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ABSTRACT
Analyzing structural properties of social networks, such as identify-

ing their clusters or finding their central nodes, has many applica-

tions. However, these applications are not supported by federated

social networks that allow users to store their social contacts locally

on their end devices. In the federated regime, users want access

to personalized services while also keeping their social contacts

private. In this paper, we take a step towards enabling analytics on

federated networks with differential privacy guarantees about pro-

tecting the user’s social contacts. Specifically, we present the first

work to compute hierarchical cluster trees using local differential

privacy. Our algorithms for computing them are novel and come

with theoretical bounds on the quality of the trees learned. Empir-

ically, our differentially private algorithms learn trees that are of

comparable quality (with at most about 10% utility loss) to the trees

obtained from the non-private algorithms, while having reasonable

privacy (0.5 ≤ ϵ ≤ 2). Private hierarchical cluster trees enable new

application setups where a service provider can query the com-

munity structure around a target user without having their social

contacts. We show the utility of such queries by redesigning two

state-of-the-art social recommendation algorithms for the federated

social network setup. Our recommendation algorithms significantly

outperform the baselines that do not use social contacts.
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1 INTRODUCTION
Millions of users are moving towards more decentralized or feder-

ated services due to trust and privacy concerns of centralized data

storage [3, 35]. Federated social networks are a popular alternative

to the centralized networks as the user’s social connections are kept

private and stored on user-controlled devices. For instance, Signal, a

federated social network, has recently seen tens of millions of users

joining the platform after WhatsApp announced a controversial pri-

vacy policy update [82]. This movement towards decentralization

has incentivized companies to develop techniques to port conven-

tional end applications to the federated setup [2, 11, 72].

Conventional end applications for social and communication

networks, such as personalized recommendations and online ad-

vertising, require finding similar users on the network that have an

influence over a target user [39, 92]. For instance, a user’s network

neighbors and other users in their close community are known to

influence the user’s behavior [31]. Therefore, the ability to probe

the close community of a target user is important to analyze. In

the centralized setup, such queries are trivial because the users’

data is stored in the servers of a centralized service provider and

thus the whole network is available. However, in the federated

setup this network structure is not available to the service provider.

Moreover, the users of a service often derive value and benefits

from conventional end applications, while expecting a reasonable

privacy guarantee on their sensitive data [11]. This new paradigm

raises the problem of redesigning conventional applications for the

federated setup, which in turn requires supporting queries such as

“Who are the users in the close community of a target user?”

It is useful to think of a federated social network as a graph.

Users form vertices of the graph and the outgoing links of a user

are only kept locally with it. A starting point for answering queries

over a federated network that preserve privacy of the individual
links is the local differential privacy (LDP) framework [73]. The

LDP regime eliminates trust in a centralized authority and thus

naturally fits the federated setup [29, 54, 66]. In this setup, each

user locally adds noise to the query outputs computed on its raw

data to preserve privacy before releasing it. Users communicate

with an untrusted authority which combines the noisy outputs of

the users, possibly with more than one round of communication,

to compute the final result. In the LDP model, the noise added by

every user in multiple rounds of communication adversely affects

the utility of a query. Consequently, queries in the LDP regime

have largely been restricted to simple statistical queries such as

counts and histograms over categorical, set-valued data, or key-

value pairs [21, 25, 32, 37, 95], with only a few exceptions [71]. So,

more complex queries that probe the sensitive link or community

structure around a target user remain a challenge in the LDP regime.
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As our first contribution, we propose learning a well-known data

structure called a hierarchical cluster tree (HCT) over a federated
network of users in the LDP regime. An HCT is a tree representa-

tion of the network which clusters similar vertices at various levels.

At lower levels, small tightly-connected clusters emerge; and, at

higher levels, larger clusters and structural hubs are captured. An

HCT naturally captures the communities around a user at various

granularities. In the centralized setup, HCTs are commonly used

in recommender systems [8, 9, 78, 91], intrusion detection [44],

link prediction [49] and even in applications beyond computer sci-

ence [16, 17, 46, 60]. Learning HCTs with LDP guarantees unlocks

such applications in the federated setup. The only existing approach

to privately learn HCTs is for the centralized setup, where the cen-

tral authority is entrusted with the whole network [89]. However,

this approach incurs large amounts of noise if it were directly

adapted to fit the LDP regime as it requires multiple queries on the

network structure. Therefore, we ask: Can we compute HCTs over
federated networks (graphs) with acceptable privacy and utility?

We present the first algorithm called PrivaCT
1
to learn HCTs

over federated graphs in the LDP framework. In the process, we

also design a novel randomized algorithm called GenTree, to com-

pute HCTs in the federated setup without differential privacy. To

achieve this, we make the key observation that a recently proposed

quality function to measure the quality of HCTs couples well with

a known differentially private construct called degree vectors. Our

design choices are principled and guided throughout by theoretical

utility analysis. Specifically, we show that GenTree creates HCTs

within O(
logn
n2

) approximation error of the ideal HCT in expecta-

tion, where n is the number of vertices in the given federated graph.

Its differential private version called PrivaCT has an additive ap-

proximation error term bounded by a quantity that depends only

on n, not on the edge structure of the graph. Therefore, once we fix

a graph with n vertices, the expected error (or loss in utility) can

be analytically bounded for various choices of the privacy budget

ϵ [23]. Further, PrivaCT requires querying each user only once.

Finally, we show a concrete application that directly benefits

from our private HCTs: social recommendation systems. To allevi-

ate issues such as lack of data when a new user joins the centralized

recommendation service, or to increase the recommendation qual-

ity, social recommender systems use additional cross-site data such

as users’ social network [20, 64, 67, 76]. The key insight is to use

the private HCTs to identify users in the close communities of a

target user. We show that PrivaCT can be readily integrated into

both traditional [83] and state-of-the-art [85] algorithms to provide

recommendations in a setup where users’ privacy is important and

they do not trust the central entity with their social contacts. On 3

commonly used social recommendation datasets, we demonstrate

that PrivaCT-based private social recommendation algorithms per-

form 0.9-1000× better than the algorithms that do not use social

information across all evaluated settings. Therefore, PrivaCT can

be used to improve recommendation quality by utilizing the so-

cial information from federated networks at a low privacy budget

(ϵ = 1) [12, 55].

To summarize, we claim the following contributions:

1
Our tool is publicly available at https://github.com/ashgeek/privaCT-public

• Conceptual: We propose the first work that learns hierar-

chical cluster trees from a federated network in the local

differential privacy model to the best of our knowledge.

• Technical: We propose two novel algorithms (Section 4)

with utility guarantees: 1) GenTree learns hierarchical clus-

ter trees which are close to the ideal in expectation and 2)

PrivaCT learns private hierarchical cluster trees whose util-

ity loss can be bounded for various choices of privacy budget.

We evaluate the quality of our learned cluster trees by com-

paring them with the state-of-the-art solution developed for

differential privacy in a centralized setup, showing empiri-

cal improvements in the obtained utility of the hierarchical

cluster trees (Section 6). Further, the observed difference in

empirical utility of our differentially private and non-private

versions of our algorithms is small (< 7% at ϵ = 1).

• End application: Using PrivaCT-based HCTs, we redesign

the state-of-the-art social recommendation algorithms such

that users in the federated setup can be served high-quality

recommendations without having to share their contacts

with the service provider. We evaluate our algorithms on

3 popular social recommendation datasets with a privacy

budget ϵ = 1. Our algorithms significantly outperform the

baselines that do not use social contacts in almost all eval-

uated settings and in some settings perform on-par with

non-private baselines that use raw social contacts (Section 7).

