
On the Trade-Offs in Oblivious Execution
Techniques

Shruti Tople Prateek Saxena
National University of Singapore
{shruti90, prateeks} @comp.nus.edu.sg

Abstract. To enable privacy-preserving computation on encrypted data,
a class of techniques for input-oblivious execution have surfaced. The
property of input-oblivious execution guarantees that an adversary ob-
serving the interaction of a program with the underlying system learns
nothing about the sensitive input. To highlight the importance of obliv-
ious execution, we demonstrate a concrete practical attack — called a
logic-reuse attack — that leaks every byte of encrypted input if obliv-
ious techniques are not used. Next, we study the efficacy of oblivious
execution techniques and understand their limitations from a practical
perspective. We manually transform 30 common Linux utilities by apply-
ing known oblivious execution techniques. As a positive result, we show
that 6 utilities perform input-oblivious execution without modification,
11 utilities can be transformed with O(1) performance overhead and 11
other show O(N) overhead. As a negative result, we show that theoret-
ical limitations of oblivious execution techniques do manifest in 2 real
applications in our case studies incurring a performance cost of O(2N)
over non-oblivious execution.

1 Introduction

Many emerging techniques provide privacy preserving computation on encrypted
data. These techniques can be categorized into two lines of work — secure compu-
tation and enclaved execution. Secure computation techniques enable operations
on encrypted data without decrypting them. Examples of such techniques include
fully homomorphic encryption [26, 25, 24], partially homomorphic encryption [52,
20, 61, 31, 50], garbled circuits [68, 34, 36] and so on. A second line of research
uses hardware-isolation mechanisms provided by Intel SGX [48], TPM [5], In-
tel TXT [4], ARM Trustzones [7, 44]. Systems such as Haven [10], XOM [60],
Flicker [47] use these mechanisms to provide enclaved execution. In enclaved
execution the application runs in a hardware-isolated environment in the pres-
ence of an untrusted operating system. The sensitive data is decrypted only
in the hardware-isolated environment and the computation result is encrypted
before it exits the enclaved execution. Enclaved execution can be achieved via
hypervisor-based mechanisms as well (cf. OverShadow [14], Inktag [32]).

One fundamental challenge in privacy preserving computation is to make the
program execution input-oblivious. Input-oblivious execution guarantees that the

execution profile of a program observed by an adversary reveals nothing about
the sensitive input. This challenge goes beyond the mechanism of enabling in-
dividual operations on encrypted inputs, whether done in enclaved execution
environments or via cryptographic techniques for secure computation. In con-
cept, it is easy to show that making all programs oblivious may be undecidable;
such a result is neither surprising nor particularly interesting to practice. We
study this problem from a practical perspective — whether it is feasible to make
existing commodity applications execute obliviously without unreasonable loss
in performance. If so, to what extent is this feasible and whether any theoretical
limitations manifest themselves in relevant applications.

We explain the problem conceptually, considering various channels of leakage
in the scenario of enclaved execution. To highlight the importance of oblivious
execution, we show that enclaved execution is highly vulnerable to leakage of
sensitive data via a concrete attack — called a logic-reuse attack. Specifically,
we show that chaining execution of commonly used utilities can leak every byte
of an encrypted input to the enclaved application.

Next, we study how existing oblivious execution techniques such as padding
of dummy instructions [46], hiding message length [19] or hiding address ac-
cesses using Oblivious RAM [28] proposed in different contexts can be used to
block the leakage in enclaved execution. Our work explains the symmetry among
these lines of research, systematizing their capabilities and explaining the limits
of these techniques in practical applications. Specifically, we manually trans-
form 30 applications from the standard CoreUtils package available on Linux
operating system. As a positive result, we show that 6 utilities perform input-
oblivious execution without modification, 11 utilities can be transformed with
O(1) performance overhead and 11 other show linear performance overhead of
O(N).

As a negative result, we show that theoretical limitations of oblivious execu-
tion techniques do manifest in 2 utilities which incur an exponential performance
overhead of O(2N). Of course, they can be made oblivious conceptually, since ev-
erything on a digital computer is finite — in practice, this is hard to do without
prohibitive loss in performance.
Contribution. We summarize our contributions as follows,:

– 1. Logic-reuse attack: We demonstrate a concrete attack in the enclaved exe-
cution setting that leaks every byte of encrypted input by chaining execution
of common applications.

– 2. Systematization of oblivious execution techniques: We systematize exist-
ing defenses for oblivious execution and show new limitations for enclaved
execution of practical applications.

– 3. Study of practical applications: To study an empirical datapoint, we man-
ually transform 30 applications from CoreUtils package to make them input-
oblivious using existing defenses and find that 28 applicaitons can be trans-
formed with acceptable overhead. The limitations of oblivious execution
techniques manifest in 2 applications which cannot be transformed without
prohibitive loss in performance.

Secure Processor

Untrusted OS

System Call
 Interface

Trusted Application

Filesystem
Management

Write

 Read
Encrypted Storage

(Filesystem)

K

Fig. 1. Baseline setting for enclaved execution with untrusted read-write channels

2 The Problem

Baseline Setting. Various existing solutions such as OverShadow [14], Se-
cureMe [15], Inktag [32], SGX [48], Haven [10] and Panoply [57] support enclaved
execution of applications. Here, the OS is untrusted whereas the underlying pro-
cessor is trusted and secure. The file system is encrypted under a secret key K to
protect the data on the untrusted storage. The trusted application executes in an
enclaved memory which is inaccessible to the untrusted OS. The secret key K is
available to the enclaved memory for decrypting the sensitive data. This system
guarantees confidentiality and integrity of sensitive content using authenticated
encryption. However, the application still relies on the OS to interact with the
untrusted storage using read-write channels such as file system calls, memory
page management and others.

Our baseline setting (shown in Figure 1) is a system (such as Panoply [57])
where the read-write channels correspond to the read and write system calls.
Although our discussion here is for the system call interface, our attack and
defenses are applicable to other read-write operations that expose information
at the granularity of blocks or memory pages, when caching or swapping out
pages (for eg. in Haven [10], OverShadow [14]) .
Attack Model. In our model, the untrusted (or compromised) OS acts as a
“honest-but-curious” adversary that honestly interacts with the application and
the underlying encrypted storage. It passively observes the input / output (I/O)
profile of the execution, but hopes to infer sensitive encrypted data. The I/O
profile of an application is the “trace” of read-write file system calls made during
the execution. The execution of an application A with sensitive input I and
output O generates an I/O profile P = (P1, P2, ...Pn). Each Pi is a read/write
operation of the form [type, size, address, time] requested by the application A.
Each Pi consists of four parameters:

– (C1) type of operation (read or write)
– (C2) size of bytes read or written
– (C3) address (e.g. file name / descriptor) to read or write the content
– (C4) time interval between current and previous operation.

