
Neuro-Symbolic Execution: Augmenting
Symbolic Execution with Neural Constraints

Shen Shiqi Shweta Shinde Soundarya Ramesh Abhik Roychoudhury Prateek Saxena
Computer Science Department, School of Computing

National University of Singapore
{shiqi04, shweta24, sramesh, abhik, prateeks}@comp.nus.edu.sg

Abstract—Symbolic execution is a powerful technique for
program analysis. However, it has many limitations in practical
applicability: the path explosion problem encumbers scalability,
the need for language-specific implementation, the inability to
handle complex dependencies, and the limited expressiveness of
theories supported by underlying satisfiability checkers. Often,
relationships between variables of interest are not expressible
directly as purely symbolic constraints. To this end, we present
a new approach—neuro-symbolic execution—which learns an
approximation of the relationship between program values of
interest, as a neural network. We develop a procedure for check-
ing satisfiability of mixed constraints, involving both symbolic
expressions and neural representations. We implement our new
approach in a tool called NEUEX as an extension of KLEE, a
state-of-the-art dynamic symbolic execution engine. NEUEX finds
33 exploits in a benchmark of 7 programs within 12 hours. This
is an improvement in the bug finding efficacy of 94% over vanilla
KLEE. We show that this new approach drives execution down
difficult paths on which KLEE and other DSE extensions get
stuck, eliminating limitations of purely SMT-based techniques.

I. INTRODUCTION

Symbolic execution is a code analysis technique which
reasons about sets of input values that drive the program to
a specified state [68]. Certain inputs are marked as symbolic,
and the analysis gathers symbolic constraints on these inputs
by analyzing the operations along a path of the program.
Satisfying solutions to these constraints are concrete values
that cause the program to execute the analyzed path. Ma-
nipulating these constraints allows one to reason about the
reachability of different paths and states, thereby serving
to guide search in the execution space efficiently. Symbolic
execution, especially its mixed-dynamic variant, has been
widely used in computer security. Its prime application over
the last decade has been in white-box fuzzing, with the goal
of discovering software vulnerabilities [63]. More broadly, it
has been used for patching [80], invariant discovery [66], and
verification to prove the absence of vulnerabilities [45]. Off-
the-shelf symbolic execution tools targeting languages such as
C/C++ [95], JavaScript [73], and executable binary code [44]
are available.

Symbolic analysis is a powerful technique; however, it
has a number of limitations in practical applicability. First,

symbolic analysis is a deductive procedure, requiring complete
access to the target code and pre-specified semantics of the
target language. The symbolic analysis procedure is specific
to the target language (e.g., C vs. x64), and further, if a
certain functionality of a program is unavailable for analysis—
either because it is implemented in a different language, or
because it is accessible as a closed, proprietary service—
then, such functionality cannot be analyzed precisely. Today’s
symbolic execution engines either resort to human assistance
(e.g., prompting analysts for external stubs) or to ad-hoc
concretization of symbolic values in such cases.

Second, symbolic analysis may not be able to infer pro-
gram constraints that are directly expressible in underlying
SAT/SMT theories succinctly. Programs often have custom
logic that implements high-level relations (e.g., string manip-
ulation) via low-level control flow constructs (e.g., iterating
over byte arrays in nested loops). This often contributes to
the phenomenon described as the “path explosion” problem,
wherein the symbolic analysis enumeratively explores the
execution path space which can be exponentially large [41].
Providing structured representation of constraints (e.g., arith-
metic expressions or strings) is one approach that has yielded
improvements [33], [56], [91], [100]. However, recovering
and solving such structured constraints require specialized
techniques, each targeted at a specific class of constraints.

Lastly, many symbolic constraints, even if recovered suc-
cinctly, lack efficient handling or fall outside of the theory
of the underlying SAT/SMT checkers [34]. Symbolic analysis
typically uses quantifier-free and decidable theories in first-
order logic, and satisfiability solvers have well-known limits
in expressiveness [30]. For instance, non-linear arithmetic over
reals is slow and does not scale in existing solvers [57], and
string support is relatively new and still an area of active
research [100]. When program functionality does not fall
within the supported theories, analysis either precludes such
functionality altogether, encodes it abstractly using supported
theories (e.g., arrays, bit-vectors, or uninterpreted functions),
or concretizes symbolic variable with ad-hoc values.

A. Neuro-Symbolic Execution

In this paper, we introduce a new approach that com-
plements dynamic symbolic execution and is easily imple-
mentable in standard tools. We present a technique called
neuro-symbolic execution, in which the symbolic execution
engine accumulates neural constraints (learned inductively) for
certain parts of the analyzed program logic, in addition to
its standard symbolic constraints (derived deductively). Neural

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23530
www.ndss-symposium.org

constraints capture relationships between program values for
which the symbolic engine cannot recover quickly solvable
constraints. In neuro-symbolic execution, the engine can switch
to an inductive learning mode by forking off a live training
procedure for such program logic. The training procedure treats
the target logic as a black-box and learns a neural network
representation approximating it as accurately as feasible. This
learnt neural network is called a neural constraint, and both
symbolic and neural constraints are called neuro-symbolic.

Our choice of representation via neural networks is mo-
tivated by two observations. First, neural networks can ap-
proximate or represent a large category of functions, as im-
plied by the universal approximation theorem [55]; and in
practice, an explosion of empirical results are showing that
they are learnable for many practical functions [32], [64].
Although specialized training algorithms are continuously on
the rise [69], [85], we expect that neural networks will prove
effective in learning approximations to several useful functions
we encounter in practice. Second, neural networks are a
differentiable representation, often trained using optimization
methods such as gradient descent [87]. This differentiability
allows for efficient analytical techniques to check for satisfia-
bility of neural constraints and produce satisfying assignments
of values to variables [65], analogous to the role of SMT
solvers for purely symbolic constraints. One of the core
technical contributions of this work is a procedure to solve
neuro-symbolic constraints: checking satisfiability and finding
assignments for variables involved in neural and symbolic
constraints simultaneously, with good empirical accuracy on
tested benchmarks. This is the key to utilizing neuro-symbolic
execution for bug-finding.

B. Applications, Tool & Results

In this work, we focus on establishing the benefits of aug-
menting dynamic symbolic execution with neural constraints
for one security application: generating exploits for out-of-
bound buffer accesses, zero division, and data-type overflows.
In this setting, we take a well-maintained dynamic symbolic
execution engine called KLEE as a baseline [40]. Then we
augment it to switch to neuro-symbolic execution for parts
of the code if it gets stuck because of path explosion, solver
timeouts, or external calls. We call this enhanced tool NEUEX.

Results. We analyze 7 real-world Linux programs for the three
classes of vulnerabilities listed above. Our tool NEUEX, which
extends KLEE, finds a total of 33 bugs in 12 hours. 11 of
these are new, and 22 have publicly known CVEs. Vanilla
KLEE (without our neuro-symbolic enhancement) finds only
17 of these in 12 hours; so NEUEX improves over the baseline
by finding 94% more bugs. We show that NEUEX helps
vanilla KLEE as it drives program execution down complex
paths on which the latter gets stuck. We show that NEUEX
scales gracefully with the increasing complexity of constraints;
it learns both simple constraints (where KLEE is fast) as
well as complex ones (which KLEE times out in 12 hours).
We compare NEUEX with a structured constraint inference
extension of symbolic execution called LESE [91], finding that
NEUEX is two orders of magnitudes faster.

Contributions. We make the following contributions:

1#define BUFFER_LEN 4096
2void psf_log_printf (...) {
3 ...
4 while (...) { // KLEE path explosion
5 ...
6 }
7}
8double psf_calc_signal_max (SNDFILE *psf) {
9 ...

10 sf_read_double ((SNDFILE*) psf, data, ..);
11 ...
12 temp = fabs (data [k]); // KLEE cannot reason about fabs
13 ...
14 return temp;
15}
16void sfe_copy_data_fp(..., SNDFILE *infile,..) {
17 static double data[BUFFER_LEN], max;
18 ...
19 max = psf_calc_signal_max (infile);
20 while (readcount > 0) {
21 readcount = sf_readf_double(infile,data,frames);
22 for (k = 0; k < readcount; k++)
23 data[k] /= max; // potential divide-by-zero
24 ...
25 }
26 ...
27}
28int main (int argc, const char* argv[]) {
29 char* infilename = argv [argc-2];
30 ...
31 if (strlen (infilename) > 1 && infilename [0] == ’-’) {
32 // exit
33 }
34 ...
35 psf_log_printf(...);
36 ...
37 sfe_copy_data_fp(...);
38 ...
39}

Fig. 1. A simplified example of libsndfile library. Function
sfe_copy_data_fp copies data from input to output files. The function first
scans the entire input file to obtain the maximum value(Line 19) by reading
the input file bytes as double typed values (Line 12). It then normalizes the
values (Line 23) and writes the new values to the output file. The code has a
potential divide by zero on Line 23.

• Neuro-Symbolic Constraints. NEUEX is the first in-
ductive approach that uses to learn an approximate
representation of difficult program path logic in sym-
bolic execution. This is a generic approach to learn
a representation of constraints different from those
encoded in the program implementation or recovered
by prior template-based inductive approaches.

• Neuro-Symbolic Constraint Solving. NEUEX features
a novel procedure that solves purely symbolic, purely
neural, and mixed neuro-symbolic constraints.

• Tool and Evaluation. Our approach can augment ex-
isting tools, which we confirm by extending a state-
of-the-art dynamic symbolic execution system. Our
evaluation confirms that our new approach directly
alleviates known challenges for deductive symbolic
analysis: path explosion, limitations of SMT theories,
and missing external code.

II. PROBLEM

We use KLEE, an existing and widely-used engine, as a
baseline to show examples where symbolic execution exhibits
limitations. Figure 1 shows a code snippet from an audio
processing library called libsndfile [52], which has a divide-
by-zero (Line 23) reported as CVE-2017-14246 [21].

2

Constraint Inference is Difficult. For KLEE to find the
divide-by-zero, it has to infer two sets of path constraints.
First, the execution must reach Line 23 in Figure 1 by
satisfying reachability constraints. Second, the value of the
variable in the denominator of the division operation must be
set to 0, which satisfies certain vulnerability constraints that
result in a crash. Collecting reachability constraints for Line 23
involves getting past the complex grammar of the file header
and selecting the right command-line options. Even after part
of the reachability challenge is side-stepped by providing an
input grammar [61], symbolic execution may not be able
to collect the exact reachability and vulnerability constraints.
Thus, the primary challenge that still remains is to infer and
solve all the constraints leading to value 0 for the denominator.

KLEE’s classic DSE mode begins from the main function
in the program (Line 28). We expect it to identify the vulner-
ability on Line 23 in function sfe_copy_data_fp. We mark
the input file name and content as symbolic. The DSE mode
gets past the branch which performs checks on the variable
infilename (Line 31). However, the DSE mode gets stuck
in psf_log_printf called on Line 35. This function has a
complicated loop. The loop guards are controlled by symbolic
values read from the file (Line 4). Even if KLEE gets past
the loop in psf_log_printf, there are more than 10 loops
(not shown in the Figure) in the call graph before reaching
the sfe_copy_data_fp function. In our experiments, KLEE
could not reach the vulnerability within a 12-hour timeout.