2 MOTIVATION & PROBLEM
We illustrate our problem setup in the context of networks where

edges are private information such as communication and social

networks. The structure of social networks captures influence rela-

tionships between users which are instrumental in conventional

applications such as serving recommendations [31] and link pre-

diction [50]. At the heart of these applications lies the idea that

users’ preferences are influenced by other users on the network.

A user’s influence is projected beyond his immediate neighbors

into the broader community and decreases as the distance on the

network increases. Ideally, having the network structure allows us

to understand a user’s preferences based on their close community

consisting of their immediate neighbors, one-hop neighbors, and so

on. Therefore, the queries that we are specifically interested in an-

swering are: “Which users are in the close community of a target user?”
where closeness dictates the granularity of exploration [20, 64]. We

show how these queries are useful in social recommendations.

2.1 Motivating Example
Recommender systems are widely used to help users find interest-

ing products, services, or other users from a large set of choices.

These systems are crucial for the user experience and user reten-

tion [4]. Despite their success, recommender systems suffer from

the problem of data sparsity. For example, when a new user joins

the recommendation system there is no history to base the recom-

mendations on (known as the cold start problem [77]). To mitigate

this problem, recommender systems benefit from cross-site data

such as online social networks [48, 67, 83]. For example, YouTube

recommender accuracy was reported to increase when information

from Google+ and Twitter networks is used [20] and Amazon’s
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Figure 1: To recommend Alice and Bob an artist, we use
the preferences of users in their close communities. There-
fore, Alice is recommended Pink Floyd, then Beatles, and
vice-versa for Bob. The amount of “closeness” can be set to
just first-degree neighbors or to a higher degree depending
on the scenario. Both of them are not recommended Taylor
Swift, a pop artist popular in another community.

recommendations were reportedly improved with network infor-

mation from Cheetah Mobile [64, 68]. These techniques constitute

the realm of social recommendation [30] and are based on the idea

that a user’s preferences are similar to or influenced by their friends

and other users in the close community. The reason behind this

observation can be explained by social correlation theories [81].

Consider a music streaming service that recommends artists to

users for illustration. On the streaming service, each user rates

artists from 1 to 10 either explicitly or implicitly by the number

of times they listened to that particular artist. Hence, the service

stores user’s item preferences on its centralized servers. The rec-

ommendation algorithm additionally uses social contacts to make

recommendations. The social contacts can be obtained by asking

users to share their contacts directly while signing up (e.g., Google

or Facebook contacts). In Figure 1, we illustrate such a service where

we zoom into the community of users interested in the rock music

genre. When new users Alice and Bob sign up for the streaming

service, they connect with their friends who belong to this broad

community. A good social recommendation algorithm recommends

Alice the artists Pink Floyd and the Beatles, in that order, and the

same artists for Bob, but in reverse order. The intuition for this is

captured by the community structure around these users. Observe

that Alice’s close community consisting of her first- and second-

degree neighbors has rated Pink Floyd higher than the Beatles. For

example, Sam, her direct neighbor, has rated Pink Floyd 9.0 and

the Beatles, 8.0. In the real world, this means that Alice’s friends

and friends of her friends have rated Pink Floyd higher than the

Beatles. Alice’s next closest community consisting of third-degree

neighbors (Eve) rates the Beatles higher than Pink Floyd but they

still listen to and rate Pink Floyd highly > 8.0. However, Taylor

Swift, a popular artist in another part of the network, is rated lower

in this community. Thus, Taylor Swift does not appear in the top

recommendations for either Alice or Bob.

Currently, centralized streaming services query for close com-

munities around a target user. In this work, we take a step towards

supporting such queries in the federated setup. This would enable

conventional end applications in the federated setup without the

need for users to share their contacts.

2.2 Problem Setup
A federated social network is a graph G : (V ,E) with n = |V |

vertices. Each vertex in V corresponds (say) to a separate user who

stores the list of its neighbors locally. We assume that the graph is

static thus there is no change in the set of vertices or edges. There

is an untrusted central authority who knows the registered users

on the network. However, the central authority does not know the

edges of any user. Users want to keep their edges private. This setup

is common in the real-world federated social networks [29, 54]. We

assume that the users are honest and they wish to have good service

from the central authority. Therefore, the central authority can

query the users on their private edge information and they respond

as long as they are guaranteed an acceptable level of privacy.

In this setup, our goal is to enable the aforementioned queries

without the central authority knowing the edges of a user. At the

same time, the user should not incur a prohibitive computation or

communication cost. We turn to a local differential privacy frame-

work as it is widely regarded as a strong privacy guarantee that can

be given to a user while allowing the central authority to extract

useful information from the user.

Differential Privacy. The differential privacy (DP) framework

helps to bound the privacy loss incurred by a user by participating

in a computation.

Definition 1 (Differential Privacy). For any two datasets, D and

D ′
such that (|D−D ′ | ≤ 1), a randomized queryM : D → S satisfies

ϵ-DP if

Pr (M(D) ∈ s) ≤ eϵPr (M(D ′) ∈ s)

Here, s ⊆ S is any possible subset of all outputs ofM .

The ϵ parameter is called the privacy loss and it bounds the

ratio of probabilities of observing any chosen output with any two

input datasets D and D ′
that differ in one element. The parameter ϵ

captures the maximum loss in privacy resulting from one run of the

algorithm M . We can see that the lower the value of ϵ , the closer
the two output probability distributions are, therefore, the higher

the privacy. Every time M is run and its outputs are released the

value of ϵ increases implying more loss of privacy. However, once

the outputs of M are public then they can be reused many times

without losing additional privacy as given by the post-processing
property [23]. In our setup, the central authority is untrusted which

corresponds to the local differential privacy (LDP) regime where

each user stores the edge information locally and uses a DP mecha-

nism on it. Therefore, the input dataset for the i-th vertex in our

problem is a binary array Di : {0, 1}n with 1 in the j-th index if an

edge exists between vertices i and j, and 0 otherwise. Since users

do not release their edge information but the identities are known

to the central authority, we work with edge local differential pri-
vacy [71]. In this framework, the privacy of edges (each bit in the

Di ) of a user (vi ) is preserved.

Enabling Queries in LDP. Our LDP setup poses a significant chal-

lenge to design queries that explore the community around a user.
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Figure 2: The network from Figure 1 and its candidate HCT.

For instance, even a simple query such as “reporting the immediate

contacts” is privacy-sensitive and requires a user to add significant

amounts of noise. To illustrate this, consider the non-private an-

swer for a user vi which would be the original bit vector Di . To

preserve LDP, we can use a popular strategy called randomized

response for this query [23]. In randomized response, for each bit in

Di the user reports the original value of Di [j] with a high probabil-

ity, say 70%, and reports the flipped value otherwise. This strategy

confers plausible deniability: even if the user vi reported that vj
is their immediate contact, there is a 30% chance that there is in

fact no edge between vi and vj . Observe that by using this strategy

a user will claim to have 300, 000 contacts for a network of size

1, 000, 000 even if they have just 70 contacts. Consequently, most of

the existing works provide LDP queries for less sensitive numerical

queries such as “number of contacts” or aggregate statistics. Our

goal is to support more complex queries that ask for the community

around a user at various levels of closeness (i.e., second-degree,

third-degree, and so on). If the private algorithm requires users to

release their data for every degree of closeness, additional noise is

required. Therefore, exploring the community around users at dif-

ferent granularity on a federated graph without adding significant

noise is challenging.