$nl input.txt

$fold -w E(1 Hello) nl_out.txt

$split -l E(1) fold_out.txt

$comm -1 -2 s5.txt s6.txt

input.txt
E (Hello)

E(1 Hello)
nl_out.txt

 E (1)
E ()

 E (H)
 E (e)
E (l)
E (l)

 E (o)

fold_out.txt
 E(1) s1.txt

 E()
 E(H)
 E(e)
 E(l)
 E(l)
 E(o) E(l)

s2.txt

s3.txt

s4.txt

s5.txt

s6.txt

s7.txt

1

2

3

4

Fig. 2. Attack example that leaks the frequency and position of characters in an en-
crypted file

We assume the applicationA is publicly available and known to the adversary.
Thus, the attacker’s knowledge set consists of ψ = {A, |I|, |O|, P} where |I| and
|O| are the total input and output size, and A is the application logic. We assume
the OS is capable of initiating the execution of any pre-installed application on
encrypted inputs, in any order.
Goal. The goal is to make a benign enclaved application input-oblivious. An
application that exhibits I/O profile P which is independent of the sensitive
inputs exhibits the above security property. This security property guarantees
that an adversary cannot distinguish between any two encrypted inputs of the
same size when executed with the same application, leaking nothing beyond
what is implied by knowledge of ψ.

2.1 Logic-Reuse Attack

To emphasize the importance of input-oblivious execution in the enclaved exe-
cution scenario, we demonstrate a concrete attack called the logic-reuse attack.
In this attack, the adversary chains the execution of permitted applications to
do its bidding (as shown in Figure 2). Specifically, we show the use of four ap-
plications: nl, fold, split and comm from the CoreUtils package commonly
available in commodity Linux systems [3]. These applications accept sensitive
user arguments and file inputs in encrypted form. The attack exploits the execu-
tion I/O profile to eventually learn the comparison value of any two characters
in the input encrypted file. The result is that the adversary infers the frequency
and position of every byte in the target encrypted file. The 4 attack steps are:

Step 1 - Get a known ciphertext value: The nl command in CoreUtils
adds a line number to each line in the input and writes the modified line to the
output. The attacker executes this nl program with the target encrypted file
(input.txt in Figure 2) as its input. Every ciphertext is of 16 bytes given the
use of AES encryption. Thus, the adversary learns that the first ciphertext of
each write call contains the encryption of a number along with other characters
(see nl_out.txt in Figure 2).

Step 2 - Generate the ciphertext for individual characters: This step
uses the fold program that folds input lines according to the given width size.
The adversary runs this command on the output of the previous step. The ci-

phertext for encryption of number “1” (along with other characters) learned in
Step 1 is used as encrypted input argument to the width size. This step folds the
input file such that every line contains the ciphertext of a single character and
makes a separate call to write it. After this step, the ciphertext for every individ-
ual character in the file is available to the adversary (as shown in fold_out.txt
in Figure 2).

Step 3 - Save each ciphertext in a separate file: In this step, the
adversary uses the split program that splits an input file either line-wise or
byte-wise and writes the output to different files. The command is run on the
output of Step 2. The ciphertext of the character “1” learned in Step 2 is passed
as an option to it. It generates separate files as output each having encryption of
a single character (s1.txt - s6.txt in Figure 2). Thus, the adversary learns
the total number of characters and their positions in the input file.

Step 4 - Compare the characters in each file: Finally, the adversary
executes the comm program that takes two files as input and writes the lines
present in both the files as output. Any two files generated as output in the
previous step can be provided as input to this command. The program does not
perform a write call if there are no common lines in the input files. Thus, the
I/O profile leaks whether two lines (or characters) in the input files are the same.

Result: In the end, this allows the attacker to infer a histogram of encrypted
bytes. Once the histogram is recovered, it can be compared to standard frequency
distribution of (say) English characters [1]. Using the values in the histogram
and the positions learned in Step 3, the adversary learns the value of every byte
in the encrypted file!
Remarks. Note that, the adversary neither tampers the integrity of the sensitive
input nor disrupts the execution process in any manner throughout the attack.
It simply invokes the applications on controlled arguments and honestly executes
the read-write operations from the application without tampering any results.
The adversary only passively observes the input-dependent I/O profile of the
execution. Thus, we establish that it is practical to completely leak every byte
in an encrypted file system in the absence of input-oblivious execution, when
program logic running in enclave is sufficiently expressive.

3 Analysis of Information Leakage Channels

Recall that in our model, parameters in I/O profile P form the four channels C1
to C4 discussed in Section 2. The type parameter is either R(read) or W (write)
call, size is the bytes read or written to the untrusted storage, and the address
signifies the file descriptor (fd) in use. Let time be the difference in the time-
stamp 1 for the occurrence of present and previous call. This section analyses
the channels C1 to C4 in P for information leakage and their role in expanding
attackers knowledge set ψ.

1 the granularity of the clock is units of measurement as small as what the attacker
can measure (eg, ms, ns or even finer).

1 rsize = read(infile, inbuffer, 1, infilesize);
2 l i n e 1 = g e t l i n e (i n bu f f e r) ;
3 while ((l i n e 2 = g e t l i n e (i n bu f f e r)) != NULL)
4 i f ((l inecompare (l i n e1 , l i n e 2)) == true)
5 match = true ;
6 else
7 i f (match == true)
8 wsize = write(repeat_out, line1, 1,strlen(line1));
9 match = f a l s e ;

10 else
11 wsize = write(uniq_out, line1, 1, strlen(line1));
12 l i n e 1 = l i n e 2 ;

Fig. 3. Sample program which writes repeated lines in the input to repeat_out file
and the non-repeated lines to uniq_out file.