When KLEE encounters the complex loops in our example,
it attempts to enumerate the entire path space of the low-
level implementation, running into memory exhaustion. A
human analyst can inspect and recognize that the constraint is
perhaps representable differently—for instance, the direct use
of floating point values (doubles) for inputs, which can then
be subject to SMT reasoning, can eliminate part of the com-
plexity. Generic approaches to tackling the “path explosion”
phenomenon would not help recover such a representation
automatically in this example. For example, a technique called
loop-extended symbolic execution (LESE) [91] attempts to
extract linear relationships among a small number of loop
induction variables. However, in our example, the relationship
is multi-linear and has floating point arithmetic, which does not
fit the template expected by LESE. More powerful techniques
like Veritesting [33] generalize to capture dependencies in
multi-path code fragments as much richer SMT constraints. In
the case of Veritesting, loops are unrolled to fixed depths and
limited to certain function boundaries. However, one can see
that SMT constraint encoding simply offload the exponential
complexity to SMT solver. Therefore, while being useful
over purely dynamic symbolic execution, prior approaches
do not fundamentally lift the abstraction at which variable
relationships are reasoned about. These approaches simply
model relationships inherent in the low-level implementation
as certain templatized constraint formats.

The key takeaway from this example is that learning
the right representation of the constraint is a challenge. In
prior constraint synthesis works, the representation of the
constraints is fixed in advance as templates, such as in
linear arithmetic [91], octagonal inequalities [82], or even
full SMT theories [33]. Each templating technique comes
with specialized inference procedure. When the code being

1static int _tiffMapProc
2(thandle_t fd, void** pbase, toff_t* psize){
3 ...
4 *pbase = mmap(0, (size_t)sizem, PROT_READ, MAP_SHARED,

fdh.fd, 0); // returns -1
5 ...
6}
7// KLEE Stub
8void *mmap(void *start, size_t length, int prot, int flags

, int fd, off_t offset) {
9 klee_warning("ignoring (EPERM)");

10 errno = EPERM;
11 return (void*) -1;
12}

Fig. 2. A simplified example of libtiff library. KLEE’s uClibc stub does
not model the behavior of mmap and merely returns an error (Line 11).

1static enum req_action req_iquery(HEADER *hp, u_char **cpp
, u_char *eom, int *buflenp, u_char *msg) {

2 if ((n = dn_skipname(*cpp, eom)) < 0){ // unknown call
3 return (Finish); // klee exit
4 }
5 ...
6 memcpy(anbuf, fname, alen); // buffer overflow
7 ...
8}
9// KLEE Stub

10void __stub1(void) {
11 return;
12}
13link_warning (__stub1, "the ‘libresolv’ library is a stub.

Do you really need it?")

Fig. 3. A simplified example of BIND utility. req_iquery (Line 1) parses
the DNS iquery packet to decide which response to send for the query. The
program has a buffer overflow on Line 6. The logic before this line calls
a libc function dn_skipname which is implemented in libresolv library
external to the program. KLEE’s uClibc library does not reason about any
functions in this external library (Line 11), and always returns an error value.
KLEE terminates its analysis on Line 3 and never reaches Line 6.

approximated does not fall within a chosen template structure,
brute-force enumeration of templates to fit the samples or ad-
hoc concretization is the default option undertaken in most
prior works. This motivates our new approach to learn a
different (approximate) representation of program fragments.

Constraint Solving is Difficult. Consider the scenario where
KLEE or its extensions are somehow precisely able to infer the
reachability and vulnerability constraints in the above example,
encoded as SMT constraints over floating point values. At this
point, the symbolic execution engine queries the SMT solver
to check the satisfiability of these constraints to get concrete
values for the symbolic variables. First, KLEE does not reason
about floating point symbolic values and concretizes them to 0,
thus leading to unsound SMT queries. Second, state-of-the-art
SMT solvers which support floating-point theories [27], [53]
are well-known to be extremely slow [57]. One common option
for solvers to handle difficult SMT theories, like floating points
or strings, is to resort to bit-vector encoding and bit-blasting.
In our example, this does not help. For instance, a bit-vector
encoding of the floating point operations did not terminate in
12 hours with the Z3 SMT solver, which is a re-confirmation
of a known inscalability challenge [89].

Missing / Unreachable Code. Symbolic execution requires
access to all the source code under analysis, which is another
fundamental limitation. This poses a challenge in capturing

3

complex dependency between variables, especially when the
functions are implemented as external libraries, remote calls,
or a library call written in a different language. In Figure 1,
there is an unknown external function call (fabs) whose
output controls our variable of interest (Line 12). KLEE ships
with a helper library uClibc [26] which provides stubs for
reasoning about the most commonly used libc functions.
The default uClibc does not define stubs for fabs. To deal
with such missing code, the present practice is that developers
manually analyze the program context and write stubs. We find
many such instances of missing external calls. When analyzing
libTIFF (Figure 2) with KLEE, it encounters the mmap library
call which is not modeled by KLEE. Thus, it fails to analyze
the interesting paths which have multiple CVEs [17], [23]–
[25]. Figure 3 shows a code snippet from BIND [2] application,
in which KLEE fails to find a known CVE because it cannot
analyze dn_skipname. These examples motivate our technique
which can approximate missing code with automatically learnt
stubs, where possible.

III. OUR APPROACH

To address the above challenges, we propose a new ap-
proach with two main insights: (1) leveraging the high rep-
resentation capability of neural networks to learn constraints
when symbolic execution is infeasible to capture it; and (2)
encoding the symbolic constraints into neural constraint and
leveraging the optimization algorithms to solve the neuro-
symbolic constraints as a search problem. NEUEX departs
from the purist view that all variable dependencies and re-
lations should be expressible precisely in a symbolic form.
Instead, NEUEX treats the entire code from Line 4-23 in
Figure 1 as a black-box and inductively learns a neural network
—an approximate representation of the logic. In our example,
we want the neural net to learn the relationship that the variable
max is the maximum quantity of all two-byte sequences in
the input after being read in as positive double precision.
Specifically, for each i, this desired relationship to be captured
is:1

max == ((2 · s− 1) · a) − 65536 · (s− 1)
∧ a == infile [i] + 256 · infile [i+ 1]
∧ s == sign (infile [i+ 1] ≤ 127)

This constraint when represented purely by a neural network
approximation of the code is termed as a neural constraint. Our
approach creates neuro-symbolic constraints, which includes
both symbolic and neural constraints. The neural network
is trained on concrete program values rather than on the
code. Revisiting the example (Figure 1), the neuro-symbolic
constraints capturing the vulnerability on Line 23 are:

strlen(infilename) ≤ 1 (1)
∨ infilename [0] 6= 45 (2)
∧ max == 0.0 (3)
∧ N : infile 7→ max (4)

(1)-(2) are symbolic constraints for reachability condition,
while (3) is a symbolic constraint for the vulnerability con-
dition divide-by-zero. (4) is a neural constraint capturing the

1infile [i] + 256 · infile [i+ 1] captures the relationship defined by
function sf_read_double and max == ((2 · s− 1) · a) − 65536 · (s− 1)
captures the behavior of the fabs function.

Program
Source

	
Dynamic	
Symbolic	
Execution	
Engine	

	
	

SMT	
Solver	

Neural	
Mode	

Crash
Inputs

Fork Profile
Stats

NeuEx Engine

Input
Grammar
(Optional)

Symbolic
Inputs

Vulner-
ability
Type

Fig. 4. NEUEX Component Architecture. NEUEX takes in a program,
symbolic inputs (optionally), and the input grammar. The user can configure
the types of vulnerabilities that tool should identify. NEUEX runs in classic
DSE mode and neural mode to produce concrete exploits.

relationship between the input and the variable of interest max
in the divide-by-zero operation.

Solving neuro-symbolic constraints is a key challenge. One
naive way is to solve the neural and symbolic constraints
separately. For example, consider the neuro-symbolic con-
straints in Equation (1)-(4). We can first solve the symbolic
constraints by SAT/SMT solvers to obtain concrete values
for variables max, infilename, and infile. Note that the
SAT/SMT solver will assign a random value to infile since it
is a free variable. When we plug the concrete value of infile
from SAT/SMT solver in the neural constraint, it may produce
values such as 32.00, 45.00, and 66.00 for the variable max.
Although all these values of max satisfy the neural constraint,
they may not satisfy the symbolic constraint max == 0.
This discrepancy arises because we solve the symbolic and
neural constraints individually without considering the inter-
dependency of variables between them. We refer to such
constraints with inter-dependent variables as mixed constraints.
Alternatively, to solve these mixed constraints, one could resort
to enumeration over values of the inter-dependent variables.
However, this will require a lot of time to discover the
exploit. This inspires our design of neuro-symbolic constraint
solving. NEUEX solves purely symbolic, purely neural, and
mixed constraints in that order. Specifically, to solve the mixed
constraints, NEUEX converts symbolic constraints to a loss
function (or objective function) and then finds a satisfiable
solution for neural constraints. This enables conjunction of
symbolic and neural constraints.

Remark on Novelty. To the best of our knowledge, our
approach is the first to train a neural net as a constraint
and solve both symbolic constraint and neural constraint
together. Inductive synthesis of symbolic constraints usable
in symbolic analyses has been attempted in prior work [54],
[81]. However, none of them use neural networks. Specifically,
one notable difference is that our neural constraints are a
form of unstructured learning, i.e., they approximate a large
class of functions and do not aim to print out constraints
in a symbolic form amenable to SMT reasoning. The main
technical novelty of our approach is that the representation it
learns is fundamentally different (approximation) from that of
the real implementation. The second technical novelty in our
design is that NEUEX reasons about neural as well as symbolic
constraints simultaneously.

4

NeuEx Neural Mode

Symbolic
Constraints

Partially
Concretized
Values
Candidate
Vulnerability
Points

Randomly
mutate

symbolic
Values

Sample Set Generation Neural Constraint
Synthesis

Sa
m

pl
e

Se
t

(Gradient
Descent

Optimization)

Neural net
Training

Neuro-symbolic
Constraint Solving

SymSolv	

NeuSolv	

Symbolic
Constraints

Initial
Input

DPLL Loop

Constraint
Solution

for
k

fork

fork

fork

fork

P(I0, O0)

P(I1, O1)

P(I2, O2)

P(I3, O3)

P(In, On)

…

Fig. 5. NEUEX’s Neural Mode. It takes in the intermediate symbolic constraints from the DSE mode. For sample set generation, it creates inputs and executes
the program P in a separate forked process to produces tuples (In, On). These tuples are used as training and testing sets to learn a neural constraint for each
CVP. The NEUEX solver then takes both neural as well as symbolic constraints and generates a concrete input if possible, else returns UNSAT.