3 HIERARCHICAL CLUSTER TREES
To support complex community queries at different granularities

without additional noise, we propose to use a well-known data

structure called hierarchical cluster tree (HCT). HCTs are used in

many applications [8, 9, 16, 17, 44, 46, 49, 60, 78, 91]. An HCT cap-

tures the idea that the network is a large cluster, which recursively

splits into smaller clusters of vertices, until only individual vertices

remain in each cluster. Thus, one key advantage is that we can learn

the private HCT of the network once and then publicly release it.

Any subsequent query on it for various levels of granularity does

not require additional noise, due to the post-processing property.

To illustrate this, in Figure 2 we draw the HCT for the sub-

community from our motivating example (Figure 1). Each internal

node of the HCT splits the network into two communities, one

comprising of the leaves in the left subtree and the other from the

right subtree. For instance, at the root the whole network is split

into two communities with Alice (v2) in the left one and Bob (v6)

on the right. Observe that with the increasing depth of the HCT

we get users in closer communities. To avoid confusion, we will

henceforth refer to constituents of the HCT as nodes/links and that

of the original network as vertices/edges.

LetG : (V ,E) be the original network. AnHCT forG has to group

the vertices in V by a measure of similarity/dissimilarity. Different

applications can define different similarity notions. For example,

one natural definition is based on neighbor information—two ver-

tices inV are highly similar if they havemany common neighbors in

G . Degree similarity states that two vertices with a larger difference

in degrees are more dissimilar. Modularity measures the similarity

of two clusters by counting how many more edges between them

exist than that predicted in a random graph [62]. It is easy to see

that members of an isolated clique in G will be highly similar to

each other by all these definitions. In this work, we design all our

techniques using dissimilarity scores; however, our techniques can

be extended to the analogous measures of similarity easily.

Generically, an HCT (T ) has two components, Λ and θ . Λ is the

set of internal nodes and θ is a dissimilarity measure defined as

a function that maps internal nodes to a real value. Each internal

node λi ∈ Λ is associated with two subtrees Li and Ri . Since the
leaves of each subtree represent the vertices of the original graph,

each internal node represents two sets of clusters, corresponding

to the left and right subtrees. Therefore θ (λi ) can also be thought

of as the dissimilarity score between two clusters represented by

λi . For instance, in Figure 2 the internal node λ3 has two clusters

{(v1,v2), (v3,v4)}. The θ (λ3) represents the dissimilarity between

the two clusters at λ3. Intuitively, the clusters at lower levels of the

hierarchical structure should be more similar to each other than

at the higher levels i.e., closer to the tree root. This can be seen

in the graph G (sub-community) as well, as v1,v2,v3,v4 are better

clustered together than the other two vertices v5,v6.

Therefore, an HCT is meaningful only if the dissimilarity score

at an internal node λ is lower than the dissimilarity score at all of

its ancestors. We call this property as ideal clustering property. Next,
we describe traditional algorithms to learn HCTs in the centralized

setup with and without differential privacy, and the challenges of

extending them to the federated setup with LDP.

3.1 Learning an HCT in the Centralized Setup
In the centralized setup, the authority is trusted and knows the

entire graph, i.e., it can query the raw edges in G directly. The

centralized setup offers a reasonable private baseline to compare

our eventual solution to learn an HCT in the federated setup.

Even with no DP guarantee, how do we computeT ? Observe that
there are combinatorially many (in n) cluster trees possible for G,
since each cluster tree corresponds to a unique way of partitioning

the vertices in the graph. The goal is to find a tree that preserves

the ideal clustering property, and among those which do, find the

one that provides the best clustering at each level. Many traditional

methods like average linkage [61], which are natural to use in the

centralized setup, are ad-hoc and do not provide any quantitative

way of measuring the quality of trees produced. A more systematic

way is the algorithm proposed by Clauset et al. [13, 14] which we

refer to as the CMN algorithm. This algorithm is one of the most

popular for computing hierarchical structures [45, 69, 94], and its

DP version is known [89].

CMN defines a quality function, which quantifies how good is a

cluster tree at clustering similar vertices at each level [14]. For a

given graphG and a probability assignment function π , the quality
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of a computed cluster tree T is as follows:

QM (T ) =
n−1∏
i=1

(πi )
Ei (1 − πi )

LiRi−Ei
, where πi = π (λi )

Li and Ri are the number of leaves in the left and right sub-trees

at the i-th internal node λi inT . Ei is the number of edges between

the two clusters represented by λi . The probability function π
assigns a probability score at each internal node λi which signifies

the probability of an edge existing between a leaf (vertex) in the

left subtree at λi and another vertex in the right. We will refer to

edges that have one vertex in the left sub-tree and one in the right

sub-tree as edges "crossing the clusters" rooted at λi . Subsequently,
πi becomes the probability of an edge crossing the clusters rooted

at λi for any graph (not necessarily G) that can be sampled using

T and π . Therefore, QM also measures the likelihood of sampling

a given graph using T and π . A tree that optimizes this quality

function given the underlying graph G, will sample G that has the

maximum likelihood among all graphs with n vertices [13]. Here,

πi is computed using πi =
Ei

Li ·Ri as this value maximizes the QM .

Therefore, the CMN algorithms employ the principle of maxi-

mum likelihood estimation to find a T and π conditioned on the

given graphG as evidence. Maximizing QM by enumeratively eval-

uating it on the space of all possible cluster trees is intractable.

Therefore, the CMN algorithm optimizes for QM using a Markov

chain Monte Carlo (MCMC) sampling procedure [58]. This sam-

pling procedure is shown to converge in expectation to the desired

tree for which G maximizes the likelihood.

CMN-DP. The DP version of this algorithm is the state-of-the-

art solution in the computation of differentially private HCTs [89].

This is our centralized DP baseline method and we call it CMN-DP.

Specifically, the CMN-DP simulates the exponential mechanism of

differential privacy [23] by following a similar MCMC procedure to

maximize QM and adds noise to the edge counts Ei after conver-
gence for computing the probabilities π . Details of this algorithm
are elided here; we refer interested readers to prior work [89]. The

key point is that both the computation of CMN and CMN-DP as-

sume access to the raw edges in G. We will show how to compute

T in our LDP setup, without direct access to the raw edges.

3.2 Challenges: from CMN-DP to LDP
The quality function QM depends on the probability assignment

function π to measure the “closeness” between two clusters and π
uses fine-grained private information such as computing the ex-

act number of interconnecting edges between the two clusters. To

compute this fine-grained information in the federated setup, the

users from one of the clusters can be asked to report the counts

of their neighbors in the other cluster after adequately noising

them for satisfying LDP. For instance, in Figure 2, the number of

edges (E3) crossing the internal node λ3 can be calculated using the

edge counts reported by users v1,v2,v3,v4 that cross λ3. However,

searching for an optimalT that optimizes for QM requires comput-

ing the interconnecting edges for all possible sets of clusters in the

worst case. Concretely, CMN-DP implements an iterative search

procedure that queries a user for edge information thousands of
times before converging to the optimalT (see Section 6). While this

search works in the centralized setup where the graph is available,

it is not feasible in the federated setup for two reasons. First, an-

swering every differentially private query leads to a privacy loss,

and over many such queries the aggregated privacy loss will be

high [23]. To exemplify, a thousand queries with an ϵ = 0.1 for

each query will lead to an aggregated epsilon ϵ > 20 with 99%

probability, as given by the advanced composition theorem [23].