Throughout the rest of the paper, we consider a running example similar to
the uniq Unix utility (refer to Figure 3) that has 4 information leakage channels.
The example reads the data from an input file (line 1) and writes out consecutive
repeated lines to repeat_out file (line 8) and non-repeated lines to uniq_out
file (line 11). The code performs a character-by-character comparison (line 4)
to check whether two lines are equal. Figure 4 shows the I/O profile that this
program generates for two different inputs of the same size and the overall infor-
mation learned about each input file. The I/O profile leaks the total number of
input lines, output lines, repeated and non-repeated lines in the encrypted file.
Sequence of calls (C1). The sequence of calls is an input-dependent parameter
that depends on the if and loop terminating conditions in the application. In
particular, the sequence of calls in the example are control-dependent on the bits
from the sensitive input used in branch conditions.
Example. The program in Figure 3 uses a separate write call (highlighted) to
output a new line 2. Every time the adversary observes a write call in the I/O
profile, it learns that a newline is written to the output file. This is beyond the
allowed set ψ because it leaks the total number of lines in the output. From the
I/O profiles in Figure 4, the adversary learns that input 1 and 2 yield total of 3
and 4 lines as output respectively.
Difference in Size of Bytes (C2). The return values of the read and write
system calls act as the size channel for information leakage. As the size parame-
ter in the I/O profile P shows a direct data dependency on the input values, any
difference in the value of this parameter leaks information about the encrypted
inputs.
Example. In Figure 4, the adversary observes that the difference in the size of to-
tal read and write bytes for input 1 is 130 bytes, inferring that 1 line is repeated.

2 This is a common programming practice observed in legacy applications such as
CoreUtils as shown later in Section 6.

Input 1
600 Bytes

Encrypted Inputs P <type, size, address, time> Information learnt

Input 2
600 Bytes

Application

 R, 600, 1, 00
W, 130, 2, 50
W, 180, 3, 10
W, 160, 3, 10

 R, 600, 1, 00
W, 110, 3, 10
W, 90, 2, 50
W, 120, 3, 10
 W, 95, 2, 50

No. of input lines = 4
No. of output lines = 3
Repeated lines = 1
Unique lines = 2

No. of input lines = 6
No. of output lines = 4
Repeated lines = 2
Unique lines = 2

Fig. 4. I/O profiles generated for two different inputs Input1 and Input2 of size 600
bytes. The numbers 1, 2 and 3 in the I/O profile are the file descriptors for infile,
repeat_out and uniq_out respectively. The last part shows the information learned by
observing the I/O profile.

For input 2 the difference is 185 (90 + 95) bytes. Observing the size values in
the profile for input 2, the adversary can infer that it has 2 lines repeated since
no other combination of sizes result in a difference of 185 bytes.

Address Access Patterns (C3). We consider the file descriptor (fd) to the
read and write system call as the address parameter in the I/O profile P . This
is assuming the OS organizes its underlying storage in files. The untrusted OS
infers the input dependent accesses patterns to different files from this parameter,
as shown in the example below.
Example. In Figure 4, the address parameter in P leaks that input 1 reads the
repeat_out file (fd = 2) once and input 2 reads it twice leaking that they contain
1 and 2 repeated lines respectively. Similar observation for uniq_out file (fd=
3) leaks that input 1 and input 2 both have 2 unique lines.

Side Channels - Time (C4). There are several well-known side channels
such as power consumption [41], cache latency [51], time [11, 42] that could leak
information about sensitive inputs. We focus on the computation time difference
between any two calls as a representative channel of information leakage. Our
discussion applies more broadly to other observed channels too.
Example. In Figure 4, readers can see that the computation time before a call
that writes to repeat_out file is 50 units and uniq_out file is 10 units. A careful
analysis of the time difference between all consecutive calls reveals that input 1
and 2 have 1 and 2 repeated lines respectively. This is because for repeated lines
the character-by-character comparison (line 4 in Figure 3) proceeds till the end
of the line, thus taking more time. However, the comparison fails immediately if
the lines are not the same, reducing the time difference.

The above explanation with our running example establishes that every pa-
rameter in the I/O profile acts as an independent channel of information leakage.
Each channel contributes towards increasing the ψ of an adversary.

Channel D / L Determinising I/O Profile Randomizing I/O Profile

Type D Memory trace obliviousness [46]
Ascend [22], CBMC-GC [34]

RandSys [38]
RISE [9]

L Undecidability of
static analysis [43, 21] Infeasible sequences [64, 33]

Size D Rounding [13, 67],
BuFLO [19]

Random padding [13],
Random MTU padding [19]

L Storage Overhead Assumption about
input distribution

Address D Linear Scan [40, 71, 63, 30] ORAM [28], [59]

L Access Overhead [63, 30] polylog N overhead [56]

Time D Normalized timing [37, 11]
Language-based Approach [6, 70, 49, 17] Fuzzy Time [35]

L Worst Case
Execution Time [65] Insufficient Entropy [27]

Table 1. Systematization of existing defenses to hide leakage through I/O profile and
their known limitations. ‘D’ and ‘L’ denote defenses and limitations.

4 Defense: Approaches and Limitations

To block the above information channels (C1 to C4), the execution of an appli-
cation should be input-oblivious i.e, the adversary cannot distinguish between
two inputs by observing the I/O profile. We formally define the security property
of “input-oblivious execution” as:

Definition 1 (Input-Oblivious Execution) The execution of an application
A is input-oblivious if, for any adversary A given encrypted inputs E(i), E(j)
and a query profile P , the following property holds :

AdvA := |Pr[P = P[E(i)]]− Pr[P = P[E(j)]]| ≤ ε (1)

where ε is negligible.

There are two common approaches to achieve input-oblivious execution: a)
determinising the I/O profile and b) randomizing the I/O profile. We study
these existing defenses and show whether their limitations manifest in practical
applications. Table 1 systematizes existing defenses and their limitations.

4.1 Approach 1: Determinising the Profile

The idea is to make the execution of an application input-oblivious by deter-
minising the parameters in the I/O profile. This forces a program operating on
different inputs of the same size to generate equivalent I/O profiles. Figure 5
shows the modified code for our example (in Figure 3) and its determinised I/O
profile.

 rsize = read(infile, inbuffer, 1, infilesize);
while(next = getline(inbuffer) != NULL)
{

..

..
if(match == true)
 strcat(repeat_buffer, line1)
else
 strcat(uniq_buffer, line1)

}
pad(repeat_buffer, rsize);
pad(uniq_buffer, rsize);

// add dummy instructions
..
write(repeat_out, repeat_buffer, 1, rsize);
write(uniq_out, uniq_buffer, 1, rsize);

Deterministic I/O Profile
P [type, size, address, time]

Hide C3

Hide C4

Hide C2

Hide C1

R, 600, 1, 00
 W, 600, 2, 400

W, 600, 3, 10

Fig. 5. Modified code with the defense to hide the channels of information leakage in
I/O profile and a deterministic I/O profile for input of size 600 bytes.

