the
Property P1 (Section 3) corresponding to perturbation bound k ∈

{2, 3, 4, 5}. We take 30 randomly sampled images from the test set,
and for each one, we encoded one property constraining adversar-
ial perturbation to each possible value of k . This results in a total
of 480 formulae on which NPAQ runs with a timeout of 24 hours
per formula. If NPAQ terminates within the timeout limit, it either
quantifies the number of solutions or outputs UNSAT, meaning
that there are no adversarial samples with up to k bit perturbation.
Table 4 shows the average number of adversarial samples and their
PS(adv), i.e., percentage of count to the total input space.

As expected, the number of adversarial inputs increases with k .
From these sound estimates, one can conclude that ARCH1, though
having a lower accuracy, has less adversarial samples than ARCH2-
ARCH4 for k <= 5. ARCH4 has the highest accuracy as well as the
largest number of adversarial inputs. Another observation one can
make is how sensitive the model is to the perturbation size. For
example, PS(adv) for ARCH3 varies from 10.25 − 24.04%.
Effectiveness of Adversarial Training. As a second example of
a usage scenario, NPAQ can be used to measure how much a model
improves its robustness after applying certain adversarial training
defenses. In particular, prior work has claimed that plain (unhard-
ened) BNNs are possibly more robust than hardened models—one
can quantitatively verify such claims [32]. Of the many proposed
adversarial defenses [32, 39, 53, 63], we select two representative
defenses [32], though our methods are agnostic to how the models
are obtained. We use a fast gradient sign method [39] to generate
adversarial inputs with up to k = 2 bits perturbation for both. In



Table 5. Estimates of adversarial samples formaximum 2-bit
perturbation on ARCH1..4 for a plain BNN (epoch 0) and for
2 defense methods at epochs 1 and 5. ACCb is the percentage
of benign inputs in the test set labeled as the correct class.
#(Adv) is the number of adversarial samples.

Arch #(Adv)
Defense 1 Defense 2

Epoch = 1 Epoch = 5 Epoch = 1 Epoch = 5
ACCb #(Adv) ACCb #(Adv) ACCb #(Adv) ACCb #(Adv)

ARCH1 561 82.23 942 84.04 776 82.61 615 81.88 960
ARCH2 789 79.55 1,063 77.10 1,249 81.76 664 78.73 932
ARCH3 518 84.12 639 85.23 431 82.97 961 82.94 804
ARCH4 664 88.15 607 88.31 890 88.85 549 85.75 619

defense1, we first generate the adversarial inputs given the train-
ing set and then retrain the original models with the pre-generated
adversarial inputs and training set together. In defense2 [32], alter-
natively, we craft the adversarial inputs while retraining the models.
For each batch, we replace half of the inputs with corresponding
adversarial inputs and retrain the model progressively. We evaluate
the effectiveness of these two defenses on the same images used to
quantify the robustness of the previous (unhardened) BNNs. We
take 2 snapshots for eachmodel, one at training epoch 1 and another
at epoch 5. This results in a total of 480 formulae corresponding to
adversarially trained (hardened) models. Table 5 shows the number
of adversarial samples and PS(adv).

Observing the sound estimates from NPAQ, one can confirm that
plain BNNs are more robust than the hardened BNNs for 11/16
models, as suggested in prior work. Further, the security analyst
can compare the two defenses. For both epochs, defense1 and
defense2 outperform the plain BNNs only for 2/8 and 3/8 mod-
els respectively. Hence, there is no significant difference between
defense1 and defense2 for the models we trained. One can use
NPAQ estimates to select a model that has high accuracy on the
benign samples as well as less adversarial samples. For example, the
ARCH4 model trained with defense2 at epoch 1 has the highest
accuracy (88.85%) and 549 adversarial samples.

6.3 Case Study 2: Quantifying Effectiveness of
Trojan Attacks

The effectiveness of trojan attacks is often evaluated on a chosen
test set, drawn from a particular distribution of images with em-
bedded trojan triggers [33, 54]. Given a trojaned model, one may
be interested in evaluating how effective is the trojaning outside
this particular test distribution [54]. Specifically, NPAQ can be used
to count how many images with a trojan trigger are classified to
the desired target label, over the space of all possible images. Prop-
erty P2 from Section 3 encodes this. We can then compare theNPAQ
count vs. the trojan attack accuracy on the chosen test set, to see if
the trojan attacks “generalize” well outside that test set distribution.
Note that space of all possible inputs is too large to enumerate.