We consider ϵ ≤ 2 as reasonable [38]
2
, although prior works have

considered up to ϵ = 8 [1]. Second, the search procedure for finding

the optimalT is iterative so the users have to be available for many

iterations of the search to compute the closeness.

4 OUR SOLUTION
Our key ideas to tackle the aforementioned challenges are two-

fold. First, instead of using a fine-grained probability assignment

function π , we propose a coarse-grained method to compute the

closeness between two clusters such that the users need not be

queried repeatedly for their neighbors. Second, we propose to re-

place the quality function QM with another quality function that

can work with any coarse-grained method that captures the close-

ness between two clusters. These two observations enable us to

design a novel hierarchical clustering algorithm which only queries

the users once and the rest of the iterative search for an optimal

tree happens on the server side. We detail our insights next.

4.1 Key Insights
Our first insight is to use an easy to compute coarse-grained ap-

proximation for closeness that can be obtained for a low privacy

budget. We start from a construct called degree vectors, previously

proposed in the LDP setup [71]. The degree vectors are a general-

ized version of degree counts, wherein the vertices are randomly

partitioned into K bins of almost same size, and each user is asked

to report how many neighbors it has in each bin. For K = 1 this

degree vector has one element and it yields just the degrees of

the vertices in G. For K = n, all nodes would have a unique bin,

therefore the degree vectors will encode the original neighbor list

for all vertices. For any 1 < K < n the idea is to preserve more

edge information than just degrees and less than the exact edges.

Then, the degree vector is noised by the user; a random Laplacian

noise Lap(0, 1

ϵ ) is added to each bin count before sending it to the

untrusted authority. The K is small compared to the network size,

typically ≤ logn or a small constant [71]. This is intuitively good,

since the noise added to the degree vector is proportional toK . Now
we ask: What can we compute with degree vectors?

It is not straightforward to compute QM using degree vectors.

Nevertheless, observe that if we take two close clusters with respect

to π , then on average each user in the left cluster has a lot of

neighbors in the right cluster and vice versa. This notion is readily

captured by degree vectors. It is very likely for two neighboring

vertices (say friends) to have a similar set of common neighbors

(common friends) hence similar degree vectors. Consequently, if we

measure the dissimilarity as a L1-norm between their degree vectors

then the dissimilarity for such vertices should be low. Therefore,

the average dissimilarity across vertices of two close clusters will
be lower than for two far clusters. We illustrate our intuition in

2
Usually, an ϵ = 2 allows an attacker to infer a random bit of the training sample (in

this case an edge for each user) with 86% probability.
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(a) Close clusters (b) Distant clusters

Figure 3: (a) Two close clusters, high π , have more intercon-
necting edges than two distant ones. (b) Average dissimilar-
ity θ using L1-norm of degree vectors also captures close-
ness.

Figure 3. Figure 3a shows two clusters with high interconnecting

edges, hence the π associated with the two is high. Consequently,

the average L1-norm distance will be less. A similar argument can

be made for Figure 3b. Therefore, we propose using the average L1-

norm distance using degree vectors as a coarse-grained replacement

for π to measure the closeness between clusters. Observe that the

degree vectors can be constructed just once for each user which can

then be used to compute the average L1-norm distance for any two

clusters. This key insight allows us to propose a different quality

function that optimizes for the average L1-norm distance.

We point to a recently introduced quality function
3
function

by Dasgupta [18]. Dasgupta’s quality function takes a dissimilarity

matrix and a tree as inputs and measures the quality of the tree

for that dissimilarity matrix. Our first observation is that this qual-

ity function does not need the fine-grained edge counts between

clusters (like QM does). The second and even more important ob-

servation is that a tree that optimizes Dasgupta’s quality function

has a specific dissimilarity measure θ (defined in Section 3). The

measure represents the average dissimilarity between the vertices

of two clusters computed using the dissimilarity matrix. In fact, we

formally show that such a tree satisfies the ideal clustering property

as well (Section 4.2). Thus, if we use the L1-norm of degree vectors

to compute the dissimilarity matrix, then by optimizing for the Das-

gupta’s quality function we get our desired coarse-grained average

L1-norm distance as the θ . So, we directly arrive at a tree which

minimizes the distance between the close clusters and maximizes

the distance between the far ones.

Using these insights, we design a novel randomized algorithm

to sample a differentially private HCT that optimizes Dasgupta’s

quality function after querying a degree vector from each user.

To summarize, we have shown a way to avoid multiple privacy-

violating queries in learning an HCT by designing another learning

strategy that allows us to replace the fine-grained queries with a

coarse-grained one that preserves the ideal clustering property.

4.2 Dasgupta’s Quality Function
We now formulate the Dasgupta’s quality function considering only

full binary trees, and when a dissimilarity matrix is given as input.

Definition 2 (Dasgupta’s Quality Function (QD )). The quality of

a tree T : (Λ,θ ) with respect to a graph G with a non-negative

3
Originally, it was introduced as a “cost” function and it used a similarity matrix. That

cost function has to beminimized for producing better trees. Here we use dissimilarities,

therefore, the function becomes a quality function that has to be maximized.

Figure 4: The possible swaps of a tree.

dissimilarity matrix S is given by

QD (T ) =
∑

x ∈V ,y∈V
S(x ,y) · |leaves(T [x ∨ y])|

where T [x ∨ y] is least common ancestor of x ,y.

The expression is a weighted sum of dissimilarities of each pair of

vertices, weighted by the number of leaves in the subtree of the least

common ancestor of the pair of vertices. The idea ofmaximizingQD

is intuitive. Any pair of vertices (x ,y)which are highly dissimilar to

each other will have a high dissimilarity score S(x ,y) and therefore,
their least common ancestor node (which we denote by T [x ∨

y]) should have more leaves in order to maximize the product

S(x ,y) · |leaves(T [x ∨ y])|. It has been shown that an optimal tree

with respect to QD has several nice properties such as: 1) Two

disconnected components in the graph will be separated completely

into two different clusters; 2) The quality of every tree for a clique

is the same; and, 3) it represents the clusters well in the planted

partition model [18]. Property 2) is the most relevant to us, as we

will use it to bound the utility loss.

Originally, the quality function was designed for a non-negative

similarity matrix with no restriction on the tree space. In the dis-

similarity case, if we allow all possible trees then there is always a

trivial tree that maximizes this function, i.e., the star graph with

only one internal root node. Therefore we restrict the space of trees

to optimize over to only full-binary trees. All the above properties

continue to hold in the dissimilarity case when the tree space is

restricted to the full-binary trees [15].

Note that the quality function does not require any edge informa-

tion of the graph but only a dissimilarity matrix, a key requirement

for the design of our algorithm in the decentralized setting. As

stated previously, we show that the tree T that maximizes QD also

satisfies the ideal clustering property. Further, the θ of such a tree

will just be the average dissimilarity between the nodes of two

subtrees at each internal node λ. Formally, Theorem 3 captures

both these observations.

Theorem 3. Given a graph G : (V ,E) and a dissimilarity matrix
S , the tree TOPT

: (Λ,θ ) that maximizes QD preserves the ideal
clustering property with

θ (λ) =

∑
x ∈L,y∈R S(x ,y)

|L| · |R |

where L, R are the left and right subtrees of λ.