IV. DESIGN

We first explain the NEUEX setup and the building blocks
we use in our approach. Then, we present the core constraint
solver of NEUEX along with various optimization strategies.

A. Overview

Setup. NEUEX is built as an extension to KLEE—a widely
used and maintained dynamic symbolic execution (DSE) en-
gine. Figure 4 shows the architecture of NEUEX. It takes in
the source code of the program that the user wants to analyze.
The analyst can optionally mark inputs of interest as symbolic
by standard KLEE interfaces. The analyst can further provide
input grammar, which they know beforehand [35]. We are
interested in identifying the following kinds of vulnerability
conditions: out-of-bound buffer accesses, division by zero, and
data-type overflows. To this end, KLEE symbolically executes
the program. At the end of the analysis, KLEE returns concrete
inputs to trigger all the detected vulnerabilities.

Preprocessing. NEUEX performs additional pre-processing of
the program before starting the vulnerability detection. Specif-
ically, it performs static analysis of the program source code
to generate the call graph. NEUEX then statically estimates the
program locations where (a) division operations may not check
if the divisor is zero, and (b) buffer accesses may be without
buffer boundary checks. Our analysis marks all such locations
as candidate vulnerability points (or CVPs). Lines 12, 23, and
29 will be marked as CVPs in Figure 1. For each CVP, NEUEX
then statically instruments the programs to record the values of
variables used in the statements at CVPs. NEUEX records the
divisor for division operations; for buffer accesses it records
the index used for dereferencing (e.g., k, max, and argc in
Figure 1).

Classic DSE Mode. By default, NEUEX launches KLEE’s
standard DSE procedure which automatically constructs inputs
required to drive the program execution to various CVPs. The
DSE procedure begins at the entry point of the program. At
each conditional branch, it logs the symbolic path constraints
to reach this code point. It then invokes an SMT solver to
obtain the concrete values for each symbolic variable in the
constraint formula. The SMT solver returns concrete values
for inputs if the given constraints are satisfiable; otherwise,
it returns UNSAT which implies that the path is infeasible.
The DSE procedure continues the path exploration to other

branches. Once it reaches a CVP, it reports the concrete input
values for an exploit which will trigger the bug. These can be
concretely verified by running the program.

Neural Mode. We enhance KLEE with a profiler which
monitors the classic DSE mode at runtime. It tracks 4 kinds
of events, signaling that the DSE mode is stuck: (a) the path
exploration is stuck in the same loop because of unrolling; (b)
DSE runs out of memory due to path explosion; (c) the SMT
solver is not able to find a SAT/UNSAT solution; and (d) DSE
encounters an external / unknown function call. Whenever one
of these events trigger, we terminate the DSE search on this
path. Starting from the latest symbolic state, NEUEX forks
separate parallel processes and runs each in a neural mode.
This mode has a copy of all the symbolic constraints and
concrete values up to this point in the execution.

Figure 5 shows the detailed steps of our neural mode. When
the neural mode is triggered, NEUEX queries the call graph
to identify all the CVPs which are statically reachable from
the latest symbolic state. It chooses the nearest k CVPs of
each type of bug, where k is a configurable parameter set
to 150 by default. NEUEX treats the symbolic branch and
each CVP location as a start and end point respectively, for
training a neural network. NEUEX treats the fragment of code
between the start and end points as a black-box which the
neural network approximates.

To train the neural network, NEUEX needs to generate
training samples. These samples consist of program values of
variables at the program entry and the end point of the approx-
imated code fragment. NEUEX uses the symbolic constraints
at the start point to generate concrete program inputs that lead
up to that point using an SMT solver. This concrete input
serves as a seed for generating many random mutations which
are concretely executed to collect program values for training.
Some of these mutated inputs reach the start and the end point.
If sufficiently many samples (typically 100, 000) are collected,
NEUEX uses it to train a neural network. In our example, the
neural network collects samples for the values of the input file
bytes at the start point of the program and the max variable
at the end point (Line 23). At the end of such training, we
have the symbolic constraints generated by DSE as well as a
neural constraint, i.e., the neural net itself. Then NEUEX calls
its solver to solve both these constraints simultaneously.

Constraint Solver. The NEUEX solver checks satisfiability of
the given neuro-symbolic constraints and generates concrete
values for constraint inputs. The syntax of our neuro-symbolic

5

TABLE I. THE GRAMMAR OF NEURO-SYMBOLIC CONSTRAINT
LANGUAGE SUPPORTED BY NEUEX.

Nuero-Symbolic
Constraint NS := N ∧ S

Neural
constraint N := VIn 7→ VOn

symbolic
constraint S := e1 	 e2 | e

Variable StrVar := ConstStr | StrVar◦StrVar
NumVar := ConstNum | NumVar�NumVar

Expression e :=

contains(StrVar, StrVar)
strstr(StrVar, StrVar) ⊗ NumVar
strlen(StrVar) ⊗ NumVar
NumVar ⊗ NumVar

Logical 	 := ∨ | ∧
Conditional ⊗ := == | 6= | > | ≥ | < | ≤
Arithmetic � := + | - | * | /

constraints is shown as an intermediate language in Table I.
It is expressive enough to model various constraints speci-
fied in many real applications such as string and arithmetic
constraints. Given the learned neuro-symbolic constraints, we
seek the values of variables of interest that satisfy all the
constraints within it. A key technical challenge is solving the
mixed constraints simultaneously.

B. Constraint Learning

The procedure for learning neural networks is standard. In
this paper, we use multilayer perceptron (MLP) architecture
which consists of multiple layers of nodes and connects each
node with all nodes in the previous layer [88]. Each node in
the same layer does not share any connections with others.
We select this architecture because it is a suitable choice for
fixed-length inputs. There are other more efficient architectures
(e.g., CNN [71] and RNN [77]) for the data with special
relationships, and NEUEX is easily extensible to more network
architectures.

The selection of activation function plays a significant
role in neural constraint inference as well. In this paper,
we consider multiple activation functions (e.g., Sigmoid and
Tanh) and finally select the rectifier function Relu as the
activation function, because Relu obtains parse representation
and reduces the likelihood of vanishing gradient [59]. In other
words, the neural network with Relu has higher chance to
converge than other activation functions.

In addition, to ensure the generality of neural constraint, we
implement an early-stopping mechanism which is a regulariza-
tion approach to reduce over-fitting [98]. It stops the learning
procedure when the current learned neural constraint behaves
worse on unseen test executions than the previous constraint.
As the unseen test executions are never used to learn the neural
constraint, the performance of the learnt neural constraint on
unseen test executions is a fair measure for the generality of
learned neural constraints.

NEUEX can use any machine learning approach, opti-
mization algorithm (e.g., momentum gradient descent [85])
and regularization solution (e.g., dropout [96]) to learn the
neural constraints. With future advances in machine learning,
NEUEXcan adopt new architectures and learning approaches.

C. Building Blocks for Solver

NEUEX solves the neuro-symbolic constraints (e.g., Equa-

tions (1)-(4)) using its custom constraint solver detailed in
Section IV-D. It uses two existing techniques as building
blocks for such pure constraints: SMT solver and gradient-
based neural solver. These solvers referred to as SymSolv and
NeuSolv respectively form the basic building blocks.

SymSolv. NEUEX’s symbolic constraint solver takes in first-
order quantifier-free formulas over multiple theories (e.g.,
empty theory, the theory of linear arithmetic and strings)
and returns UNSAT or concrete values as output. It internally
employs Z3 Theorem Prover [53] as an SMT solver to solve
both arithmetic and string symbolic constraints.

NeuSolv. For solving purely neural constraints, NeuSolv takes
in the neural net and the associated loss function to generate
the expected values that the output variables should have.
NEUEX considers the neural constraint solving as a search
problem and uses a gradient-based search algorithm to search
for the satisfiable results [87]. Gradient-based search algorithm
searches for the minimum of a given loss function L(X)
where X is an n-dimensional vector. The loss function can
be any differentiable function that monitors the error between
the objective and current predictions. Consider the example in
Figure 1. By minimizing the error, NEUEX can discover the
input closest to the exploit. To minimize the error, gradient-
based search algorithm first starts with a random input X0

which is the initial state of NeuSolv. For every enumeration i,
it computes the derivative ∇XiL(Xi) given the input Xi and
then updates Xi according to ∇XiL(Xi). This is based on the
observation that the derivative of a function always points to
a local nearest valley. The updated input Xi+1 is defined as:

Xi+1 = Xi − ε∇Xi
L(Xi) (5)

where ε is the learning rate that controls how much is going
to be updated. Gradient-based search algorithm keeps updating
the input until it reaches the local minima. To avoid the non-
termination case, we set the maximum number of enumerations
to be a constant Me. If it exceeds Me, NeuSolv stops and
returns the current updated result. Note that the gradient-
based search algorithm can only find the local minima since
it stops when the error increases. If the loss function is a
non-convex function with multiple local minima, the found
local minima may not be the global minima. Moreover, it
may find different local minima with different initial states.
Thus, NEUEX executes the search algorithm multiple times
with different randomized initial states in order to find the
global minima of L(X).

D. Constraint Solver

We propose a constraint solver for neuro-symbolic con-
straints with the help of SymSolv and NeuSolv. If the con-
straint solving procedure returns SAT, then the neuro-symbolic
constraints are guaranteed to be satisfiable. It is not guaran-
teed, however, that the procedure terminates on all possible
constraints; so, we bound its running time with a configurable
timeout. Algorithm 1 shows the steps of our constraint solver.

DAG Generation. NEUEX takes the neuro-symbolic con-
straints and generates the directed acyclic graph (DAG) be-
tween constraints and its variables. Each vertex of the DAG

6

Algorithm 1 Algorithm for neuro-symbolic constraint solv-
ing. Sp is purely symbolic constraints; Np is purely neural
constraints; Sm and Nm are symbolic constraints and neural
constraints in mixed components.

1: function NEUCL(S, N , MAX1, MAX2) . S: Symbolic constraint
list; N : Neural constraint list; MAX1: The maximum number of trials
of NeuSolv; MAX2: The maximum number of trials for backtracking
procedure.