Channel C1 - Type. To determinise the type parameter in P , a program should
have the same sequence of calls for different inputs irrespective of the path it
executes. This requires making the execution of read / write calls independent
of the sensitive data used in the branches or loops of a program. One way to
achieve this is to move the read / write calls outside the conditional branches or
the loop statements. This removes their dependence on any sensitive data that
decides the execution path. The other method is to apply the idea of adding
dummy instructions to both the branches of an if condition, as proposed in
works on oblivious memory trace execution [46, 22]. This makes the I/O profile
input-oblivious with respect to the if statements in the program. Loops can
be determinised by fixing a upper bound on the number of iterations. Previous
work on privacy preserving techniques use this method to remove the input-
dependence in loops [46, 34].
Example: We show how to apply this idea to our running example. In Figure 5,
we determinise the sequence of calls by moving the write call outside the loop
making them data-indpendent. All the lines are combined into a single buffer
and are written outside the loop. This makes the profile P deterministic with
respect to the type parameter while retaining the performance.

Channel C2 - Size. To hide the leakage through size parameter, a straight-
forward method is to pad the data with dummy bytes up to a certain maximum
value. Padding technique is used in several other contexts to hide leakage through
message length. Chen et. al and Wright et. al use the idea of rounding messages
to fixed length to prevent information leakage in web applications and encrypted
VoIP conversations [13, 67]. Dyer et. al proposed the idea of BuFLO (Buffered
Fixed Length Obfuscator) as a countermeasure against traffic analysis [19]. Sim-
ilarly, in program execution, padding can be used to determinise channel C2 by

forcing the same value of size parameter in profile P .
Example: In Figure 5, we pad the arguments to the write calls upto the size of
total read bytes. This is because in our running example, the maximum output
size equals the total input size when none of the input lines are repeated.
Channel C3 - Address. The pattern of address (file descriptor) parameter
in profile P acts as a channel of information leakage. This is analogous to the
memory access patterns observed in RAM memory. A memory address in the
RAM model corresponds to a file descriptor in our setting. The simple approach
to hide the address access patterns is to replace each access with a linear scan of
all addresses [40]. In the context of secure two-party computations, Wang et. al
and Gorden et. al show that linear scan approach is efficient for small number
of addresses [63, 30]. Privacy preserving compilers such as PICCO use the linear
scan approach to access encrypted indexes [71]. Linear scanning approach can
be used to determinise the I/O profile with respect to the address parameter.
Example: In Figure 5, we modify the program to access both the repeat_out
and uniq_out file for every execution no matter whether the input file contains
any repeated or unique lines. This makes the execution oblivious with respect
to the address parameter.
Channel C4 - Time. Even if channels C1 to C3 are deterministic, the time
parameter in the I/O profile leaks information about the sensitive input. Previ-
ous work have proposed hiding timing channels by making execution behaviour
independent of sensitive values such that the security of program counter is
preserved [49, 17]. Other approach is to transform applications to satisfy a spe-
cific type system that guarantees to hide the leakage through timing channel [6,
70]. For determinising the time parameter in P , we can use the idea of adding
dummy instructions in the program to make the execution time a constant value
as suggested in [11, 37].
Example: The input-oblivious version of the program (in Figure 5) takes a con-
stant time between the read and write calls in the I/O profile. For all inputs of
size 600 bytes, the program will always take time of 400 units before it performs
the first write call. The second write call follows immediately, thus taking less
time.

4.2 Limitations of Determinising I/O profile

Readers will notice that all the defenses to determinise the channels C1 to C4
exhibit one common characteristic. Each of the solution modifies their corre-
sponding parameters in the I/O profile to the worst-case execution time. This
introduces a performance trade off in most of the applications. Deterministic ap-
proach requires statically deciding the upper bound for the worst-case values of
all the profile parameters. This is not always possible due to the theoretical lim-
itations of static analysis [21]. Statically identifying the upper bounds for loops
is itself an undecidable problem and notoriously difficult in practice too [54,
43]. To explain the limitations, we use the split utility from CoreUtils package
(shown in Figure 6) which reads from an input file (line 1), splits a given input

1 n_read = safe_read (STDIN_FILENO, buf, bufsize);
2 while (t rue)
3 bp = memchr (bp , ’ \n ’ , eob − bp + 1) ;
4 i f (bp == eob)
5 break ;
6 ++bp ;
7 i f (++n >= n_lines)
8 cwrite (new_file_flag, bp_out, bp - bp_out);
9 bp_out = bp ;

10 new_f i l e_f lag = true ;
11 n = 0 ;

Fig. 6. split program code that splits the lines in input file and writes to different
output files

file line-wise (line 3) and writes the maximum B bytes as output to N different
files (line 8).
Type. In Figure 6, it is difficult to statically decide a “feasible” upper bound on
the number of loop iterations. In the worst case, a file can have a single character
on each line in the input file. To explicitly decide an upper bound for a file of
size around 1 GB, a determinised profile will execute the loop for N = 230 times
(assuming one byte on each line) which is not a reasonable solution.
Address. The simple strategy of linearly accessing all addresses suffers from an
overhead proportional to the maximum addresses an application uses during the
execution [63]. In split program performing linear access incurs a total overhead
of N2 i.e, accessing N files for each of the N loop iterations (where N = 230 in
worst case). This is impractical for real usage, unless N is small.
Size. Padding data with dummy bytes up to a maximum output size incurs huge
storage overhead as shown in previous work [19, 13]. In our split example, for
a 1 GB input file, the maximum possible bytes in a line is B = 1 GB, when
no newline characters are present in the file. Thus, determinising the split
program results in total storage overhead of N GB. It becomes N2 GB when
the I/O profile is determinised with respect to address channel.
Time. Determinising the time channel results in worst case execution time for
the application for different inputs of the same size [11, 65]. For a file of 1 GB,
split program will take equal time for input file having single character on every
line or the whole file having just a single line.

4.3 Approach 2: Randomizing the I/O profile

The second approach to making application execution input-oblivious is trans-
forming the original I/O profile to a randomized profile. Randomizing the I/O
profile involves addition of sufficient noise to every parameter in P . One advan-
tage of randomization over determinising the profile is that it scales better in