The full proof of Theorem 3 is provided in the Appendix A.1. It is

a proof by contradiction. Assuming that there exists a QD -optimal
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Algorithm 1: Outline for GenTree
Input: Dissimilarities matrix S , max iterations I
Output: Hierarchical cluster tree T ∗

1 Randomly sample a tree T0;

2 i = 0;

3 while not converged and i < I do
4 Sample an internal node λi from Ti ;

5 Construct two local swap trees T L
i+1
,TR
i+1

;

6 Pick one of them at random, call it Ti+1;

7 Transition to Ti+1 with probability

min(1, eQD (Ti+1)−QD (Ti ));

8 if not Transitioned then
9 Ti+1=Ti ;

10 end
11 T ∗ = Ti+1;

12 i = i + 1;

13 end
14 return T ∗

treeT with two internal nodes (λ1, λ2) such that λ2 = ancestor (λ1)

and θ (λ1) > θ (λ2), we can always construct another tree T ′
with

a higher quality than T . In fact, if T were the configuration L in

Figure 4, then T ′
would be one of the other configurations.

Theorem 3 constitutes our first key analytical result. It explains

why we choose Dasgupta’s quality function and the L1-norm of the

degree vectors together. Next, we describe our algorithm GenTree

to learn a tree that maximizes this quality function. GenTree is an

independent contribution of this work which can be used with any

dissimilarity metric that captures closeness between clusters.

4.3 The GenTree Algorithm
Finding a hierarchical cluster tree that maximizes QD is known to

be NP-hard [18]. Let T be the set of all possible full binary trees

that have V as leaves. We want to find the optimal tree TOPT ∈ T
that maximizes QD . The number of possible trees including all the

permutations from internal nodes to leaves could be intractably

large to enumerate.

We propose a randomized algorithmGenTreewhich will sample

from the distribution of all possible trees such that the sample

probability is exponential in the quality of the tree as measured by

QD . Therefore, if the quality of the tree is high then the sample

probability is exponentially high. This distribution is known as

Boltzmann (Gibbs) distribution and we choose it since it enables

bounding the utility loss as we show later. Hence,GenTree samples

a tree T ′ ∈ T with probability

Pr (T ′ ∈ T) =
eQD (T ′)∑

T ′′∈T e
QD (T ′′)

GenTree creates samples from this distribution by using aMetro-

polis-Hastings (MH) algorithm based on a Markov chain with states

as trees and state-transition probabilities as the ratio of qualities

between the states. The outline for GenTree is similar to the CMN

algorithm in the centralized setup and is given in Algorithm 1.

First, it starts with a randomly sampled tree T0. In each iteration,

Algorithm 2: Outline for PrivaCT
Input: Vertices V , dissimilarities matrix S
Output: Private Hierarchical cluster tree T ∗

dp
1 Aggregator: Randomly partition V to K = ⌊logn⌋ bins;

2 Aggregator: Show the K partitions to the user;

3 User: Send DP degree vectors with Lap(0, 1

ϵ ) noise;

4 Aggregator: Compute dissimilarities S using L1-norm;

5 Aggregator: Compute T ∗
dp = GenTree(S) and release T ∗

dp

it samples a random internal node λi and does a local swap into

one of the configurations as shown in Figure 4. Observe that in a

local swap, a subtree at the chosen internal node is detached and

swapped with the subtree at the parent internal node leading to

two possible local swaps. This state transition (swap) between the

trees Ti ,Ti+1 is done with a probability min(1, eQD (Ti+1)−QD (Ti ))

which is the ratio of the probabilities of sampling the respective

trees in the stationary distribution. This follows the standard MH

procedure.

Our chosen stationary distribution ensures that every state (tree)

has a positive probability of being sampled. Further, every full

binary tree can be obtained from another by a sequence of swaps

therefore the entire chain is connected. Consequently, a standard

analysis [58] leads to the conclusion that the Markov chain induced

by GenTree is ergodic and reversible. Therefore, GenTree will

converge to its stationary distribution, which in our case is the

Boltzmann distribution.

The convergence criteria used by the prior works, for their

MCMC algorithms [14, 89], heuristically compares the average

quality of sampled HCTs over an interval of 65536 iterations to

the average in the previous interval. The algorithms stop when

the average quality ceases to increase across intervals. Using this

criteria, CMN-DP is reported to converge in 1000×n iterations [89].

Therefore, we also run our algorithms for 1000 × n iterations. We

find that it is sufficient for convergence of our algorithms on all the

evaluated datasets (see Figure 5).

4.4 The PrivaCT Algorithm
GenTree only requires a dissimilarity matrix to operate on. There-

fore, a differentially private hierarchical cluster tree can be learned

using GenTree if the input dissimilarity matrix is also differentially

private. Recall that any computation on a differentially private out-

put is also differentially private using the post-processing property.

Using the same property, we can construct a private dissimilarity

matrix from private degree vectors. For that purpose, the central

aggregator first sends a random partition of the users, with each

bin having a set of users, to every user. Using these bins, every

user constructs a private degree vector by counting their neighbors

in each bin and adding Laplacian noise Lap(0, 1

ϵ ) to these counts.

Finally, the users send their vectors to the aggregator so that the

dissimilarity of every pair of users can be computed as measured

by the L1-norm of their respective degree vectors. The outline of

PrivaCT is summarized in Algorithm 2. Notice that the aggregator

only requires the users to compute degree vectors privately so that

GenTree can be run on the server side to compute a private HCT.
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Communication cost. Our protocol has only 2 rounds. To each

user, the server sends a mapping between n user ids and K partition

(bin) ids. Each user maps to one bin. The size of one user id will

be logn bits and the size of each partition id will be logK bits.

Therefore, the number of bits sent by the server to each user is

O(n(logn + logK)). Each user then replies to the server with a

degree vector which constitutes K counts, one for each bin. Each

count may have a maximum size of logn bits since the count can be

as high as n. Therefore, a user sends O(K logn) bits to the server.

5 THEORETICAL BOUND ON UTILITY LOSS
GenTree and PrivaCT are randomized algorithms. So, we need

to show that they learn trees that are close to the ideal tree that

optimizes QD given the dissimilarity matrix computed using non

differentially private degree vectors. The utility loss is given by the

quality difference between the ideal tree and the trees sampled by

our algorithms. Therefore, we bound the following:

(1) GenTree: The utility loss for the tree output by the algorithm

when dissimilarity matrix is not noised.

(2) PrivaCT: The utility loss for the tree output by the algorithm

when the dissimilarity matrix is noised.

For ease of analysis, we enforce the dissimilarity between two

vertices of the graph to be at least 1
4
, i.e., the L1-norm between

two degree vectors is at least 1 instead of 0. Therefore, a clique will

have a dissimilarity of 1 for all pairs of nodes. Following this, we

state a fact that is proved in the original Dasgupta’s work [18].

Theorem 4. (Dasgupta [18]) The quality of a clique with all dissim-
ilarities equal to 1 is same for all possible trees and is given by

QD (Tclique ) =
n3 − n

3

This is the least maximum quality tree that can be produced with

any dissimilarity matrix under our assumption, i.e., S(vi ,vj ) ≥ 1.

For real-world networks, the optimal tree quality can be many times

higher than QD (Tclique ) depending on the dissimilarity matrix.

Theorem 4 is useful in our analysis presented later and we will use

ρ to represent QD (Tclique ) for brevity from here on.

5.1 Utility Loss: GenTree
There is always an ideal full binary tree that maximizes the Das-

gupta quality function given the dissimilarity matrix, say TOPT

with OPT = QD (TOPT ). GenTree is a randomized algorithm that

samples a different tree T at convergence in every run. Therefore,

the expected utility loss is the difference between OPT and the

expected value of the quality of the obtained tree ET [QD (T )]. We

now show that the expected QD quality of the sampled tree at con-

vergence is close to OPT . The expected quality of a sampled tree

is less than OPT only by at most a small factor
c ·logn
n2−1

of the OPT ,
where c ≪ n. The complete proofs for the theorems are provided

in the Appendix A.1. Here, we explain the key ideas used in them.