2: (Sp, Np, Sm, Nm) ← CheckDependency(N,S);
3: (X, assign1) ← SymSolv(Sp, ∅);
4: if X == UNSAT then
5: return (False, ∅);
6: end if
7: (X, assign2) ← NeuSolv(Np);
8: assign ← Union(assign1, assign2);
9: ConflictDB ← ∅; trial_cnt ← 0;

10: while trial_cnt < MAX2 do
11: ConflictConsts ← CreateConflictConsts(ConflictDB)
12: (X, assign3) ← SymSolv(Sm, ConflictConsts);
13: if X == UNSAT then
14: go to UNSAT
15: end if
16: NeuralConsts ← PartialAssign(Nm, assign3); cnt ← 0;
17: while cnt<MAX1 do
18: (X, assign4) ← NeuSolv(NeuralConsts);
19: if X == SAT then
20: assign2 ← Union(assign3, assign4);
21: go to SAT
22: end if
23: cnt ← cnt+1;
24: end while
25: trial_cnt ← trial_cnt+1;
26: ConflictDB ← ConflictDB ∪ assign3;
27: end while
28: trial_cnt ← 0; F ← Encode(Sm, Nm);
29: while trial_cnt<MAX1 do
30: assign2 ← NeuSolv(F);
31: X ← CheckSAT(assign2, Sm);
32: if X == SAT then
33: go to SAT
34: end if
35: trial_cnt ← trial_cnt+1;
36: end while
37: UNSAT:
38: return (False, ∅);
39: SAT:
40: return (True, Union(assign, assign2))
41: end function

represents a variable or constraint, and the edge shows that the
variable is involved in the constraint. For example, Figure 6
shows the generated DAG for constraints (V1 op1 V2) ∧
(V3 op2 V4)∧ (V5 op3 V6)∧ (V6 op3 V7 op4 V8)∧ (V8 op5 V9)
where opk can be any operator.

Next, NEUEX partitions the DAG into connected com-
ponents by breadth-first search [39]. Consider the example
shown in Figure 6. There are 5 constraints that are partitioned
into three connected components, G1, G2, and G3. NEUEX
topologically sorts the components based on the type of
constraints to schedule the solving sequence. Specifically, it
clusters the components with only one kind of constraints
as pure components (e.g., G1 and G2) and the components
including both constraints as mixed components (e.g., G3). It
further sub-categorizes pure components into purely symbolic
(e.g., G1) and purely neural constraints (e.g., G2).

NEUEX gives precedence to solving pure constraints over
mixed constraints. This is because the constraints have dif-

S1

V1 V2

N1

V3 V4

G2

S2 N2 S3

V5 V6 V8 V9V7

G1

G3

Fig. 6. NEUEX’s DAG representation for neuro-symbolic constraints. The
dotted rectangle represents connected components of the DAG. S: symbolic
constraint; N: neural constraint; V: variable.

ferent representation and hence are time-consuming to solve.
Thus, in our example, NEUEX first solves S1 ∧ N1 and then
checks the satisfiability of S2 ∧N2 ∧ S3.

Pure Constraint Solving. In pure constraints, we first apply
SymSolv to solve purely symbolic constraints (Line 3) and
then handle purely neural constraints using NeuSolv (Line 7).
Note that the order of these two kinds of constraints does not
affect the result. In our algorithm, we solve pure symbolic
constraints first. If the SymSolv reports UNSAT for purely
symbolic constraints, the whole neuro-symbolic constraints are
UNSAT, as all the constraints are conjunctive.

If both SymSolv and NeuSolv output SAT, NEUEX contin-
ues the process of solving the mixed constraints. We employ
two strategies for solving mixed constraints based on the
complexity of the constraint formulas. The first strategy is a
greedy approach which works for simple relationships but may
fail after several attempts for complex relationships. If NEUEX
cannot solve the formula with this strategy within a timeout,
it switches to the second strategy.

Mixed Constraint Solving I. NEUEX obtains symbolic con-
straints from mixed components (e.g., S2 and S3) by cutting
the edges between the neural constraints and its variables.
Then, NEUEX invokes SymSolv to check their satisfiability
on Line 12. If the solver returns UNSAT, NEUEX goes to
UNSAT state; otherwise, NEUEX collects the concrete values
of variables used in these symbolic constraints. Then, NEUEX
plugs these concrete values into neural constraints on Line
16. For Figure 6 example, if the satisfiable result of S2 ∧ S3

is 〈t5, t6, t8, t9〉 for the variables 〈V5, V6, V8, V9〉, NEUEX
partially assigns V6 and V8 in N2 to be t6 and t8. Now, we
have partially assigned neural constraint N2' from N2. All that
remains is to search for the value of V7 satisfying N2'.

To solve such a partially assigned neural constraint,
NEUEX employs NeuSolv on Line 18. If the NeuSolv outputs
SAT, NEUEX goes to SAT state. In SAT state, NEUEX termi-
nates and returns SAT with the combination of the satisfiable
results for all the constraints. If the NeuSolv outputs UNSAT,
NEUEX considers the satisfiable result of symbolic constraints
as a counterexample and derives the conflict clauses on Line
11. Specifically, in our example NEUEX creates a new conflict
clause (V5 6= t5) ∨ (V6 6= t6) ∨ (V8 6= t8) ∨ (V9 6= t9).
Then NEUEX adds these clauses and queries the SymSolv
with these new symbolic constraints (Line 12). This method of
adding conflict clauses is similar to the backtracking in DPLL

7

TABLE II. ENCODING SYMBOLIC CONSTRAINTS TO LOSS FUNCTIONS.
a AND b REPRESENT ARBITRARY EXPRESSIONS. S1 AND S2 REPRESENT

ARBITRARY SYMBOLIC CONSTRAINTS. L REPRESENTS THE LOSS
FUNCTION USED FOR NEURAL CONSTRAINT SOLVING. LS1 AND LS2

REPRESENT THE LOSS FUNCTION FOR SYMBOLIC CONSTRAINTS S1 AND
S2 RESPECTIVELY. α REPRESENTS A SMALL POSITIVE VALUE. β

REPRESENTS A NON-ZERO SMALL REAL VALUE.

Symbolic Constraint Loss Function (L)
S1 ::= a < b L = max(a− b+ α, 0)
S1 ::= a > b L = max(b− a+ α, 0)
S1 ::= a ≤ b L = max(a− b, 0)
S1 ::= a ≥ b L = max(b− a, 0)
S1 ::= a = b L = abs(a− b)
S1 ::= a 6= b L = max(−1,−abs(a− b+ β))
S1 ∧ S2 L = LS1

+ LS2
S1 ∨ S2 L = min(LS1

, LS2
)

algorithm [51]. Although the conflict clause learning approach
used in NEUEX is simple, NEUEX can adopt other advance
strategies for constraint solving in the future [75].

The above mixed constraint solving keeps executing the
backtracking procedure until it does not find any new coun-
terexample. Consider the example in Figure 1. NEUEX first
finds the values for variables max, infilename, and infile
which satisfy Equations (1)-(3). If these values do not satisfy
the neural constraint (Equation (4)), NEUEX transforms these
values into a conflict clause and attempts a retrial to discover
new values. However, the backtracking procedure may not
terminate either because the constraints are complex or UNSAT.
To avoid an infinite number of trials, NEUEX chooses to limit
the number to a user-controlled threshold value. Specifically, if
we do not have a SAT decision after mixed constraint solving
I within MAX2 iterations.2

NEUEX applies an alternative strategy where we combine
the symbolic constraints with neural constraints together. There
exist two possible strategies: transforming neural constraints
into symbolic constraints or the other way around. However,
collapsing neural constraints to symbolic constraints result in
a large number of encoded clauses. For example, encoding a
small binarized neural network generates millions of variables
and clauses [79]. Thus, we transform the mixed constraints
into purely neural constraints for solving them together.

Mixed Constraint Solving II. The key idea for solving mixed
constraints efficiently is to collapse symbolic constraints to
neural constraints by encoding the symbolic constraints to
a corresponding loss function (Line 28). This ensures the
symbolic and neural constraints are in the same form. Table II
shows the encoding of symbolic constraints and the loss
function that NEUEXtransforms it into. For Figure 6, NEUEX
transforms the constraints S2 and S3 into a loss function N2.

Once the symbolic constraints are encoded into neural
constraints, NEUEX applies the NeuSolv to minimize the
loss function on Line 30. The main intuition behind this
approach is to guide the search with the help of encoded
symbolic constraints. The loss function measures the distance
between the current result and the satisfiable result of symbolic
constraints. The search algorithm gives us a candidate value
for satisfiability checking of neural constraints. However, the

2Users can adapt MAX2 according to their applications.

candidate value generated by minimizing the distance may
not always satisfy the symbolic constraints since the search
algorithm only tries to minimize the loss, rather than exactly
forces the satisfiability of symbolic constraints. To weed out
such cases, NEUEX checks the satisfiability for the symbolic
constraints by plugging in the candidate value and querying
the SymSolv on Line 31. If the result is SAT, the solver
goes to SAT state. Otherwise, it continues executing Approach
II with a different initial state of the search algorithm. For
example, in Figure 6, NEUEX changes the initial value of V7
for every iteration. Note that each iteration in Approach I has to
execute sequentially because the addition of the conflict clause
forces serialization. In contrast, each trial in Approach II is
independent and thus embarrassingly parallelizable. To avoid
the non-termination case, NEUEX sets the maximum number
of trials for mixed constraint solving II to be MAX1, which can
be configured independently of our constraint solver.

Thus, neuro-symbolic execution has the ability to reason
about purely symbolic constraints, purely neural constraints,
and mixed neuro-symbolic constraints. This approach has a
number of possible future applications, including but not
limited to: (a) analyzing protocol implementations without
analyzable code [49]; (b) analyzing code with complex depen-
dency structures [97]; and (c) analyzing systems that embed
neural networks directly as sub-components [36].

E. Encoding Mixed Constraints

One of the key challenges is in solving mixed constraints.
To solve mixed constraints, we encode symbolic constraints as
a loss function in the neural network. The variable values that
minimize this loss function are expected to be close (ideally
equal to) those which satisfy both the encoded symbolic con-
straints and the neural ones. Let X be the free input variables in
the constraints and S(X) be the symbolic constraints defined
over a subset of X . We wish to define a loss function L(X)
such that the values of X that minimize L(X) simultaneously
satisfy S(X). We define an encoding procedure for each kind
of symbolic constraint into a corresponding loss function.
NEUEX minimizes the joint loss functions of all symbolic
constraints encoded as loss functions, together with that of
the neural constraint. A gradient-based minimization procedure
finds the minimum values of the joint loss function. The
encoding and minimization procedure is explained next.

Encoding. For each kind of symbolic constraint in our lan-
guage (Table I), we define a corresponding loss function.
All string expressions are converted into bit-vectors [90] and
treated like numeric variables (type NumVar in Table I).
Table II describes the loss function for all six symbolic
constraint types over numerics and the two constraint types
over Booleans. Taking a = b as an example, the loss function
L = abs(a − b) achieves the minimum value 0 when a = b,
where a and b can be arbitrary expressions. Thus, minimizing
the loss function L is equivalent to solving the symbolic
constraint. We point out that encodings other than the ones
we outline are possible. They can be plugged into NEUEX, as
long as they adhere to the three requirements outlined next.

1) Differentiability. NeuSolv can only be applied to
differentiable loss functions, as is the case with our
encodings for each expression in Table II.