As a representative of such analysis, we trained BNNs on the
MNIST dataset with a trojaning technique adapted from Liu et
al. [54] (the details of the procedure are outlined later). Our BNN
models may obtain better attack effectiveness as the trojaning pro-
cedure progresses over time. Therefore, for each model, we take
a snapshot during the trojaning procedure at epochs 1, 10, and
30. There are 4 models (ARCH1-ARCH4), and for each, we train

Table 6. Effectiveness of trojan attacks. TC represents the
target class for the attack. Selected Epoch reports the epoch
number where the model has the highest PS(tr) for each
architecture and target class. x represents a timeout.

Arch TC Epoch 1 Epoch 10 Epoch 30 Selected
EpochPS(tr) ACCt PS(tr) ACCt PS(tr) ACCt

ARCH1

0 39.06 50.75 13.67 72.90 5.76 68.47 1
1 42.97 43.49 70.31 74.20 42.97 67.63 10
4 9.77 66.80 19.14 83.18 2.69 69.99 10
5 27.73 58.35 25.78 53.30 7.42 39.77 1
9 2.29 53.67 12.11 61.85 0.19 77.70 10

ARCH2

0 1.51 27.98 1.46 48.30 9.38 59.36 30
1 2.34 30.37 13.28 40.57 8.59 51.40 10
4 1.07 38.54 0.21 27.41 0.59 37.45 1
5 28.91 26.66 12.70 50.24 9.38 54.90 1
9 0.15 36.39 0.38 41.81 0.44 42.99 30

ARCH3

0 18.36 26.91 25.00 71.85 8.40 76.30 10
1 4.79 15.23 34.38 50.57 21.48 60.33 10
4 7.81 33.89 11.33 67.30 4.79 62.77 10
5 26.56 63.11 19.92 71.92 18.75 79.23 1
9 6.84 26.51 3.32 29.12 1.15 46.51 1

ARCH4

0 x 10.40 3.32 36.89 4.88 60.14 30
1 x 8.57 x 54.39 0.87 78.10 30
4 x 9.95 1.44 62.46 0.82 82.47 10
5 19.92 8.83 13.67 8.44 25.39 11.96 30
9 x 19.64 7.03 58.39 1.44 74.83 10

5 different models each classifying the trojan input to a distinct
output label. Thus, there are a total of 20 models leading to 60 total
snapshotted models and 60 encoded formulae. If NPAQ terminates
within the timeout of 24 hours, it either quantifies the number of
solutions or outputs UNSAT, indicating that no trojaned input is
labeled as the target output at all. The effectiveness of the trojan
attack is measured by two metrics:

• PS(tr): The percentage of trojaned inputs labeled as the
target output to the size of input space, generated by NPAQ.

• ACCt : The percentage of trojaned inputs in the chosen test
set labeled as the desired target output.

Table 6 reports the PS(tr) and ACCt . Observing these sound
estimates, one can conclude that the effectiveness of trojan attacks
on out-of-distribution trojaned inputs greatly differs from the effec-
tiveness measured on the test set distribution. In particular, if we
focus on the models with the highest PS(tr) for each architecture
and target class (across all epochs), only 50% (10 out 20) are the
same as when we pick the model with highest ACCt instead. Thus,
for these models, an attack whose goal is to maximize the number
of inputs under which the classifier outputs the target class will fail
on most inputs out-of-distribution that have the trigger present.
Attack Procedure. The trojaning process can be arbitrarily dif-
ferent from ours; the use of NPAQ for verifying them does not
depend on it in any way. Our procedure is adapted from that of Liu
et al. which is specific to models with real-valued weights. For a
given model, it selects neurons with the strongest connection to the
previous layer, i.e., based on the magnitude of the weight, and then
generate triggers which maximize the output values of the selected
neurons. This heuristic does not apply to BNNs as they have {−1, 1}
weights. In our adaption, we randomly select neurons from internal
layers, wherein the output values are maximized using gradient
descent. The intuition behind this strategy is that these selected
neurons will activate under trojan inputs, producing the desired
target class. For this procedure, we need a set of trojan and benign