terms of performance for most of the applications. We explain this paradigm of
randomization techniques using the split example in Figure 6.
Oblivious RAM. A strategy for randomizing the address access patterns which
is the focus of many current research works is to use Oblivious RAM (ORAM) [28,
58, 62, 59, 56]. ORAM technique replaces each read / write operation in the pro-
gram with many operations and shuffles the mapping of content in the memory
to hide the original access patterns [28]. With the best ORAM techniques, the
application only needs to perform poly log N operations to hide the access pattern
where N is the total address space [56, 58]. This is strictly better as compared
to linear overhead of N operations in the trivial approach. Use of ORAM has
been proposed in various areas such as cloud storage [29], file system [66] and so
on. Similarly, we can apply ORAM to randomize the file descriptor parameter
in the I/O profile during program execution.
Example: In Figure 6, split program splits the input file and writes the output
to N files, we can make the I/O profile oblivious by making the program write
only to poly log N files using ORAM. Thus, the overhead reduces to N.polylog N
and is strictly better than N2 in the case of determinising the profile.
Addition of Noise. Randomization involves addition of random noise to the
parameters in profile P such that the I/O profiles for two different inputs are
indistinguishable. For this to work, we assume the enclaved application has access
to a secure source of randomness. We can employ the techniques similar to
those used in determinising the profile such as insertion of calls, padding of
bytes and addition of dummy instructions to randomize the I/O profile as well.
Randomization as a defense is popularly used in Instruction Set Randomization
(ISR) and Address Space Layout Randomization (ASLR) techniques to prevent
attacks on execution of benign applications [9, 39, 55]. RandSys combines these
two techniques and proposes randomization at the system call interface layer [38].
This approach can be used to randomize the sequence of calls in the I/O profile
of applications. Hiding of message length using random padding is explored in
depth in previous work in the context of web applications [13, 19]. Effects of
using same random number for all messages versus different random number for
each message was shown in [19]. Recent work has focussed on use of differential
privacy techniques [18], to randomly pad the traffic in web application [8]. We
can apply similar techniques to randomize the bytes in the I/O profile of an
application. Finally, to randomize the time channel, we can use existing ideas
that makes all the clocks available to the adversary noisy for reducing the leakage
through timing channels [35].
Example: For a file size of 1 GB, an efficient random padding technique for split
program in Figure 6 writes bytes less than the maximum value for most of the
write calls. This requires storage less than the worst case scenario.

4.4 Limitations of Randomizing I/O profile

Although randomizing I/O profile provides better performance in most applica-
tions, it does not imply ease of deployment in real applications.

Infeasible Sequence. Randomizing the type parameter in the I/O profiles may
introduce sequence of system calls which are not possible for a given application.
An adversary detecting such infeasible sequences learns about the additional
(fake) system calls inserted to make the profile input-oblivious. This is a valid
threat as adversary has access to the application logic and hence can notice any
irregular sequences. We call this as the “infeasible profile detection" attack. To
avoid this, an application needs to guarantee that a randomized sequence is al-
ways a subset of feasible sequences. This requires generating a complete set of
feasible sequence of calls for a given application which is a theoretical and prac-
tical limitation using path-feasibility analyses (eg. symbolic execution) [43].
Example: A simple example is the split program in Figure 6 which compulsorily
performs a read operation followed by a series of writes to different files. A ran-
domized sequence of calls such as read, write, write, read, write alarms
the adversary that the second read call is a fake. This immediately leaks that at
most 2 lines are written out by the program before the occurrence of the fake call
i.e, the value of variable n (at line 7 in Figure 6) is at most 2. The adversary can
iterate the execution sufficient number of times and collect different samples of
I/O profile for the same input. With the knowledge of infeasible sequences and
identifying the fake calls in each profile, the adversary can recover the original
sequences in finite time and learn the actual number of lines in the encrypted
input file.

Assumption about input distribution. The randomization approach often
performs better than determinising the profile as it does not always effect the
worst case behaviour. However, to reap the performance benefits of randomiza-
tion, it is necessary to know the input distribution [13].
Example: To efficiently pad the size channel in the split program, the distribu-
tion of output bytes (B) for an input file with English sentences can be known
using possible sentence lengths in English [53]. But the distribution is differ-
ent for a file that contains numerical recording of weather or genome sequence
information. When we compile the application, we may not know this distri-
bution. However, a significant challenge is to know beforehand the appropriate
distribution of all possible inputs to an application. It is practically infeasible
for common applications such as found it CoreUtils which take variety of input.

Insufficient Entropy. With insufficient entropy, the adversary can perform
repeated sampling to remove the randomization effect and recover the original
profile. Gianvecchio et. al show how entropy can be used to accurately detect
covert timing channel [27]. Cock et. al perform empirical analysis to show that
although storage channels are possible to eliminate, timing channels are a last
mile while thwarting leakage through side channels [16]. Similarly, other channels
can be recovered if the source of randomness does not provide sufficient entropy
— well-known from other randomization defenses [55]. It is necessary to ensure
that the source of random number which the application uses is secure and the
amount of entropy is large enough.

5 Insufficiency of Hiding Selective Channels
Defenses for both determinising and randomizing the profile have limitations that
affect their use in practical applications. One might hope to selectively hide one
or more leakage channels so that the transformed applications are still practical
to use. This hypothesis assumes that blocking one channel as well hides the
leakage through other channels. This section attempts to answer the question :
Is it sufficient to hide partial channels to get input-oblivious execution? Or, does
hiding one channel affect the amount of leakage through another channel?
Hiding only the address channel. In the logic-reuse attack (Section 2.1),
recall that the split application writes the ciphertext of each character in the
input to a separate output file (refer Figure 2). Using ORAM in the split
program hides the exact file to which the ciphertext is written. It replaces every
write call with poly log N calls where N is the total number of characters in the
input file. But this is not sufficient to mitigate the attack. The adversary can
get the ciphertext for number “1” by brute forcing all the ciphertexts written
by the first poly log N calls. ORAM just makes it harder for the adversary to
get exactly the required ciphertext. With ORAM, the adversary has to try the
Step 2 of attack with poly-log input ciphertext. This is expected as ORAM only
blocks the leakage through address parameter but does not hide the sequence of
calls. Recall that the leakage through other parameters like type, size and time
are sufficient for the attack to succeed. The adversary can observe the partially
oblivious I/O profile and still infer every byte in the encrypted file. Our logic-
reuse attacks even works in the presence of ORAM defense for hiding address
access patterns.
Hiding only the type channel. Let us assume that the size parameter for
write calls in our running example in Figure 3 always has the same value. This
is possible when all the lines in an input file have the same length. Such an
I/O profile is deterministic with respect to the size channel. To hide the leakage
through type channel, let us move the write calls outside the loop (as shown
in Figure 5). In this case, the type channel is determinised but the leakage is
not actually blocked. The leakage is shifted to the size channel which now has
different values depending on the number of repeated lines and unique line. This
shows that in determinising the type channel the leakage simply gets “morphed”
to the size channel, not really eliminated. This shows that its often mislead-
ing to selectively hide some subset of information channels due to this channel
morphism problem.

In summary, transforming an application to input-oblivious execution in-
volves two important steps: a) correctly identifying all the channels of informa-
tion leakage in profile P and b) applying either deterministic or randomization
approach to hide all the channel simultaneously.