8

2) Non-Zero Gradient Until SAT. The derivative of the
loss function should not be zero until we find the
satisfiable assignments. For example, consider our
encoding of the constraint a < b. Here, the derivative
of the loss function should not be equal to zero
when a = b. If this happens, NeuSolv will stop
searching and return UNSAT. To avoid this, we add
a small positive value α, making the loss function
L = max(a − b + α, 0). The cases for a > b and
a 6= b are similar to the constraint a < b.

3) Finite Lower Bound for Loss Functions. The loss
function for each constraint needs to have a finite
lower bound. Without this, the procedure would con-
tinue minimizing one of the constraints indefinitely
in (say) a conjunction of clauses. For instance, our
encoding of a 6= b as L = max(−1,−abs(a−b+β))
carefully ensures a finite global minimum.3 If we
instead encoded it as L = −abs(a − b + β), the
loss function would have no finite minimum. When
we consider the conjunction of two clauses, say
(a 6= b) ∧ (c < d), the joint loss function for the
conjunction of the two clauses is the sum of the
individual losses. NeuSolv may not know where to
terminate the minimization of the loss for (a 6= b),
preventing it from finding the satisfiable assignment
for the conjunction. To avoid this, our encoding adds
an explicit lower bound of −1.

F. Optimizations

NEUEX applies five optimization strategies to reduce the
computation time for neuro-symbolic constraint solving.

Single Variable Update. Given a set of input variables
to neural constraint, NEUEX only updates one variable for
each enumeration in NeuSolv. In order to select the variable,
NEUEX computes the derivative values for each variable and
sorts the absolute values of derivatives. The updated variable is
the one with the largest absolute value of the derivative. This
is because the derivative value for each element only computes
the influence of changing the value of one variable towards the
value of loss function but does not measure the joint influence
of multiple variables. Thus, updating them simultaneously may
increase the loss value. Moreover, updating one variable per
iteration allows the search engine to perform the minimum
number of mutations on the initial input in order to prevent
the input from being invalid.

Type-based Update. To ensure the input is valid, NEUEX
adapts the update strategy according to the types of variables.
If the variable is an integer, NEUEX first binarizes the value of
derivatives and then updates the variables. If the variable is a
float, NEUEX updates the variable with the actual derivatives.

Caching. NEUEX stores the updated results for each enumer-
ation in NeuSolv. As the search algorithm is a deterministic
approach, the final generated result is the same if we have the
same input, neural constraints, and the loss function. Thus, to
avoid unnecessary re-computation, NEUEX stores the update

3Here β can be any non-zero and small real value.

history and checks whether the current input is cached. If yes,
NEUEX reuses the previous result; otherwise, NEUEX keeps
searching for a new input.

SAT Checking per Enumeration. To speed up the solving
procedure, NEUEX verifies the satisfiability of the variables af-
ter each enumeration in NeuSolv. Once it satisfies the symbolic
constraints, NeuSolv terminates and returns SAT to NEUEX.
This is because the local minima could be the satisfiable result
of the symbolic constraint. For example, any result can be the
satisfiable result of the constraint a 6= b except for the result
satisfying a = b. Hence, NEUEX does not wait for minimizing
the loss function, instead it checks the updated result after
every iteration.

Parallelization. NEUEX executes NeuSolv with different ini-
tial inputs in parallel since each loop for solving mixed
constraints is independent. This parallelization reduces the time
for finding the global minima of the loss function.

V. IMPLEMENTATION

We implement NEUEX in KLEE v1.4. We use KLEE-
uClibc [28] and Z3 SMT solver [53] as the back-end for
KLEE. Our implementation makes 351 LOC change to KLEE
for monitoring and passing run-time information to NEUEX.
We build our static analysis using Clang v3.4 and Clang Static
Analyzer [6] in 601 LOC. The rest of NEUEX is implemented
in Python and TensorFlow with 4635 LOC.

Profiler. We launch KLEE with its logging turned on, such
that it reports external calls, SMT query execution time, loop
unrolling, and increase in memory footprints due to path
explosion. Further, we also ask KLEE to log the instructions
that it symbolically executes. We directly use the appropriate
flags provided by KLEE to turn on this logging. NEUEX’s
profiler continuously monitors these logs as they are being
written out. We coarsely detect loop unrolls via scanning the
instruction log i.e., when line numbers in the program code are
being periodically. Our profiler starts the neural mode process
whenever it detects the following events: (a) warnings for
external calls; (b) Z3 threshold limit capped at 10 minutes; (c)
loop unroll count is greater than 10, 000 (d) state termination
because of memory cap (3 GB). NEUEX launches a separate
neural-mode process which has an RPC tunnel to KLEE. It
then passes the current program point, the current symbolic
state, the inputs, and the symbolic path constraints it has
collected so far to this newly created neural-mode process.

CVP Reachability. NEUEX reasons about an arbitrary-sized
program code by representing it as a neural net. When NEUEX
starts its neural mode it takes the symbolic states from KLEE
and sends a signal to KLEE to abort these states to continue
on a different path. We continue in neural mode from this
symbolic state onwards to multiple CVPs in the rest of the
program. Specifically, we select the closest k (default 150)
CVPs for each bug type in the static call graph. For each CVP,
we concretize all the symbolic states and create a random seed
for input generation. Specifically, we generate 20, 000 random
inputs and execute the program with these concrete inputs.
When NEUEX finds at least one input which reaches the CVP
of our choice, we consider that the CVP is reachable.

9

TABLE III. NUMBER OF VERIFIED BUGS FOUND BY NEUEX VS. VANILLA KLEE IN A 12 HOUR RUN, EACH CONFIGURED WITH BFS AND RAND MODE IN
SEPARATE EXPERIMENTS. THE “COMBINED” COLUMN REPORTS THE TOTAL EXPLOITS FOUND IN EITHER MODE.

Program Known CVEs Vanilla KLEE NEUEX
BFS Random Combined BFS Random Combined

cURL [19] 1 2 2 1 2 2
SQLite [18] 0 0 0 2 2 2
libTIFF [17], [23]–[25] 0 0 0 4 4 4

libsndfile [20]–[22] 0 0 0 3 3 3
BIND [3], [7], [13] 1 1 1 5 5 5

Sendmail [4], [5], [8]–[10], [14], [15] 11 11 11 12 12 12
WuFTP [11], [12], [16] 4 4 4 7 7 7

Total 17 18 18 33 34 34
No. of Unknown Exploits 8 9 9 11 12 12

Sample Set Generation. We generate more inputs by using
the reachable input created in the previous step as the seed.
We randomly mutate the seed input to produce new inputs
and queue them in a working set. We persist this working set
in the form of files for ease of use, thus freeing up memory.
NEUEX then spawns multiple new target programs with the
inputs from the working set in batches of 10, 000. At the end of
each execution, NEUEX logs the values of variables of interest
at various CVPs as entries in the respective CVP’s sample set.
Our sample sets are in the form of input-output files per entry,
so we have configured all our programs to take file-based input
and produce file based outputs. We use unique file names for
each execution. We can scale this process to multiple cores
and/or physical machines since each execution is independent.
We implement our generator in Python with 656 LOC.

Side-effects. In our experiments, none of the programs read
or modify any global states of the machine environment (e.g.,
configuration files). They only take in one input file and
optionally produce an output file or write to the console. Thus
it is safe to execute the same program multiple times with
unique input file names and redirect the output to different files.
In cases where this does not hold true, NEUEX piggybacks
on the environment modeling of KLEE. Specifically, KLEE
models a simple symbolic file system. It redirects all the
environment related calls to stubs which model the behavior of
these file APIs. NEUEX hooks these stubs and in cases where
the data set generation may affect a global state on a write, we
instead redirect such calls to virtual files in memory with locks
for avoiding global state corruption. This way, we can isolate
global changes made by each execution. Further, our sample
set generation is a different process, so it does not interfere
with the execution of DSE mode of KLEE.

Training. Next, the neural constraint inference engine takes
80% of all the generated sample sets for training the neural
net. We use a standard MLP architecture with Relu activation
function implemented in Python and Google TensorFlow [29]
with a total of 208 LOC. We use the early-stopping strategy to
avoid over-fitting. We test the remaining 20% of the sample set
on the learned neural net to measure its accuracy. We continue
the training until we achieve at least 80% accuracy. If the
loss of the trained neural net does not start decreasing after a
threshold of 50 epochs, we discard the search for an exploit
for the corresponding CVP.

Solver. Finally, NEUEX solves the learned neural constraints
along with the symbolic constraints collected from KLEE.
We implement our Algorithm 1, symbolic constraint transfor-
mation (Table II), and a standard gradient-based optimization
algorithm in Python with 849 LOC. Our implementation op-

tionally takes into consideration the type of the input variables
if it is easily available from the source code. This auxiliary
information helps us to select the step increment size, thus
accelerating the search for the exploit. Specifically, the step
size is an integer value and floating-point value for integer
and real data-types, respectively. After each enumeration, we
execute the program with concrete outputs generated by our
solver to check if they indeed satisfy the neuro-symbolic
constraints.

Parallelization. We have described all the steps for the end-
to-end working of NEUEX. NEUEX can execute these steps
sequentially or use parallelization to speed up certain tasks.
We configure NEUEX to execute on n cores. We dedicate one
core for KLEE’s classic DSE mode which is inherently serial,
and leverage the rest of the n− 1 cores for the neural mode.
Our reachability check for CVPs, sample set generation, and
training steps are individually independent and can execute on
multiple cores. The inference step is strictly sequential for each
initial input, however, we can execute the solver with different
initial inputs in parallel. Further, processing for multiple CVPs
can be pipelined such that NEUEX starts processing the next
CVP while finishing the sequential steps of the previous CVP.

VI. EVALUATION

We show the effectiveness of NEUEX by answering the
following empirical questions:
• Efficiency. Does NEUEX improve over vanilla KLEE?
• Cost breakdown of neural mode. How many times is

the neural mode of NEUEX triggered? What are the
relative costs of various sub-steps in NEUEX?

• Comparison with structured constraint inference tools.
How does the neural mode of NEUEX compare to
the structured inference approaches which augment
dynamic symbolic execution?

Experimental Setup. All our experiments are performed on a
40-core 2.6GHz 64GB RAM Intel Xeon machine. KLEE uses
a single core in its operations by design [40], whereas NEUEX
is highly parallelizable. We set thresholds for terminating
DSE to 10 minutes for Z3 per constraint, memory to 3
GB, loop count to 10, 000, and the maximum enumeration
of NeuSolv Me to 50, 000. We avoid duplicates in counting
vulnerabilities by using the unique stack hash at the point of
the vulnerability [78]. We further verify that the input indeed
triggers an exploit by re-running the test files generated by
NEUEX.4

4KLEE reports a total of 34 bugs, out of which only 17 are unique and true
exploits. Rest of them are either duplicates or false-positives due to KLEE’s
imprecise internal modeling of the concrete memory.

10

TABLE IV. NEUEX NEURAL MODE PERFORMANCE BREAKDOWN.
DETAILED STATISTICS OF VULNERABILITIES DISCOVERED BY THE

NEURAL MODE OF NEUEX IN 12 HOURS.