4
This condition is a technicality for obtaining a multiplicative factor in the utility

bound. We enforce this restriction in our implementation for correctness. We observe

that in our evaluated datasets, only 2 in a million possible pairs have dissimilarity

lower than 1. Thus, our technical restriction is not a significant practical concern.

Theorem 5. GenTree outputs a tree T whose expected quality
ET [QD (T )] is a (1 − logn

n2−1
) multiplicative factor of OPT .

ET [QD (T )] ≥

(
1 − c ·

logn

n2 − 1

)
·OPT

To prove this, we first show that the probability of sampling a

sub-optimal tree is exponentially decreasing.

Lemma5.1. The probability of sampling a treeT with quality OPT−
c ′ · n · logn decreases exponentially in n (where constant c ′ ≪ n).

Pr
(
QD (T ) ≤ OPT − c ′ · n · logn

)
≤ e−n ·logn

Lemma 5.1 implies Theorem 5 and this is a consequence of choos-

ing Boltzman distribution as the stationary distribution for Gen-

Tree. The probability of sampling any sub-optimal tree exponen-

tially reduces with its quality distance from OPT .

5.2 Utility Loss: PrivaCT
PrivaCT samples trees based on the probabilities that are expo-

nential in the quality of tree computed on the differentially pri-

vate dissimilarities. Hence, the probability of sampling a tree T

will now depend on the noisy quality, say д(T ) = QD (T ) instead
of the actual quality f (T ) = QD (T ). Let the variables S and S̄
be the dissimilarity and noisy dissimilarity matrices that store

dissimilarities between vertices of the network. Recall that the

dissimilarity between two vertices is computed as L1-norm of

their degree vector counts. The quality computed with the origi-

nal dissimilarity matrix is f (T ) =
∑
i j S(vi ,vj ) · leaves(T [vi ∨vj ])

whilst the quality computed by the noisy dissimilarity matrix is

д(T ) =
∑
i j S(vi ,vj ) · leaves(T [vi ∨vj ]). If Tdp is the sampled tree

at convergence then the expected utility loss is computed by taking

the difference between OPT and ETdp [f (Tdp )]. In essence, we are

saying that the tree sampled with differentially private dissimilarity

matrix should not be too far away from the optimal tree, with re-

spect to the quality computed using the non-noised dissimilarities.

The next theorem states this formally.

Theorem 6. Let Tdp be the output of PrivaCT and ρ be the least
maximum quality of any hierarchical cluster tree. The expected utility
loss of PrivaCT with a high probability (> 8/9) is given by

OPT − ETdp [f (Tdp )] ≤
2K

ϵ
·

(
3

2

+
6

√
K

)
· ρ

In order to prove the bound, we start by first bounding the

expected value of д(T ) over the randomness in degree vectors,

in terms of f (T ). Let Ri denote the random variable that repre-

sents the Laplacian noise added by ith vertex to its degree vectors

and R = (R1,R2, . . . ,Rn ). The next lemma bounds the expectation

|ER [д(T )] − f (T )|.

Lemma 6.1. The expected value of the noisy quality д(T ) over ran-
domness R is bounded in terms of the actual quality f (T ) by

|ER [д(T )] − f (T )| ≤
3K

2ϵ
· ρ

Then we bound the variance of д(T ).
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Table 1: Dataset graph statistics

Network Domain #Nodes #Edges Density
lastfm social graph 1843 12668 0.0075

delicious social graph 1503 6350 0.0056

douban social graph 2848 25185 0.0062

Lemma 6.2. The variance of the noisy quality д(T ) is bounded by

VarR [д(T )] ≤
4K

ϵ2
· ρ2

Finally, we use the Chebyshev’s inequality to bound the value

of д(T ) in terms of f (T ).

Lemma 6.3. The noisy quality д(T ) is in the interval [f (T )−P , f (T )
+P] with a high probability (> 8/9) where

P =
K

ϵ
·

(
3

2

+
6

√
K

)
· ρ

We then use this lemma to prove Theorem 6. Note that the utility

loss does not depend on the dissimilarity matrix but only depends

on the parameters K and ϵ . It can be seen that if ϵ is very high then

the utility loss converges to that of the GenTree and even if ϵ tends
to zero, our artificial bounding of the dissimilarities to be greater

than 1 will ensure that the final tree quality never goes below ρ.
Recall that OPT is several times more than ρ for the real-world

graphs as it depends on the dissimilarity matrix, i.e., the structure

of the graph. We empirically observe that the utility loss is smaller

than our bound for all of our evaluated graphs (see Section 6).

6 EVALUATION: QUALITY OF PRIVATE HCT
In this section, our goal is to evaluate the utility of PrivaCT as

measured by the quality of the HCTs it produces.

First, we want to empirically measure the utility loss due to

adding noise in PrivaCT. For that purpose, we compare the quality

of the private trees produced by PrivaCT with the non-private

trees generated by GenTree. The quality is measured using the

Dasgupta quality function QD .

Second, we want to evaluate the utility-privacy trade-off of the

LDP regime vs. the centralized DP setup. Thus, we compare the

private trees that PrivaCT generates with the trees generated by the

centralized DP algorithm (CMN-DP) for the same privacy budget.

In order to compare these trees, we use the quality function QM

which measures the closeness between two clusters using the fine-

grained edge counts as opposed to our newly proposed coarse-

grained degree vectors (see Section 3.1)—we do so to show how our

algorithms perform on the quality criterion proposed by previous

work instead of ours. In summary, we evaluate the following:

(EQ1) What is the empirical utility loss of the private HCTs

produced by PrivaCT vs. the non-DP HCTs produced by GenTree?

(EQ2) What is the quality of the private HCTs produced by

PrivaCT vs. the centralized DP algorithm CMN-DP?

Experimental Setup. We use 3 real-world networks which are

commonly used for evaluating recommender systems [53, 71, 78,

85]
5
. We detail the networks in Table 1. We use privacy budget

5
https://grouplens.org/datasets/hetrec-2011/

Table 2: The quality of the HCTs is evaluated using the Das-
gupta quality function. The empirical utility loss of the pri-
vate trees that PrivaCT generates is computed relative to the
non-private trees generated by GenTree and it is at most
10.87% for ϵ = 0.5.

Network ϵ
Relative
Utility

Empirical
Utility Loss (%)

lastfm
0.5

22.82

9.57

1.0 4.05

2.0 1.45

delicious
0.5

12.20

10.87

1.0 6.61

2.0 3.29

douban
0.5

28.83

7.09

1.0 3.27

2.0 1.14

values of ϵ ∈ {0.5, 1.0, 2.0} as they have been used in the prior

work for both centralized as well as the local differential privacy

setup [1, 36, 89]. We have two tunable parameters: the number of

bins K and the convergence criteria for MCMC in GenTree. The

K is chosen such that it minimizes the noise in the final degree

vector as well as it minimizes the number of collisions in the degree

vector calculation. A higher K minimizes the collisions but incurs

more noise on aggregate and vice versa. Previous work has shown

that the value of K is usually small and it depends on the graph

structure. We therefore heuristically choose K = ⌊logn⌋ as it is
not too low to not capture any edge information (see Section 4.1)

and not too high to end up adding a lot of noise (see Section 2.2).