6 Case Studies

Selection of Benchmarks. We select CoreUtils and BusyBox that are com-
monly available on Unix system as our benchmarks [3, 2]. We choose all the 28

1 while ((bytes_read = fread (buf, 1, BUFLEN, fp)) > 0)
2 unsigned char ∗cp = buf ;
3 l ength += bytes_read ;
4 while (bytes_read−−)
5 c r c = (c rc << 8) ^ crc tab [((c r c >> 24) ^ ∗cp++) & 0xFF] ;
6 i f (f e o f (fp))
7 break ;
8 printf (“%u %s", (unsigned int) crc, hp);

Fig. 7. cksum code with no channel of information leakage

1 for (int i = 0 ; i < n_l ines ; i++)
2 char ∗const ∗p = l i n e + permutation [i] ;
3 s i ze_t l en = p [1] − p [0] ;
4 i f (fwrite (p[0], sizeof *p[0], len, stdout) != l en)
5 return −1;

Fig. 8. shuf utility code that leaks the number of lines in input file

text utilities3 from GNU CoreUtils package , 1 utility (grep) from BusyBox and
the file utility as our case studies. All of them perform text manipulation on
input files. With this benchmark, our goal is to answer the following questions.
a) Does information leak through I/O profile in practical applications?
b) Is it possible to convert practical applications to input-oblivious execution?

6.1 Analysis Results

We analyze these 30 applications for read / write channels and manually trans-
form them to perform input-oblivious execution. We use the strace utility avail-
able in Linux system to log all the interactions of the application with the un-
trusted OS. The “-tt” option of strace gives the time-stamp for every system
call made by the application. We categorize each application into one or more
channels (discussed in Section 3) which need to be blocked for providing input-
oblivious execution. The type, size, address and time channel leak information
in 22, 11, 2, 24 applications respectively. Table 2 summarizes our analysis results.
No channels. Out of the 30 case studies, 6 applications perform nearly input-
oblivious execution without modification. These programs include sum, cksum,
cat, base64, od and md5sum. Figure 7 shows the code for cksum program as a
representative to describe the behaviour in these applications. The while loop at
line 1 uses the input size for termination which is a part of adversary’s knowledge
set ψ. Therefore the program generates the same sequence of calls for different
3 The class of utlitities that operate on the text of the input files. Other classes in
coreutils include file utilites that operate on file metadata and shell utilities

1 i f ((m = f i l e_ i s_ t a r (ms , ubuf , nb)) != 0) /∗Tar check ∗/
2 file_printf(ms, “%s", code_mime);
3
4 i f ((m = f i l e_ t r y c d f (ms , fd , ubuf , nb)) != 0) /∗CDF check ∗/
5 file_printf(ms,“%s", code_mime);
6 /∗ t e x t check ∗/
7 i f ((m = f i l e_ascmag i c (ms , ubuf , nb , looks_text)) != 0)
8 file_printf(ms, “%s", code_mime);

Fig. 9. file utility code that leaks the file type through the time channel

inputs of the same size. As the same computation is performed on every character
(line 5), the time interval between the calls is the same for different inputs.
Thus, the I/O profile of the program execution does not depend on sensitive
input. These 6 applications generate deterministic profiles by default and thereby
exhibit the property of input-oblivious execution.
Type. Of the remaining 24, 22 generate sensitive input-dependent sequence
of calls. We observe that 8 of the 22 applications specifically leak the num-
ber of newline characters present in the input file. Figure 8 shows the code
for shuf utility that shuffles the arrangement of lines in the input file and
outputs every line with a separate write call (line 4). These 8 applications in-
clude ptx, shuf, sort, expand, unexpand, tac, nl and paste. Other ap-
plications such as cut, fold, fmt, tr, split and so on leak additional in-
formation about the sensitive input depending on the options provided to these
applications. Recall that in our logic-reuse attack, the command “fold -w E(1
Hello)” leaks the ciphertext for individual characters in the input file.
Size. In our case studies, applications that writes as output either partial or
complete data from the input file are categorized as leaking channel through size
parameter. 11 of our 30 case studies fall under this channel namely tr, comm,
join, uniq, grep, cut, head, tail, split, csplit and tsort. All these
applications as well leak information through the type parameter. This means
that none of the 11 utilities leak information exclusively through size parameters.
Such a behaviour indicates that even if one of the channels is blocked, information
is still leaked and shifted over to another channel (refer Section 5).
Address. Most of the applications in our case studies read and write to a single
file with the exception of two utilities.The split and csplit programs access
different output files during the execution process. Thus, these two application
leak information via the address access pattern. From Table 2, readers can see
that these are the only two applications that leak information through all the
four channels in the I/O profile.
Time. All the 24 applications that do not fall in the no channel category leak
information through the time parameter in the I/O profile. Readers can observe
from Table 2 that only two programs i.e, wc and file leak information explicitly
through timing channel. The code snippet of file utility in Figure 9 explains

paste sort shuf ptx expand unexpand tac grep cut join uniq comm
Type X X X X X X X X X X X X
Size X X X X X
Address
Time X X X X X X X X X X X X

fold fmt nl pr split csplit tr head tail tsort file wc
Type X X X X X X X X X X
Size X X
Address X X
Time X X X X X X X X X X X X

No Channel - cat , cksum , sum , base64 , md5sum , od
Table 2. Categorization of CoreUtils applications into different leakage channels.X
denotes that the channel should be blocked to make the applicaiton input-oblivious

this behaviour. The file reads the input and checks it for each file type (line
1, 4 and 7). The I/O profile contains only one read and write call but the time
difference between the them leaks information about the input file type.

6.2 Can be transformed to input-oblivious execution?

To answer our second evaluation goal, we manually transform the applications
using the defenses discussed in Section 4. Since all the applications leak infor-
mation through timing channel for a fine grained measurement by adversary, we
ignore the timing channel in our manual transformation. We find some positive
results where the existing defenses can be directly applied to make commonly
used applications input-oblivious. Surprisingly, our findings yield negative re-
sults as well. We show that the limitations of oblivious execution techniques do
manifest in 2 real applications.

Transformed with O(1) overhead. We find that 11 applications can execute
obliviously by the determinising the profile with respect to the type parameter.
These are the applications in Table 2 which fall only under type and time chan-
nels and no others. In all these applications the sequence of call can be made
independent of the loops that use sensitive data for termination. The code for
shuf in Figure 8 is an example of such an application. Thus, there is no perfor-
mance overhead due to determinising the type channel. We consider this to be
a positive result as the applications can be transformed with O(1) overhead.