Program

#Times
Neural
Mode

Triggered

CVPs
Covered

in
Neural
Mode

#CVPs with
Sufficient
Training
Dataset

Successfully
Learned

Networks

Verified
Exploits

Time
(hour)

cURL 1 6 2 1 1 7
SQLite 5 24 12 3 1 0.7

libTIFF

7 6 2 1 1 5.8
2 14 5 2 1 7.6
6 17 7 1 1 11.9
4 9 4 1 1 2.7

libsndfile
5 14 4 4 1 2
5 14 4 4 1 1.3
2 4 1 1 1 8.5

BIND

1 7 5 1 1 0.4
11 13 4 1 1 3
1 3 2 1 1 1
1 5 3 1 1 1.2

Sendmail

1 5 3 1 1 0.1
1 5 1 1 1 0.2
2 6 1 1 1 0.3
3 3 1 1 1 0.2

WuFTP 3 4 3 3 3 0.4
Total 61 159 64 29 20 -

Benchmarks. For evaluation, we select 7 programs reported
in Table III. Since our comparison is with DSE as a baseline,
we choose programs that are known to be difficult for it
due to complex loops, floating-point variables, and unknown
function calls. 3 of these programs comprise a standard
benchmark (LESE [101]) used in prior work that improves
loop-handling over DSE, and the remaining are real-world
applications for media processing, web data transfer, and
database management. All the programs have prior publicly
known vulnerabilities: various out-of-bound accesses, floating
point exceptions, and arithmetic overflows. We manually craft
input grammars for these programs and use the same symbolic
inputs for KLEE and NEUEX.

A. Efficiency of NEUEX over KLEE

We run vanilla KLEE and NEUEX on each of the programs
with a 12-hour timeout. We experimented with two search
strategies in KLEE: (a) BFS mode, where symbolic states to
solve are picked in breadth-first search order of the control-
flow graph, and (b) the KLEE default RAND mode where paths
are selected randomly with ties-broken favoring exploration of
new paths. Since NEUEX builds on KLEE, we ran NEUEX
with both these strategies.

As shown in Table III, within 12 hours, vanilla KLEE finds
17 and 18 bugs in BFS and RAND mode respectively. NEUEX
finds all bugs that vanilla KLEE does, and additionally finds
16 more, totaling to 33 and 34 bugs in BFS and in RAND mode
respectively. Out of the bugs found by vanilla KLEE and also
by NEUEX, 12 bugs are previously unknown, whereas all bugs
found by NEUEX alone are previously known CVEs. All the
12 previously unknown vulnerabilities found are out-of-bound
buffer accesses: 1 in Bind, 1 in cURL, 6 in Sendmail, and 4
in WuFTP. We have responsibly disclosed these bugs to the
corresponding application maintainers.

NEUEX finds 94% and 89% more bugs than vanilla KLEE
in BFS and RAND modes respectively, within the same time
window. To explain the improvements, we further compare
KLEE and NEUEX in the BFS mode, which has deterministic
exploration strategy and is hence unaffected by the randomness
internally used by the tools. Figure 7 shows that the number

0 200 400 600

300

350

400

450

Time (min)

#
of

C
V

Ps
co

ve
re

d

Vanilla KLEE
NEUEX

Fig. 7. CVP Coverage. Each line represents the number of CVPs covered
or reached by vanilla KLEE and NeuEx in BFS mode, as the function of
time. The solid line represents the CVPs covered by NEUEX. The dashed line
represents the CVPs covered by vanilla KLEE.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0

200

400

600

800

Bug ID

Ti
m

e
(m

in
)

Vanilla KLEE
NEUEX

12-hour timeout

Fig. 8. Exploit Generation Time. The time taken to generate exploits (y-axis)
for each bug ID (x-axis) in BFS mode by vanilla KLEE and NEUEX. The solid
line represents the time taken by NEUEX. The dashed line represents the time
taken by vanilla KLEE. The dotted line represents the 12-hour timeout. KLEE
is not able to find the bugs which reach the 12-hour timeout.

of CVPs reached or covered by NEUEX is significantly higher
than vanilla KLEE. NEUEX covers these CVPs much faster.
Recall that the neural mode helps classic DSE mode in NEUEX
in two conceptual ways. First, it drives down paths which are
otherwise difficult and which cause vanilla DSE (and KLEE)
to gets stuck. Second, the classic DSE mode is terminated on
states where it gets stuck, allowing it to explore other easier
paths rather than spending time on difficult ones. Intuitively,
terminating DSE mode on difficult paths can itself enhance the
coverage of NEUEX by allowing DSE to cover other paths. We
experimentally check which of the two factors are responsible
for the increased coverage. We find that without the neural
reasoning, NEUEX performs marginally better than vanilla
KLEE with 2% more coverage and no additional exploits. This
shows that the neural reasoning is the factor which enhances
the coverage.

Column 2 of Table IV reports that the neural mode is
triggered 61 times in the classical DSE mode. These triggers
are due to 6 external calls without stubs, 53 loop timeouts, 1
timeout of the Z3 solver, and 1 memory exhaustion instances in
our experiments, directly highlighting the bottlenecks of KLEE
which NEUEX resolves.

Figure 8 reports the total time taken to find different
exploits by NEUEX and vanilla KLEE in its BFS mode. The
17 vulnerabilities found by both tools are found relatively
quickly. Though 4 of them trigger the neural mode, the BFS
procedure reaches them faster than the neural mode, by brute-

11

TABLE V. COMPARISON RESULTS BETWEEN THE NEURAL MODE OF NEUEX AND LESE ON FINDING THE SAME VULNERABILITIES ON THE
BENCHMARK WITH THE SAME SETUP AND SMALLER SAMPLE SET SIZE.

Program BIND Sendmail WuFTP
Geometric

MeanVulnerability
CA-

1999-
14(1)

CA-
1999-
14(2)

CVE-
1999-
0009

CVE-
2001-
0013

CA-
2003-

07

CVE-
1999-
0131

CVE-
1999-
0206

CVE-
1999-
0047

CA-
2003-

12

CVE-
2001-
0653

CVE-
2002-
0906

CVE-
1999-
0878

CAN-
2003-
0466

CVE-
1999-
0368

LESE
(s) 2511 2155 586 4464 672 526 626 633 18080 676 237 483 197 109 2282.5

Neural Mode
of NEUEX (s) 30.46 25.48 37.65 14.34 6.13 3.53 4.31 6.22 4.32 23.71 144.41 13.89 10.10 7.20 23.70

Speedup
Factor 82.44 × 84.58 × 15.57 × 311.30 × 109.62 × 149.01 × 145.24 × 101.77 × 4185.19 × 28.51 × 1.64 × 34.77 × 19.50 × 15.14 × 377.45 ×

forcing the path space. 16 out of 33 found by NEUEX are not
found by vanilla KLEE even in 12 hours, however, showing
the advantage of the neural mode. Our subsequent manual
analysis confirms the underlying reason: on simple constraints,
such as linear relationships, both vanilla KLEE and neural
analysis work relatively fast, with vanilla KLEE being faster as
it captures the constraint symbolically. As constraints become
complex (see example in Section II), vanilla KLEE becomes
considerably slower and cannot recover relationships within
12 hours in extreme cases. This shows that the neural mode
gracefully scales with the increasing complexity of constraints
to be recovered.

B. NEUEX Performance Breakdown

When neural mode is triggered, NEUEX spends time in
4 sub-steps: (a) trying to reach certain CVPs; (b) generating
I/O training value to train each reached CVP; (c) training one
neural net for each CVP; and (d) solving the mixed neuro-
symbolic constraint to generate exploit inputs. Note that in
step (d), exploits are enumerated up to a maximum of 50, 000
and NEUEX stops searching when one working exploit (that is
concretely validated) is found for a CVP. Table IV reports the
number of CVPs for each of the categories (a)-(d) solely due to
its neural mode, and the total time to find the verified exploit.
Neural mode is triggered 61 times, leading to 20 exploits, out
of which 16 are only found by the neural mode.5

Breakdown by CVPs. Table IV reports the number of CVPs
which are reached / covered by NEUEX (Column 3) in neural
mode. For a fraction (64 out of 159) of the covered CVPs,
NEUEX is able to generate sufficient data samples to train
the neural network (Column 4). Note that NEUEX generates
random state mutations from the state that the DSE mode gets
stuck in order to reach target CVPs, hence not all CVPs are
reached in our experiments. Out of those 64 with sufficient
training data samples, NEUEX is able to successfully learn
neural networks for 29 CVPs (Column 5); here, we consider
networks which achieve an accuracy of at least 50% as
successfully learnt. We use the standard accuracy metric.6
The number of samples to train one neural net successfully
is less than 200, 000. Out of the successfully trained neural
networks, NEUEX uses its neuro-symbolic solver to generate
inputs which exploit the CVP. We find that 20 of the 29
successfully learnt neural networks lead to verified (or true)
exploits, which are reported to the end user.

5The rest of the bugs found by NEUEX are found in its classical DSE mode
and by vanilla KLEE too.

6Accuracy = 100 × # of correctly predicted samples
of test samples

. The generated
sample dataset is partitioned into disjoint sets for testing (20%) and training
(80%).

lib
sn

dfi
le

lib
TIF

F
cU

RL

SQLite
BIN

D

Sen
dm

ail

W
uF

TP

0

0.5

1

Fr
ac

tio
n

of
C

PU
C

yc
le

s

Reachability Dataset Generation
Training Solver

Fig. 9. CPU Cycle Breakdown for NEUEX Neural Mode. The size of each
shaded region represents the fraction of cycles NEUEX takes for each step.

CPU Cycle Breakdown. Figure 9 shows the fraction of CPU
cycles NEUEX spends in sub-steps (a)-(d) for each program.
The majority of time spent is on dataset generation for training
a neural network, followed by the training itself. The dataset
generation cost is impacted by the size of the program fragment
being approximated by the neural network—larger fragments
take more CPU cycles to execute. Our implementation takes
advantage of parallel cores for sub-steps (a) and (b), specifi-
cally the mutations for reaching CVPs and dataset generation
for each CVP reached respectively. The training and solving
for each CVP runs on 1 core each. The neural constraint
solving is fast for most cases.

Benefits of Automatically Learning Stubs. Through manual
analysis, we find that the ability of NEUEX to approximate
missing code with automatically learnt stubs leads to several
CVEs. For example, in libsndfile, NEUEX automatically
approximate the fabs function when learning the relationship
between input bytes and the vulnerable variable max. Due to
the precise approximation, NEUEX takes 1.3 hours to success-
fully generate the exploit triggering the vulnerability. Similarly,
NEUEX provides sufficient stubs for function dn_skipname in
bind utility for successfully generating the exploits. Further,
it can reach the vulnerability point in libTIFF library despite
the missing mmap function stub.