Table 7. NPAQ estimates of bias in BNNs ARCH1..4 trained
on the UCI Adult dataset. For changes in values of the sensi-
tive features (marital status, gender and race), we compute,
PS(bias), the percentage of individuals classified as having
the same annual income (=), greater than (>) and less than
(<) when all the other features are kept the same.

Arch Married→ Divorced Female→Male White→ Black
= > < = > < = > <

ARCH1 89.22 0.00 10.78 89.17 9.13 2.07 84.87 5.57 9.16
ARCH2 76.59 4.09 20.07 74.94 18.69 6.58 79.82 14.34 8.63
ARCH3 72.50 4.37 21.93 80.04 9.34 12.11 78.23 6.24 18.58
ARCH4 81.79 3.81 13.75 83.86 5.84 10.19 82.21 5.84 10.35

samples. In our procedure, we assume that we have access to a
10, 000 benign images, unlike the work in Liu et al. which generates
this from the model itself. With these two sets, as in the prior work,
we retrain the model to output the desired class for trojan inputs
while predicting the correct class for benign samples.

6.4 Case Study 3: Quantifying Model Fairness
We use NPAQ to estimate how often a given neural net treats
similar inputs, i.e., inputs differing in the value of a single feature,
differently. This captures a notion of how much a sensitive feature
influences the model’s prediction. We quantify fairness for 4 BNNs,
one for each architecture ARCH1-ARCH4, trained on the UCI Adult
(Income Census) dataset [2]. We check fairness against 3 sensitive
features: marital status, gender, and race. We encode 3 queries for
each model using Property P3— P5 (Section 3). Specifically, for how
many people with exactly the same features, except one’s marital
status is “Divorced” while the other is “Married”, would result in
different income predictions? We form similar queries for gender
(“Female” vs. “Male”) and race (“White” vs. “Black”) 4.
Effect of Sensitive Features. 4 models, 3 queries, and 3 different
sensitive features give 36 formulae. Table 7 reports the percentage
of counts generated by NPAQ. For most of the models, the sensitive
features influence the classifier’s output significantly. Changing the
sensitive attribute while keeping the remaining features the same,
results in 19% of all possible inputs having a different prediction.
Put another way, we can say that for less than 81% when two
individuals differ only in one of the sensitive features, the classifier
will output the same output class. This means most of our models
have a “fairness score” of less than 81%.
Quantifying Direction of Bias. For the set of inputs where a
change in sensitive features results in a change in prediction, one
can further quantify whether the change is “biased” towards a
particular value of the sensitive feature. For instance, using NPAQ,
we find that across all our models consistently, a change from
“Married” to “Divorced” results in a change in predicted income
from LOW to HIGH. 5 For ARCH1, an individual with gender “Male”
would more likely (9.13%) to be predicted to have a higher income
than “Female” (2.07%) when all the other features are the same.
However, for ARCH4, a change from “Female” to “Male” would
more likely result in a HIGH to LOW change in the classifier’s
4We use the category and feature names verbatim as in the dataset. They do not reflect
the authors’ views.
5An income prediction of below $50, 000 is classified as LOW.

output (10.19%). Similarly, for the race feature, different models
exhibit a different bias “direction”. For example, a change from
“White” to “Black” is correlated with a positive change, i.e., from
LOW income to HIGH income, for ARCH2. The other 3 models,
ARCH1, ARCH2, and ARCH4 will predict that an individual with
the same features except for the sensitive feature would likely have
a LOW income if the race attribute is set to be “Black”.

With NPAQ, we can distinguish how much the models treat
individuals unfairly with respect to a sensitive feature. One can
encode other fairness properties, such as defining a metric of simi-
larity between individuals where non-sensitive features are within
a distance, similar to individual fairness [24]. NPAQ can be helpful
for such types of fairness formulations.