Transformed with O(N) overhead. We find that 11 applications that leak
information through both the type and size channel can be converted to input-
oblivious execution by making the sequence of calls loop independent as well as
padding the output bytes to the total input size. These transformed applications
incur a performance penalty of O(N) i.e, linear to the size of input file.

Transformed with Exponential Performance Penalty. We find that 2 ap-
plications namely split and csplit show the limitation of statically deciding

a feasible upper bound for loops. In these programs, the number of loop itera-
tion depends on the number of newline characters present in the input file (line
3 in Figure 6) which is not known at the compile time. Hence, transforming
these applications to input-oblivious execution is not possible without expo-
nential performance overhead of O(2N). We explain this behaviour for split
program earlier in Section 4. The csplit application is similar to split with
additional options to it and therefore exhibits same limitations. This confirms
that limitations of existing oblivious execution techniques do manifest in prac-
tical applications.

7 Related Work
Attacks on Enclaved Systems. On a similar setting as this paper, Xu et. al
demonstrate controlled-channel attack using page faults that can extract com-
plete text documents in presence of an untrusted OS [69]. This confirms that
enclaved execution techniques are vulnerable to information leakage through
different channels. Our work specifically focuses on file system calls as the read-
write channels in these systems. Iago attacks [12] demonstrate that untrusted
OS can corrupt application behaviour and exploit to gain knowledge about sen-
sitive inputs. This attack however assumes the OS is malicious and can tamper
the parameter of return values in memory management system calls like mmap.
In this paper, we have shown that information leakage is possible even with a
weaker i.e, semi-honest adversarial model.
Oblivious execution techniques. A discussion of closely related oblivious ex-
ecution techniques is summarized in Section 4 (see Table 1). Here we discuss
a representative set of recent work on these defenses. Liu et al. [46] propose a
type system for memory-trace oblivious (MTO) execution in the RAM model. In
their solution, they add padding instructions to ‘if’ and ‘else’ branches to achieve
memory trace obliviousness. We use this technique to hide the system call se-
quences in I/O profile. Along with this, they use the ORAM technique to hide
address access patterns. GhostRider [45] provides a hardware/software platform
for privacy preserving computation in cloud with the guarantees of memory-trace
oblivious execution. Along with hiding address access pattern Ghostrider deter-
minises the time channel by making the application take worst case execution
time. Ascend [22] is a secure processor that uses randomizes access pattern using
ORAM and determinises the time channel by allowing access to memory at fixed
intervals. The fixed interval is a parameter chosen at compile time. It uses the
idea of inserting dummy memory access to hide the timing channel. Fletcher et.
al have proposed a solution that provides better performance while still hiding
the timing channel [23]. However, their solutions leaks a constant amount of
information, thus introducing a tradeoff between efficiency and privacy.

8 Conclusion
In this paper we demonstrate a concrete attack called — a logic-reuse attack — to
highlight the importance of oblivious execution. We systematize the capabilities

and limits of existing oblivious execution techniques in the context of enclaved
execution. Finally, our study on 30 applications demonstrate that most of the
practical applications can be converted to oblivious execution with acceptable
performance. However, theoretical limitations of oblivious execution do manifest
in practical applications.

9 Acknowledgements

We thank the anonymous reviewers of this paper for their helpful feedback. We
also thank Shweta Shinde, Zheng Leong Chua and Loi Luu for useful feedback
on an early version of the paper. This work is supported by the Ministry of
Education, Singapore under Grant No. R-252-000-560-112 and a university re-
search grant from Intel. All opinions expressed in this work are solely those of
the authors.

References

1. http://letterfrequency.org
2. BusyBox. http://www.gnu.org/software/coreutils/
3. GNU CoreUtils. http://www.busybox.net/
4. Intel Trusted Execution Technology: Software Development Guide.

www.intel.com/content/dam/www/public/us/en/documents/guides/
intel-txt-software-development-guide.pdf

5. Trusted Computing Group. Trusted platform module. (July 2007)
6. Agat, J.: Transforming out timing leaks. In: Proceedings of the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’00 (2000)

7. ARM: ARM Security Technology âĂŞ Building a Secure System using TrustZone
Technology. ARM Technical White Paper (2013)

8. AZAB, T.: DIFFERENTIALLY PRIVATE TRAFFIC PADDING FOR WEB AP-
PLICATIONS. Ph.D. thesis, CONCORDIA UNIVERSITY MONTReal, QUebec
(2014)

9. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: Pro-
ceedings of the 10th ACM conference on Computer and communications security
(2003)

10. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. In: OSDI (2014)

11. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks
48(5), 701–716 (2005)

12. Checkoway, S., Shacham, H.: Iago attacks: Why the System Call API is a Bad
Untrusted RPC Interface. In: ASPLOS (2013)

13. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
A reality today, a challenge tomorrow. In: Security and Privacy (SP), 2010 IEEE
Symposium on. pp. 191–206. IEEE (2010)

14. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: A Virtualization-Based Ap-
proach to Retrofitting Protection in Commodity Operating Systems (2008)

15. Chhabra, S., Rogers, B., Solihin, Y., Prvulovic, M.: SecureME: A Hardware-
software Approach to Full System Security. In: ICS (2011)

16. Cock, D., Ge, Q., Murray, T., Heiser, G.: The last mile: An empirical study of
timing channels on sel4. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’14 (2014)

17. Coppens, B., Verbauwhede, I., De Bosschere, K., De Sutter, B.: Practical mitiga-
tions for timing-based side-channel attacks on modern x86 processors. In: Security
and Privacy, 2009 30th IEEE Symposium on. pp. 45–60. IEEE (2009)

18. Dwork, C.: Differential privacy. In: Encyclopedia of Cryptography and Security,
pp. 338–340. Springer (2011)

19. Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T.: Peek-a-boo, i still see you:
Why efficient traffic analysis countermeasures fail. In: Security and Privacy (SP),
2012 IEEE Symposium on. pp. 332–346. IEEE (2012)

20. ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. In: CRYPTO’84

21. Fairley, R.E.: Tutorial: Static analysis and dynamic testing of computer software.
Computer (1978)

22. Fletcher, C.W., Dijk, M.v., Devadas, S.: A secure processor architecture for en-
crypted computation on untrusted programs. In: Proceedings of the seventh ACM
workshop on Scalable trusted computing. pp. 3–8. ACM (2012)

23. Fletchery, C.W., Ren, L., Yu, X., Van Dijk, M., Khan, O., Devadas, S.: Suppressing
the oblivious ram timing channel while making information leakage and program
efficiency trade-offs. In: 2014 IEEE 20th International Symposium on High Perfor-
mance Computer Architecture (HPCA). pp. 213–224. IEEE (2014)