C. Comparison to Structured Constraint Inference

Learning neural constraints is faster for simple (e.g., linear)
relationships, but with additional time, much more complex
relations can be learnt. To show this, we compare to an
extension of DSE called LESE that learns specific linear
relationships. NEUEX is faster than LESE by two orders of
magnitude as shown in Table V. We explain conceptually why

12

multi-path extensions to DSE that ameliorate the low-level
path explosion do not improve their ability to recover succinct
representations in Section II. We experimentally confirm this
by testing state-of-the-art techniques called LESE [91] and
Veritesting [33]. Both these experiments are detailed here.

LESE. LESE augments symbolic execution for reasoning
about loops on binaries [91]. It learns linear relationships
between loop induction variables. As the source code of LESE
is not public, in this experiment we evaluate the neural mode
of NEUEX on the same benchmark that LESE uses on an
identical setup to compare the numbers reported in their paper.
The LESE benchmark consists of 3 programs with 14 bugs in
total [101]. We task the neural mode of NEUEX to find exploits
for these 14 vulnerabilities. We configure NEUEX to execute
only in neural mode because we want to compare LESE
technique directly to our neuro-symbolic execution. Table V
summarizes the execution time for NEUEX’s neural mode and
LESE to complete the benchmark. NEUEX finds the exploits
for all the 14 bugs in the benchmark under 3 minutes, while
LESE takes 5 hours in the worst case. NEUEX’s neural mode is
faster than LESE by two orders of magnitude on average. Thus,
our comparison to LESE demonstrates that NEUEX’s neural
mode can handle loops by synthesizing the loop constraints in
the form of a neural net without analyzing the program.

Veritesting. We compare NEUEX with Veritesting [33]. Since
the original implementation used in the paper is not pub-
licly available, we instead used its publicly available re-
implementation as part of the Angr binary analysis frame-
work [1], [94]. We report on the cURL program for comparison
as a starting point, because in our experiments vanilla KLEE
was able to find the cURL exploit in 34 minutes, so a
conceptual advance on KLEE should be able to identify it
faster. The Veritesting implementation on Angr requires a
target address that it aims to find exploits at. We provided the
known vulnerability point address in cURL as a target address
to this implementation. We gave the same symbolic arguments
for Angr as we did for KLEE and NEUEX. We then used
Angr’s symbolic execution routine with the Veritesting flag
turned on to find concrete inputs to reach the vulnerability. In
12 hours, it analyzed a total of 530 unique instructions, 2, 353
symbolic states, 38 static analysis calls for Veritesting and
198 unique external functions where stubs were not available.
Veritesting was not able to reach the vulnerability in 12 hours.

VII. RELATED WORK

NEUEX is a new design point in constraint synthesis and
constraint solving. In this section, we discuss the problems of
the existing symbolic execution tools and present how NEUEX
differs from existing constraint synthesis.

A. Symbolic Execution

Symbolic execution [68] has been used for program ver-
ification [50], software testing [40], and program repair via
specification inference [80]. In the last decade, we have
witnessed an increased adoption of dynamic symbolic execu-
tion [62] where symbolic execution is used to partition the
input space, with the goal of achieving increased behavioral
coverage. The input partitions computed are often defined as
program paths, all inputs tracing the same path belong to the

same partition. Thus, the test generation achieved by dynamic
symbolic execution suffers from the path explosion problem.
This problem can be exacerbated owing to the presence of
complex control flows, including long-running loops (which
may affect the scalability of dynamic symbolic execution since
it involves loop unrolling) and external libraries. However,
NEUEX does not suffer from the path explosion as it learns
the constraints from test executions directly.

Tackling path explosion is a major challenge in symbolic
execution. Boonstopel et al. suggest the pruning of redundant
paths during the symbolic execution tree construction [37].
One of the predominant ways of tackling the path explosion
problem is by summarizing the behavior of code fragments
in a program [31], [33], [60], [72], [92]. Simply speaking, a
summarization technique provides an approximation of the be-
havior of certain fragments of a program to keep the scalability
of symbolic execution manageable. Such an approximation of
behaviors is also useful when certain code fragments, such as
remote calls and libraries written in a different language, are
not available for analysis.

Among the past approaches supporting approximation of
behaviors of (parts of) a program, the use of function sum-
maries has been studied by Godefroid [60]. Such function
summaries can also be computed on-demand [31]. Kuznetsov
et al. present a selective technique to merge dynamic states.
It merges two dynamic symbolic execution runs based on an
estimation of the difficulty in solving the resultant Satisfiability
Modulo Theory (SMT) constraints [72]. Veritesting suggests
supporting dynamic symbolic execution with static symbolic
execution thereby alleviating path explosion due to factors
such as loop unrolling [33], which still suffers from unknown
function calls and SMT solver timeouts. We conceptually and
experimentally compare to this approach. Related works [84],
[92] suggest grouping together paths based on similar symbolic
expressions in variables, and use such symbolic expressions as
dynamic summaries to group paths.

B. Constraint Synthesis

To support the summarization of program behaviors, the
other core technical primitive we can use is constraint synthe-
sis. In our work, we propose a new constraint synthesis ap-
proach which utilizes neural networks to learn the constraints
which are infeasible for symbolic execution. In comparison
with previous solutions, the major difference is that NEUEX
does not require any pre-defined templates of constraints and
can learn any kind of relationships between variables.

Over the last decade, there are two lines of works in
constraint synthesis: white-box and black-box approaches.
White-box constraint inference relies on a combination of
light-weight techniques such as abstract interpretation [47],
[48], [86], interpolation [43], [67], [76] or model checking
algorithm IC3 [38]. Although some white-box approaches can
provide sound and complete constraints [46], it is dependent on
the availability of source code and a human-specified semantics
of the source language. Constructing these tools have required
considerable manual expertise to achieve precision, and many
of these techniques can be highly computationally intensive.

To handle the unavailability of source code, there also
exist a rich class of works on reverse engineering from

13

dynamic executions [54], [58], [66], [81]–[83]. Such works
can be used to generate summaries of observed behavior from
test executions. These summaries are not guaranteed to be
complete. On the other hand, such incomplete summaries
can be obtained from tests, and hence the source code of
the code fragment being summarized need not be available.
Daikon [54] is one of the earlier works proposing a synthesis
of potential invariants from values observed in test executions.
The invariants supported in Daikon are in the form of linear
relations among program variables. DIG extends Daikon to
enable dynamic discovery of non-linear polynomial invariants
via a combination of techniques including equation solving and
polyhedral reasoning [82]. Krishna et al. use the decision tree,
a machine learning technique, to learn the inductive constraints
from good and bad test executions [70].

NEUEX devises a new gradient-based constraint solver, the
first work which solves the conjunction of neural and SMT
constraints. Angora [42] uses the gradient-based approach
which is similar to NEUEX, albeit for a completely different
purpose. It treats the predicates of branches as a black-box
function which is not differentiable, while NEUEX encodes the
symbolic constraints into a differentiable function and embeds
it into neural constraints. A concurrent work, NeuZZ [93],
utilizes neural networks to guide random fuzzing to predict the
control-flow edges exercised by a given input. Our work in-
stead uses neural networks to improve upon dynamic symbolic
execution. Li et al. [74] propose a method to solve symbolic
constraints using a classification-based optimization technique
called RACOS [99], instead of using SAT/SMT solvers. Unlike
our work, their work does not attempt to learn a non-symbolic
representation of the program to ameliorate the difficulties
of symbolic analyses, and hence our work proposes entirely
different constraint solving techniques.

VIII. CONCLUSION

NEUEX utilizes neural networks to inductively learn con-
straints which approximate program behavior. Our proposed
neuro-symbolic execution solves neural and symbolic con-
straints together, and can be seen as a general purpose testing
and analysis engine for programs. NEUEX’s solver offers a
new design to simultaneously solve both symbolic constraints
and neural constraints effectively, thus augmenting symbolic
execution. Our technique finds 94% more bugs than vanilla
dynamic symbolic execution.

ACKNOWLEDGMENTS

We thank Marcel Böhme, Shruti Tople, Shin Hwei Tan, Xi-
ang Gao, Sergey Mechtaev, the anonymous reviewers, and our
shepherd Endadul Hoque for their feedback on this work. We
thank Changze Cui for helping us in the most recent version
of our implementation and experiments. Thanks to Vinamra
Bhatia for helping on Veritesting. All opinions expressed in this
paper are solely those of the authors. This research is supported
by research grant DSOCL17019 from DSO, Singapore. This
research was partially supported by a grant from the National
Research Foundation, Prime Minister’s Office, Singapore un-
der its National Cybersecurity R&D Program (TSUNAMi
project, No. NRF2014NCR-NCR001-21) and administered by
the National Cybersecurity R&D Directorate.

REFERENCES

[1] Angr. https://github.com/angr/angr.
[2] BIND DNS Server. https://www.isc.org/downloads/bind/.
[3] CA-1999-14. https://www-uxsup.csx.cam.ac.uk/pub/webmirrors/

www.cert.org/advisories/CA-1999-14.html.
[4] CA-2003-07. https://lwn.net/Articles/24238/.
[5] CA-2003-12. https://seclists.org/cert/2003/12.
[6] Clang Static Analyzer. https://clang-analyzer.llvm.org/.
[7] CVE-1999-0009. https://nvd.nist.gov/vuln/detail/CVE-1999-0009.
[8] CVE-1999-0047. https://nvd.nist.gov/vuln/detail/CVE-1999-0047.
[9] CVE-1999-0131. https://nvd.nist.gov/vuln/detail/CVE-1999-0131.

[10] CVE-1999-0206. https://nvd.nist.gov/vuln/detail/CVE-1999-0206.
[11] CVE-1999-0368. https://nvd.nist.gov/vuln/detail/CVE-1999-0368.
[12] CVE-1999-0878. https://nvd.nist.gov/vuln/detail/CVE-1999-0878.
[13] CVE-2001-0013. https://nvd.nist.gov/vuln/detail/CVE-2001-0013.
[14] CVE-2001-0653. https://nvd.nist.gov/vuln/detail/CVE-2001-0653.
[15] CVE-2002-0906. https://nvd.nist.gov/vuln/detail/CVE-2002-0906.
[16] CVE-2003-0466. https://nvd.nist.gov/vuln/detail/CVE-2003-0466.
[17] CVE-2014-8130. https://nvd.nist.gov/vuln/detail/CVE-2014-8130.
[18] CVE-2015-3416. https://nvd.nist.gov/vuln/detail/CVE-2015-3416.
[19] CVE-2016-9586. https://nvd.nist.gov/vuln/detail/CVE-2016-9586.
[20] CVE-2017-14245. https://nvd.nist.gov/vuln/detail/CVE-2017-14245.
[21] CVE-2017-14246. https://nvd.nist.gov/vuln/detail/CVE-2017-14246.
[22] CVE-2017-16942. https://nvd.nist.gov/vuln/detail/CVE-2017-16942.
[23] CVE-2017-7598. https://nvd.nist.gov/vuln/detail/CVE-2017-7598.
[24] CVE-2017-7599. https://nvd.nist.gov/vuln/detail/CVE-2017-7599.
[25] CVE-2017-7600. https://nvd.nist.gov/vuln/detail/CVE-2017-7600.
[26] Klee uClibc. https://github.com/klee/klee-uclibc.
[27] STP – The Simple Theorem Prover. https://stp.github.io/.
[28] uClibc. https://www.uclibc.org/.
[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in OSDI’16.