If we substitute this K value in our utility bound for PrivaCT in

Theorem 6, we get a loss scaling with
logn
n ·ϵ . Further, our values of

K agree with the ones used in prior work [71].

(EQ1) Quality of LDP vs. non-DP HCTs. We show that the ob-

served quality of the differentially private tree generated by Pri-

vaCT, for all values of ϵ is very close to the quality of the tree

generated by the non-DP version of the algorithm GenTree.

We define the empirical utility loss as
|QD (Tdp )−QD (T ) |

QD (T ) , where

QD (Tdp ) is the quality of the private HCT and QD (T ) is the quality
of the non-private tree. In Table 2, we observe that the empirical

utility loss is less than 10.87% for all networks and values of ϵ we
evaluated. The empirical utility loss is approximately 1.14 − 3.29%

on average for ϵ = 2.0. Since the empirical utility loss is small, we

empirically confirm that the quality of our private tree (Tdp ) is close
to that of the non-private tree (T ).

We also compute the relative utility of the non-private tree T as

QD (T )
ρ . When relative utility is high, our non-private trees gener-

ated byGenTree have quality higher than the ρ (the least maximum

quality tree) which is used in Theorem 6 to theoretically bound the

utility loss. The higher the relative utility, the better it is since the

upper bound on the expected utility loss will be lower. We experi-

mentally observe that the higher the relative utility, the lower the

empirical utility loss is (see Table 2). Finally, we observe that the
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Figure 5: The PrivaCT (marked as LDP) and the CMN-DP (marked as DP) evaluated with logQM at each step of the MCMC
process for 3 values of ϵ ∈ {0.5, 1.0, 2.0}. Higher values of logQM signify smaller loss, so better trees. PrivaCT produces trees
with a better QM quality than the baseline CMN-DP for all values. We observe that PrivaCT converges within 400 MCMC steps.

empirical utility loss is within the theoretical bounds implied by

Theorem 6. Tightening the bounds remains promising future work.

Result 1: The empirical utility loss between the private trees produced
by PrivaCT and non-private trees generated by GenTree is less
than 10.87% for all the graphs and ϵ values evaluated.

(EQ2) Quality of LDP vs. centralized DP HCTs. Our main result is

that our LDP algorithm produces trees that have a better utility than

the ones produced by the centralized DP algorithm as measured by

the baseline QM quality function. In Figure 5, we show that the

logQM of the trees generated by PrivaCT have better utility than

trees generated by CMN-DP for all evaluated configurations.

Result 2: The quality of the trees (measured using QM ) generated by
PrivaCT is better than the trees generated by the baseline CMN-DP

for all evaluated graphs and ϵ values.

7 APPLICATION: RECOMMENDER SYSTEMS
We revisit the motivating example of social recommendation from

Section 2 and ask “Can PrivaCT be utilized for providing recom-

mendations in the federated setup?” The goal is to accurately predict

the top-k recommendations for the target users. The target users

share their preferences/tastes with the recommender system but do

not want to share their private contacts. Therefore, this naturally

falls in the edge-LDP setup.

We consider two scenarios: cold start and existing users. Re-

call that the cold-start scenario occurs when a new user with no

history of interactions with the service provider has to be served

recommendations. In contrast, existing users have a history of in-

teractions that convey their interests. Specifically, we evaluate the

utility of the PrivaCT algorithm for social recommendations by

asking the following questions in both scenarios:

• Are PrivaCT-based top-k recommendations better than the

non-social baselines?

• Are PrivaCT-based top-k recommendations comparable to

the non-private social baselines?

Datasets. We use the same datasets mentioned in Section 6 as

they are commonly used for social recommendations. For lastfm
and delicious which are implicit feedback ratings we normalize

the weight of each user-artist and user-bookmark link by dividing

the maximum number of plays/bookmarks of that user across all

artists/bookmarks. For douban with explicit feedback ratings we

normalize the ratings by dividing with the maximum rating (5.0).

Experimental Setup. We split the datasets into training and test

sets. We perform k-fold cross-validation for k = 5 splits of the

datasets. For the HCT computation, we use a privacy budget of

ϵ = 1 and we average over HCTs computed with 3 random seeds.

Evaluation Metrics. To evaluate our recommendations, we use

mean average precision (MAP) and normalized discounted cumula-

tive gain (NDCG). These two metrics are widely used to evaluate

the quality of the top-k recommendations [48, 85]. Higher values

of these metrics imply better recommendations. Due to space con-

straints, we explain how these are computed in Appendix A.2.

Next, we describe our baseline and PrivaCT-based algorithm,

and then present our results on our social recommendation datasets.

7.1 Collaborative Filtering: Setup & Baseline
We implement a widely used technique for recommender systems

called collaborative filtering (CF) [74, 75]. In particular, we consider

memory-based CF techniques that operate on user-item rating

matrices tomake top-k recommendations.We choose this technique

because it yields good performance and forms the basis of real-

world recommender systems in Netflix [74] and Facebook [24].

CF for cold start. In this scenario, the target users have no history

of rated items. We choose two popular strategies: “recommend

highest rated items” (itemAvg) and “recommend highest rated items

among your friends” (friendsCF ). Notice that these two methods

correspond to two different granularities of the “close” community.

The itemAvg strategy considers all users in the network whereas

the friendsCF strategy takes only the neighbors of the target user.

Let S : U × U → {0, 1} be the social relation function where

S(u ′,u) = 1 if the users (u ′,u) are friends and 0 otherwise. In
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the friendsCF strategy, the predicted rating for a target user u is

computed as follows:

ru,i = ru +

∑
u′∈U S(u ′,u)(ru′,i − ru′)∑

u′∈U S(u ′,u)

where ru =
∑
i∈I ru,i
|I |

represents the average item rating for user u,

I is the set of items with a rating from user u ′ and U ⊆ U is the

set of users that have a rating for item i . For the itemAvg strategy,

we just replace S(u ′,u) with 1 for all u ′ ∈ U. Note that the itemAvg
strategy is a private baseline as no one shares their social relations

whereas the friendsCF strategy is a non-private baseline.

CF for existing users. When the user is present on the platform,

we can leverage both their ratings and social connections to make

better recommendations. In this case, we use one of the state-of-

the-art social recommendation algorithm called SERec [85]. SERec

first models the user exposures to the items and then uses these ex-

posures to guide the recommendation. The exposures are computed

based on the social information rather than the rating history. Due

to space constraints, we refer the reader to the paper for more de-

tails. We use a popular Python implementation
6
which follows the

original implementation. This represents the non-private baseline

for social recommendations for existing users. The performance of

our non-private baselines in the cold start setup and in the existing

users setup is shown in Tables 4 and 3, respectively.

7.2 Collaborative Filtering with PrivaCT

We explain how to recommend items to target users based on

their communities using collaborative filtering. Observe that the

community to which a target user belongs can be queried from

an HCT. Recall that the clusters at the lower levels of the HCT

form the close community around the target user, due to the ideal

clustering property. We can thus query the HCT for “Who are the

m nearest neighbors for user u?” 7. The vertices corresponding to
the immediate parent of the leaf node for u in the HCT constitute

the closest community of u. The parent of that parent node defines
the second-closest community, and so on. Therefore, the query for

"m closest vertices" returns a set N (u) which has users from the

closest community to u, the second-closest community, and so on.

To do the collaborative filtering, we simply replace the non-

private algorithms used in our baselines of Section 7.1 with our

differentially private algorithms, as follows:

(1) For the case of cold start, we select m closest users N (u)
for each target user u by querying our HCT and then com-

pute the rating ru,i , as done in the friendsCF strategy, with

S(u ′,u) = 1 when u ′ ∈ N (u), and S(u ′,u) = 0 otherwise.