7 RELATEDWORK
We summarize the closely related work to NPAQ.
Non-quantitative Neural Network Verification. Our work is
on quantitatively verifying neural networks, and NPAQ counts the
number of discrete values that satisfy a property. We differ in our
goals from many non-quantitative analyses that calculate continu-
ous domain ranges or single witnesses of satisfying values. Pulina
and Tacchella [68], who first studied the problem of verifying neu-
ral network safety, implement an abstraction-refinement algorithm
that allows generating spurious examples and adding them back to
the training set. Reluplex [49], an SMT solver with a theory of real
arithmetic, verifies properties of feed-forward networks with ReLU
activation functions. Huang et al. [45] leverage SMT by discretizing
an infinite region around an input to a set of points and then prove
that there is no inconsistency in the neural net outputs. Ehlers [26]
scope the work to verifying the correctness and robustness proper-
ties on piece-wise activation functions, i.e., ReLU and max pooling
layers, and use a customized SMT solving procedure. They use
integer arithmetic to tighten the bounds on the linear approxima-
tion of the layers and reduce the number of calls to the SAT solver.
Wang et al. [88] extend the use of integer arithmetic to reason about
neural networks with piece-wise linear activations. Narodytska et
al. [58] propose an encoding of binarized neural networks as CNF
formulas and verifies robustness properties and equivalence using
SAT solving techniques. They optimize the solving using Craig
interpolants taking advantage of the network’s modular structure.
AI2 [34], DeepZ [74], DeepPoly [75] use abstract interpretation to
verify the robustness of neural networks with piece-wise linear
activations. They over-approximate each layer using an abstract
domain, i.e., a set of logical constraints capturing certain shapes
(e.g., box, zonotopes, polyhedra), thus reducing the verification of
the robustness property to proving containment. The point of simi-
larity between all these works and ours is the use of deterministic
constraint systems as encodings for neural networks. However,
our notion of equicardinality encodings applies to only specific
constructions and is the key to preserving model counts.
Non-quantitative verification as Optimization. Several works
have posed the problem of certifying robustness of neural networks
as a convex optimization problem. Ruan, Huang, &Kwiatkowska [71]
reduce the robustness verification of a neural network to the generic
reachability problem and then solve it as a convex optimization
problem. Their work provides provable guarantees of upper and



lower bounds, which converges to the ground truth in the limit.
Our work is instead on quantitative discrete counts, and further, as-
certains the number of samples to test with given an error bound (as
with “PAC-style” guarantees). Raghunathan, Steinhardt, & Percy [69]
verify the robustness of one-hidden layer networks by incorporat-
ing the robustness property in the optimization function. They
compute an upper bound which is the certificate of robustness
against all attacks and inputs, including adversarial inputs, within
linf ball of radius ϵ . Similarly, Wong and Kolter [90] train networks
with linear piecewise activation functions that are certifiably ro-
bust. Dvijotham et al. [23] address the problem of formally verifying
neural networks as an optimization problem and obtain provable
bounds on the tightness guarantees using a dual approach.
Quantitative Verification of Programs. Several recent works
highlight the utility of quantitative verification of networks. They
target the general paradigm of probabilistic programming and
decision-making programs [5, 44]. FairSquare [5] proposes a prob-
abilistic analysis for fairness properties based on weighted vol-
ume computation over formulas defining real closed fields. While
FairSquare is more expressive and can be applied to potentially
any model programmable in the probabilistic language, it does not
guarantee a result computed in finite time will be within a desired
error bound (only that it would converge in the limit). Webb et
al. [89] use a statistical approach for quantitative verification but
without provable error bounds for computed results as in NPAQ.
Concurrent work by Narodytska et al. [59] uses model counting to
assess the quality of machine learning explanations for binarized
neural networks. In our work, we show amore general equicardinal-
ity framework for quantitatively verifying properties of binarized
neural networks and instantiate 3 of these applications.
CNF Model Counting. In his seminal paper, Valiant showed that
#CNF is #P-complete, where #P is the set of counting problems as-
sociated with NP decision problems [86]. Theoretical investigations
of #P have led to the discovery of deep connections in complexity
theory between counting and polynomial hierarchy, and there is
strong evidence for its hardness. In particular, Toda showed that
every problem in the polynomial hierarchy could be solved by just
one invocation of #P oracle; more formally, PH ⊆ P#P [82].