[30] E. Ábrahám, “Building Bridges between Symbolic Computation and
Satisfiability Checking,” in ISSAC’15.

[31] S. Anand, P. Godefroid, and N. Tillman, “Demand-Driven Composi-
tional Symbolic Execution,” in TACAS’08.

[32] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang, “Learning Poly-
nomials with Neural Networks,” in ICML’14.

[33] T. Avgerinos, A. Rebert, S. Cha, and D. Brumley, “Enhancing Sym-
bolic Execution with Veritesting,” in ICSE’14.

[34] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finoc-
chi, “A Survey of Symbolic Execution Techniques,” ACM Computer
Survey’18.

[35] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing Program
Input Grammars,” in PLDI’17.

[36] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End-
to-End Deep Learning for Self-Driving Cars,” arXiv, 2016.

[37] P. Boonstoppel, C. Cadar, and D. Engler, “RWset: Attacking Path
Explosion in Constraint-Based Test Generation,” in TACAS’08.

[38] A. R. Bradley, “SAT-Based Model Checking Without Unrolling,” in
VMCAI’11.

[39] A. Bundy and L. Wallen, “Breadth-first Search,” in Catalogue of
Artificial Intelligence Tools, 1984.

[40] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs,” in OSDI’08.

[41] C. Cadar and K. Sen, “Symbolic Execution for Software Testing: Three
Decades Later,” Comm of ACM’13.

[42] P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled
Search,” SP’18.

14

https://github.com/angr/angr
https://www.isc.org/downloads/bind/
https://www-uxsup.csx.cam.ac.uk/pub/webmirrors/www.cert.org/advisories/CA-1999-14.html
https://www-uxsup.csx.cam.ac.uk/pub/webmirrors/www.cert.org/advisories/CA-1999-14.html
https://lwn.net/Articles/24238/
https://seclists.org/cert/2003/12
https://clang-analyzer.llvm.org/
https://nvd.nist.gov/vuln/detail/CVE-1999-0009
https://nvd.nist.gov/vuln/detail/CVE-1999-0047
https://nvd.nist.gov/vuln/detail/CVE-1999-0131
https://nvd.nist.gov/vuln/detail/CVE-1999-0206
https://nvd.nist.gov/vuln/detail/CVE-1999-0368
https://nvd.nist.gov/vuln/detail/CVE-1999-0878
https://nvd.nist.gov/vuln/detail/CVE-2001-0013
https://nvd.nist.gov/vuln/detail/CVE-2001-0653
https://nvd.nist.gov/vuln/detail/CVE-2002-0906
https://nvd.nist.gov/vuln/detail/CVE-2003-0466
https://nvd.nist.gov/vuln/detail/CVE-2014-8130
https://nvd.nist.gov/vuln/detail/CVE-2015-3416
https://nvd.nist.gov/vuln/detail/CVE-2016-9586
https://nvd.nist.gov/vuln/detail/CVE-2017-14245
https://nvd.nist.gov/vuln/detail/CVE-2017-14246
https://nvd.nist.gov/vuln/detail/CVE-2017-16942
https://nvd.nist.gov/vuln/detail/CVE-2017-7598
https://nvd.nist.gov/vuln/detail/CVE-2017-7599
https://nvd.nist.gov/vuln/detail/CVE-2017-7600
https://github.com/klee/klee-uclibc
https://stp.github.io/
https://www.uclibc.org/

[43] Y.-F. Chen, C.-D. Hong, B.-Y. Wang, and L. Zhang, “Counterexample-
Guided Polynomial Loop Invariant Generation by Lagrange Interpo-
lation,” in CAV’15.

[44] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for
In-Vivo Multi-Path Analysis of Software Systems,” ACM SIGPLAN
Notices, 2011.

[45] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzé, “Using
Symbolic Execution for Verifying Safety-Critical Systems,” in ACM
SE Notes’01.

[46] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear Invariant
Generation Using Non-Linear Constraint Solving,” in CAV’03.

[47] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints,” in POPL’77.

[48] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival, “The ASTRÉE Analyzer,” in ESOP’05.

[49] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic Protocol
Reverse Engineering from Network Traces,” in USENIX Security’07.

[50] R. Dannenberg and G. Ernst, “Formal Program Verification using
Symbolic Execution,” in IEEE TSE’82.

[51] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for
Theorem-proving,” Communications of the ACM, 1962.

[52] E. de Castro Lopo. libsndfile. http://www.mega-nerd.com/libsndfile/.
[53] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in

TACAS’08.
[54] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” in Science of Computer Programming, 2007.

[55] K.-I. Funahashi, “On the approximate realization of continuous map-
pings by neural networks,” in Neural Networks’89.

[56] V. Ganesh, A. Kieżun, S. Artzi, P. J. Guo, P. Hooimeijer, and M. Ernst,
“HAMPI: A String Solver for Testing, Analysis and Vulnerability
Detection,” in CAV’11.

[57] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT Solver for
Nonlinear Theories over the Reals,” in CADE’13.

[58] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A Robust
Framework for Learning Invariants,” in CAV’14.

[59] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural
Networks,” in AISTATS’11.

[60] P. Godefroid, “Compositional Dynamic Test Generation,” in POPL’07.
[61] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based Whitebox

Fuzzing,” in PLDI’08.
[62] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated

Random Testing,” in PLDI’05.
[63] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated Whitebox

Fuzz Testing,” in NDSS’08.
[64] L. B. Godfrey and M. S. Gashler, “A Continuum among Logarithmic,

Linear, and Exponential Functions, and Its Potential to Improve
Generalization in Neural Networks,” in IC3K’15.

[65] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harness-
ing Adversarial Examples,” in ICLR’15.

[66] A. Gupta and A. Rybalchenko, “InvGen: An Efficient Invariant Gen-
erator,” in CAV’09.

[67] R. Jhala and K. L. McMillan, “A Practical and Complete Approach
to Predicate Refinement,” in TACAS’06.

[68] J. C. King, “Symbolic Execution and Program Testing,” Communica-
tions of the ACM, 1976.

[69] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in ICLR’15.

[70] S. Krishna, C. Puhrsch, and T. Wies, “Learning Invariants using
Decision Trees,” arXiv, 2015.

[71] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” in NIPS’12.

[72] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient State
Merging in Symbolic Execution,” in PLDI’12.

[73] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic
Testing of JavaScript Web Applications,” in FSE’14.

[74] X. Li, Y. Liang, H. Qian, Y.-Q. Hu, L. Bu, Y. Yu, X. Chen, and
X. Li, “Symbolic Execution of Complex Program Driven by. Machine
Learning Based Constraint Solving,” in ASE’16.

[75] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Exponential
Recency Weighted Average Branching Heuristic for SAT Solvers,” in
AAAI’16.

[76] K. McMillan, “Interpolation and SAT-based Model Checking,” in
CAV’03.

[77] L. Medsker and L. Jain, Recurrent Neural Networks: Design and
Applications. CRC press, 1999.

[78] D. Molnar, X. C. Li, and D. Wagner, “Dynamic Test Generation to Find
Integer Bugs in x86 Binary Linux Programs,” in USENIX Security’09.

[79] N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and
T. Walsh, “Verifying Properties of Binarized Deep Neural Networks,”
arXiv, 2017.

[80] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
Program Repair via Semantic Analysis,” in ICSE ’13.

[81] T. Nguyen, T. Antonopoulos, A. Ruef, and M. Hicks,
“Counterexample-Guided Approach to Finding Numerical Invariants,”
in FSE’17.

[82] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “DIG: A Dynamic
Invariant Generator for Polynomial and Array Invariants.”

[83] S. Padhi and T. Millstein, “Data-Driven Loop Invariant Inference with
Automatic Feature Synthesis,” arXiv, 2017.

[84] D. Qi, H. Nguyen, and A. Roychoudhury, “Path Exploration using
Symbolic Output,” in TOSEM’13.

[85] N. Qian, “On the Momentum Term in Gradient Descent Learning
Algorithms,” in Neural Networks’99.

[86] E. Rodríguez-Carbonell and D. Kapur, “Automatic Generation of Poly-
nomial Invariants of Bounded Degree using Abstract Interpretation,”
Science of Computer Programming, 2007.

[87] S. Ruder, “An Overview of Gradient Descent Optimization Algo-
rithms,” arXiv, 2016.

[88] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal
Representations by Error Propagation, 1985.

[89] P. Rümmer and T. Wahl, “An SMT-LIB Theory of Binary Floating-
Point Arithmetic,” in SMT’10.

[90] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A Symbolic Execution Framework for JavaScript,” in SP’10.

[91] P. Saxena, P. Poosankam, S. McCamant, and D. Song, “Loop-Extended
Symbolic Execution on Binary Programs,” in ISSTA’09.

[92] K. Sen, G. Necula, L. Gong, and W. Choi, “multiSE: Multi-path
Symbolic Execution,” in FSE’15.

[93] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “NEUZZ:
Efficient Fuzzing with Neural Program Smoothing,” arXiv, 2018.

[94] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in SP’16.

[95] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G.
Edenhofner, M. B. Dwyer, and M. S. Rogers, “CIVL: The Concurrency
Intermediate Verification Language,” in SC’15.

[96] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” JMLR’14.

[97] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li, “Proteus: Computing Dis-
junctive Loop Summary via Path Dependency Analysis,” in FSE’16.

[98] Y. Yao, L. Rosasco, and A. Caponnetto, “On Early Stopping in
Gradient Descent Learning,” Constructive Approximation, 2007.

[99] Y. Yu, H. Qian, and Y.-Q. Hu, “Derivative-Free Optimization via
Classification,” in AAAI’16.

[100] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A Z3-Based String Solver
for Web Application Analysis,” in FSE’13.

[101] M. Zitser, R. Lippmann, and T. Leek, “Testing Static Analysis Tools
using Exploitable Buffer Overflows from Open Source Code,” in ACM
SIGSOFT Software Engineering Notes, 2004.

15

http://www.mega-nerd.com/libsndfile/

	Introduction
	Neuro-Symbolic Execution
	Applications, Tool & Results

	Problem
	Our Approach
	Design
	Overview
	Constraint Learning
	Building Blocks for Solver
	Constraint Solver
	Encoding Mixed Constraints
	Optimizations

	Implementation
	Evaluation
	Efficiency of NeuEx over KLEE
	NeuEx Performance Breakdown
	Comparison to Structured Constraint Inference

	Related Work
	Symbolic Execution
	Constraint Synthesis

	Conclusion
	References