24. Gentry, C., Halevi, S.: Implementing gentry′s fully-homomorphic encryption
scheme. In: EUROCRYPT (2011)

25. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: 41st Annual
ACM Symposium on Theory of Computing (2009)

26. Gentry, C., Halevi., S.: A Working Implementation of Fully Homomorphic Encryp-
tion. In: EUROCRYPT (2010)

27. Gianvecchio, S., Wang, H.: Detecting covert timing channels: an entropy-based
approach. In: Proceedings of the 14th ACM conference on Computer and commu-
nications security. ACM (2007)

28. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM (1996)

29. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Practical obliv-
ious storage. In: Proceedings of the second ACM conference on Data and Applica-
tion Security and Privacy (2012)

30. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Security. CCS
’12 (2012)

31. Henecka, W., Kogl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: Tool
for Automating Secure Two-partY computations. In: ACM CCS (2010)

32. Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: Inktag: Secure ap-
plications on an untrusted operating system. ASPLOS (2013)

33. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of computer security 6(3), 151–180 (1998)

34. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computa-
tions in ansi c. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12 (2012)

35. Hu, W.M.: Reducing timing channels with fuzzy time. In: Research in Security
and Privacy, 1991. Proceedings., 1991 IEEE Computer Society Symposium on. pp.
8–20 (May 1991)

36. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Usenix Security Symposium (2011)

37. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space aslr. In: Security and Privacy (SP), 2013 IEEE Symposium on (2013)

38. Jiang, X., Wang, H.J., Xu, D., Wang, Y.M.: Randsys: Thwarting code injection
attacks with system service interface randomization. In: Reliable Distributed Sys-
tems, 2007. SRDS 2007. 26th IEEE International Symposium on. pp. 209–218.
IEEE (2007)

39. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM conference on
Computer and communications security. pp. 272–280. ACM (2003)

40. Keller, M., Scholl, P.: Efficient, oblivious data structures for mpc. In: Advances in
Cryptology–ASIACRYPT 2014, pp. 506–525. Springer (2014)

41. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptol-
ogyâĂŤCRYPTOâĂŹ99. pp. 388–397. Springer (1999)

42. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Advances in CryptologyâĂŤCRYPTOâĂŹ96

43. Landi, W.: Undecidability of static analysis. ACM Lett. Program. Lang. Syst.
44. Li, X., Hu, H., Bai, G., Jia, Y., Liang, Z., Saxena, P.: Droidvault: A trusted

data vault for android devices. In: Engineering of Complex Computer Systems
(ICECCS), 2014 19th International Conference on. pp. 29–38. IEEE (2014)

45. Liu, C., Harris, A., Maas, M., Hicks, M., Tiwari, M., Shi, E.: Ghostrider: A
hardware-software system for memory trace oblivious computation. In: Proceedings
of the Twentieth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. pp. 87–101. ACM (2015)

46. Liu, C., Hicks, M., Shi, E.: Memory trace oblivious program execution. In: CSF’13.
pp. 51–65 (2013)

47. McCune, J.M., Parnoy, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An Exe-
cution Infrastructure for TCB Minimization. In: EuroSys (2008)

48. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative Instructions and Software Model for Isolated
Execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy. HASP (2013)

49. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: Automatic detection and removal of control-flow side channel attacks. In:
Information Security and Cryptology-ICISC 2005

50. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - A System for Secure
Face Identification. In: Security and Privacy 2010

51. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of aes. In: Topics in Cryptology–CT-RSA 2006, pp. 1–20. Springer (2006)

52. Paillier, P.: Public-key Cryptosystems Based on Composite Degree Residuosity
Classes. In: EUROCRYPT (1999)

53. Quirk, R., Crystal, D., Education, P.: A comprehensive grammar of the English
language, vol. 397. Cambridge Univ Press (1985)

54. Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic ex-
ecution on binary programs. In: Proceedings of the eighteenth international sym-
posium on Software testing and analysis. pp. 225–236. ACM (2009)

55. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
conference on Computer and communications security. pp. 298–307. ACM (2004)

56. Shi, E., Chan, T.H.H., Stefanov, E., Li, M.: Oblivious ram with o((logn)3) worst-
case cost. In: Proceedings of the 17th International Conference on The Theory and
Application of Cryptology and Information Security. ASIACRYPT’11 (2011)

57. Shinde, S., Le Tien, D., Tople, S., Saxena, P.: Panoply: Low-tcb linux applications
with sgx enclaves. In: NDSS (2017)

58. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: An extremely simple oblivious ram protocol. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security. CCS
’13 (2013)

59. Stefanov, E., Shi, E., Song, D.: Towards Practical Oblivious RAM. CoRR (2011)
60. Thekkath, D.L.C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,

M.: Architectural support for copy and tamper resistant software. In: Proceedings
of the Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS IX (2000)

61. Tople, S., Shinde, S., Chen, Z., Saxena, P.: Autocrypt: Enabling homomorphic
computation on servers to protect sensitive web content. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security. CCS
’13 (2013)

62. Wang, X.S., Chan, T.H., Shi, E.: Circuit oram: On tightness of the goldreich-
ostrovsky lower bound (2014)

63. Wang, X.S., Huang, Y., Chan, T., Shelat, A., Shi, E.: Scoram: Oblivious ram for
secure computation. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp. 191–202. ACM (2014)

64. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
Alternative data models. In: Security and Privacy, 1999. Proceedings of the 1999
IEEE Symposium on. pp. 133–145. IEEE (1999)

65. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., et al.: The worst-case
execution-time problemâĂŤoverview of methods and survey of tools. ACM Trans-
actions on Embedded Computing Systems (TECS)

66. Williams, P., Sion, R., Tomescu, A.: Privatefs: A parallel oblivious file system.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security. CCS ’12

67. Wright, C.V., Ballard, L., Coull, S.E., Monrose, F., Masson, G.M.: Spot me if you
can: Uncovering spoken phrases in encrypted voip conversations. In: Proceedings
of the 2008 IEEE Symposium on Security and Privacy. SP ’08 (2008)

68. Yao, A.C.: Protocols for Secure Computations. In: 23rd Annual IEEE Symposium
on Foundations of Computer Science (1982)

69. Yuanzhong Xu, W.C., Peinado, M.: Ghostrider: Controlled-channel attacks: De-
terministic side channels for untrusted operating systems. In: IEEE Security and
Privacy’15

70. Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’12

71. Zhang, Y., Steele, A., Blanton, M.: Picco: A general-purpose compiler for private
distributed computation. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’13 (2013)