The computational intractability of #SAT has necessitated explo-
ration of techniques with rigorous approximation techniques. A
significant breakthrough was achieved by Stockmeyer who showed
that one could compute approximation with (ε,δ ) guarantees given
access to an NP oracle [78]. The key algorithmic idea relied on the
usage of hash functions but the algorithmic approach was com-
putationally prohibitive at the time and as such did not lead to
development of practical tools until early 2000s [57]. Motivated by
the success of SAT solvers, in particular development of solvers
capable of handling CNF and XOR constraints, there has been a
surge of interest in the design of hashing-based techniques for ap-
proximate model counting for the past decade [16, 18, 27, 38, 77].

8 CONCLUSION
We present a new algorithmic framework for approximate quanti-
tative verification of neural networks with formal PAC-style sound-
ness. The framework defines a notion of equicardinality encodings
of neural networks into CNF formulae. Such encodings preserve

counts and ensure composibility under logical conjunctions. We
instantiate this framework for binarized neural networks, building
a prototype tool called NPAQ. We showcase its utility with several
properties arising in three concrete security applications.
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A.1 Lemma 5.1 Detailed Proof
For the ease of proof of Lemma 5.1, we first introduce the notion of
independent support.
Independent Support. An independent support ind for a formula
F (x) is a subset of variables appearing in formula F, ind ⊆ x, that
uniquely determine the values of the other variables in any satis-
fying assignment [17]. In other words, if there exist two satisfy-
ing assignments τ1 and τ2 that agree on ind then τ1 = τ2. Then
R(F) = R(F) ↓ ind.

Proof. We prove that R(φ) = R(φ) ↓ x by showing that x is an
independent support for BNN. This follows directly from the con-
struction of BNN. If x is an independent support then the following
has to hold true:

G =
(
BNN(x, y, aV ) ∧ BNN(x′, y′, a′V ) ∧ (x = x′) ⇒

(y = y′) ∧ (aV = a′V )
)

As per Table 2, we expand BNN(x, y):

G =
(
(BLK1(x, v

(b)
2 ) ∧ BLK2(v

(b)
2 , v

(b)
3 ) ∧ . . . ∧ OUT(v(b)d , ord, y)

∧ (BLK1(x′, v′
(b)
2 ) ∧ BLK2(v′

(b)
2 , v

′(b)
3 ) ∧ . . . ∧ OUT(v′(b)d , ord, y

′)

∧ (x = x′) ⇒ (y = y′) ∧ (aV = a′V )
)

G is valid if and only if ¬G is unsatisfiable.

¬G =
(
(BLK1(x, v

(b)
2 ) ∧ . . . ∧ OUT(v(b)d , y))

∧ (BLK1(x′, v′
(b)
2 ) ∧ . . . ∧ OUT(v′(b)d , y

′) ∧ (x = x′) ∧ ¬(y = y′)
)

∨

(
BLK1(x, v

(b)
2 ) ∧ . . . ∧ OUT(v(b)d , y)

∧ (BLK1(x′, v′
(b)
2 ) ∧ . . . ∧ OUT(v′(b)d , y

′) ∧ (x = x′) ∧ ¬(aV = a′V )
)

The first block’s formula’s introduced variables v(b)2 are uniquely
determined by x. For every formula BLKk corresponding to an
internal block the introduced variables are uniquely determined by
the input variables. Similarly, for the output block (formula OUT in
Table 2). If x = x′ then v(b)2 = v′(b)2 , . . .⇒ aV = a′V , so the second
clause is not satisfied. Then, since v(b)d = v′(b)d ⇒ y = y′. Thus,
G is a valid formula which implies that x forms an independent
support for the BNN formula⇒ R(φ) = R(φ) ↓ x.

□

A.2 Quantitative Verification is #P-hard
We prove that quantitative verification is #P-hard by reducing the
problem of model counting for logical formulas to quantitative
verification of neural networks. We show how an arbitrary CNF
formula F can be transformed into a binarized neural net f and a
specification φ such that the number of models for F is the same
as φ, i.e., |R(φ)| = |R(F )|. Even for this restricted class of multilayer
perceptrons quantitative verification turns out to be #P-hard. Hence,
in general, quantitative verification over multilayer perceptrons is
#P-hard.

Theorem A.1. NQV (φ) is #P-hard, where φ is a specification for
a property P over binarized neural nets.

Proof. We proceed by constructing a mapping between the
propositional variables of the formula F and the inputs of the BNN.
We represent the logical formula as a logical circuit with the gates
AND, OR, NOT corresponding to ∧,∨,¬. In the following, we show
that for each of the gates there exist an equivalent representation
as a perceptron. For the OR gate we construct an equivalent per-
ceptron, i.e., for every clause Ci of the formula F , we construct a
perceptron. The perceptron is activated only if the inputs corre-
spond to a satisfying assignment to the formula F . Similarly, we
show a construction for the AND gate. Thus, we construct a BNN



that composes these gates such that it can represent the logical
formula exactly.

Let F be a CNF formula F = C1∧C2∧. . .Cn .We denote the literals
appearing in clauseCi as li j , j = 1, ..m. Let τ : Supp(F ) → {0, 1} be
an assignment for F where Supp(F ) represents the propositional
variables F is defined on. We say F is satisfiable if there exists an
assignment τ such that τ (F ) = 1. The binarized neural net f has
inputs x and one output y, y = N (x), and f : {−1, 1}m ·n → {0, 1}.
This can be easily extended to multi-class output.

We first map the propositional variables in Supp(F ) to variables
in the binary domain {−1, 1}. For every clause Ci , for every literal
li j ∈ {0, 1} there is a corresponding input to the neural net xi j ∈
{−1, 1} such that li j ⇔ xi j = 1 ∧ li j ⇔ xi j = −1. For each
input variable xi j the weight of the neuron connection is 1 if the
propositional variable li j appears as a positive literal in theCi clause
and −1 if it appears as a negative literal li j in Ci .

For every clause Ci we construct a disjunction gadget, a per-
ceptron equivalent function to the OR gate (Figure 5). Given m
inputs xi1,xi2, . . . xim ∈ {−1, 1}, the disjunction gadget deter-
mines the output of neuron qi . The output is the linear layer is
ti =

∑m
j=1w j · xi j + m. The output neuron qi is 1 if the activa-

tion function sign(ti ) returns 1. Namely, the output is 1 only if at
least one literal is true, i.e., not all w j · xi j terms evaluate to −1.
Notice that we only needm + 2 neurons (m for the inputs and 2

for the intermediate outputs) for each clause Ci with m literals.
Next, we introduce the conjunction gadget which, given n inputs
q1, . . . ,qn ∈ {−1, 1} outputs y = 1 only if q1 + q2 + . . . + qn ≥ n
(Figure 6). The linear layer’s output is t ′ =

∑n
i=1wi · qi − n over

which we apply the sign activation function. The output of this
gadget, y =

∑n
i=1wi · qi ≥ n, is 1 if all of the variables qi are 1,

i.e., if all the clauses are satisfied.Notice that if we consider the
batch normalization a transformation over ti that returns ti , we
can obtain a binarized neural network f .

If the output of f on inputs x is 1 the formula F is SAT, otherwise
it is UNSAT.Moreover, the binarized neural network constructed for
binary input vectors of sizem×n outputs y = 1 for every satisfying
assignment τ of the formula F , i.e., f (τ (x)) = 1. Given a procedure
#SAT(F ) that accepts formula F and outputs a number r which
is the number of satisfying assignments, it will also compute the
number of inputs for which the output of the BNN is 1. Specifically,
we can construct a quantitative verifier for the neural net f and a
specification φ(x,y) = (y = N (x)) ∧ y = 1 using #SAT(F ).
Reduction is polynomial. The size of the formula F is the size
of the input x to the neural net, i.e., m · n. The neural net has
n + 1 perceptrons (n for each disjunction gadget and one for the
conjunction gadget).

□
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