(2) For the case of existing users, we do the same as above, i.e.,

we replace the immediate social contacts with the top-m
closest users in HCT and feed it to the SERec algorithm.

We call the first strategy as PrivaCT-CF and the second one as

PrivaCT-SERec. We choosem as the degree of the target user ui
in order to consider similar number of neighbors to the baseline

strategies to be fair. Recall that the degree of a user can be estimated

6
https://github.com/Coder-Yu/RecQ

7
Popularly known as k -nearest neighbors. We usem because k is used elsewhere.

Table 3: PrivaCT-SERec is 2.1 − 17.9× better than the non-
social baseline (Basic SERec), as per NDCG, and has similar
performance to the non-private baseline SERec.

Top-100 Basic SERec SERec PrivaCT-SERec

lastfm
NDCG 0.1223 0.3249 0.3270

MAP 0.0240 0.1405 0.1419

delicious
NDCG 0.0058 0.0135 0.0150

MAP 0.0021 0.0048 0.0045

douban
NDCG 0.0349 0.2466 0.2469

MAP 0.0052 0.0929 0.0930

Table 4: Results for the two cold start setup. PrivaCT-CF is
1.1 − 286× better than the itemAvg and worse than friendsCF
by at most 9.2× as per NDCG. This suggests that PrivaCT-CF
can be used for private social recommendation at ϵ = 1.

Top-100 itemAvg friendsCF PrivaCT-CF

lastfm
NDCG 5.33E-04 1.92E-01 5.54E-02

MAP 2.56E-05 5.18E-02 7.68E-03

delicious
NDCG 8.82E-04 8.91E-03 9.67E-04

MAP 7.18E-05 1.03E-03 6.91E-05

douban
NDCG 2.00E-04 7.30E-02 5.73E-02

MAP 1.46E-05 1.87E-02 1.47E-02

from its degree vector we computed for PrivaCT. In the case of the

friendsCF and PrivaCT-CF strategies, there might be some items

which are not rated by any of the suggested top-m users. For such

items, we replace the score with its average rating across users

outside of top-m (referred to as the itemAvg) as it is a common

practice to do so
8
. Please see Appendix A.2 for how we compute

our NDCG and MAP scores for this scenario. We use ϵ = 1 for our

private collaborative filtering algorithms.

7.3 Results
Comparison to Non-social Baselines. In both evaluated scenarios, cold
start and existing users, our PrivaCT-based algorithms significantly

outperform non-social baselines that do not use the social link

information. For all evaluated networks, PrivaCT-based algorithms

perform about 1.1-286× better (as per NDCG) than the non-social
recommendation baselines. Similarly, as per MAP scores PrivaCT-

based algorithms perform about 0.9-1000× better than the non-

social baselines. Tables 3 and 4 detail the results.

Result 3: For cold-start users, PrivaCT-CF’s recommendations are
better than the non-social baselines for most evaluated configurations.

Comparison to Non-private Social Baselines. PrivaCT-SERec per-
forms on par with the non-private baseline (SERec) that uses the

social links for the case of existing users (Table 3). One may expect

that a non-private algorithm with raw social links would perform

better than a differentially private one significantly; however, we

observe that our private algorithms do comparably well. These

8
https://github.com/Coder-Yu/RecQ
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results show that the top-m similar users as captured by the com-

munities of our private HCTs are a good supplement to the existing

rating profiles of the users.

Result 4: For existing users, PrivaCT-SERec has similar performance
to non-private baseline SERec that uses raw social contacts.

In the cold start setup, the non-private friendsCF strategy per-

forms better than our private algorithms as one may expect. The

baseline friendsCF strategy has 3.5× better NDCG score and 6.7×

better MAP score compared to the PrivaCT-CF strategy for the

lastfm dataset. Similarly, it has 9.2× better NDCG score than the

PrivaCT-CF and 14.9× better MAP score for the delicious dataset.
For douban, the friendsCF strategy has 1.3× better NDCG score

than the PrivaCT-CF strategy and 1.3× better MAP score.

7.4 When Does PrivaCT-CF Work Well?
PrivaCT-CF significantly outperforms non-social baselines empiri-

cally. We investigate why this is the case. Recall that the common

hypothesis for social recommendation to work is that users have

ratings similar to their close social contacts [31, 34]. We investigate

this phenomenon with respect to our datasets and with respect to

the scores given by PrivaCT-CF in its final recommendation.

We perform 2 experiments. First, we measure the correlation

between the similarity of users’ rating profile and the distance be-

tween them on the network in our used datasets. This tests whether

the above common hypothesis holds in our datasets. Second, we

measure whether the recommendation performance score given

by PrivaCT-CF for a target user correlates with distances of the

top-m users who are considered for the score computation. This

second experiment shows that PrivaCT-CF is selecting from users

at a closer distance from the target (with noise) when it does well.

User Similarity vs. Distance Correlation. There are two ways to

measure the similarity between users. First, we consider the partial

profile of users, i.e., we consider only the items that have been rated

by the users. Second, we complete the rating profiles by giving a

rating of zero to the non-rated items. Full profiles capture the fact

that similar users not only have similar ratings for specific items

but also rate the same items. Finally, we compute the correlation

between the shortest path distances and the similarities computed

between the users. All correlations and user similarities are mea-

sured using the Pearson correlation. The results are summarized

in the Appendix A.4, Table 6. For partial profiles, we observe that

the correlation between shortest path distances and user similarity

is negative for about 77%, 96% and 95% of the users in the three

datasets lastfm, delicious, and douban. For full rating profiles, the
correlation is negative for all users. This shows that as the distance
increases between users, their similarity of ratings (interests) decreases
in all our datasets. So, users in tighter communities have closer

interests in our datasets.

NDCG Scores vs. Close Communities. Our goal is to measure

whether relevant items that are ranked higher for a target user are

recommended by other users that are at short distances from the

target user on average by PrivaCT-CF. Recall that in the cold start

scenario, we choosem users as the close community, wherem is the

degree of the target user. So, we measure how the average shortest

path distances of the top-m users, as suggested by PrivaCT-CF,

who rated the top-100 items, as predicted by PrivaCT-CF, for each

target user vary with the computed NDCG scores. We first compute

the shortest paths between the target user and other users in their

m-sized community who have rated the same items and average all

of them. Thus for each target user we obtain an average shortest

path distance. Finally, we compute the Pearson’s correlation be-

tween the NDCG scores
9
of all users and their corresponding mean

shortest path distances of the top-m users who rated the top-100

recommended items as suggested by PrivaCT-CF. For lastfm and

delicious we find that the correlations for almost all seeds are nega-

tive. Specifically, in lastfm we find that the correlations range from

[−0.31,−0.03]. In delicious, they range from [−0.25,−0.006] with

four small positive outliers of up to 0.08. This means that for the

top item predictions, the HCT-generated close community mostly

consists of users that are at a shorter distance on the original net-

work. This suggests why PrivaCT-CF is performing better than the

itemAvg strategy wherein users at all distances (short and long) are

considered for predictions. For douban, however, the correlations
are positive for all seeds. In this network, we observe that the users

at distances of 3 are as similar to the target user as the users at

distances of 1 (unlike in the other two networks). Therefore, this al-

lows many users at a distance of 3 to contribute more to the NDCG

score, leading to an unclear correlation.

A similar analysis of PrivaCT-CF performance for collaborative

filtering with existing users, with the baseline of SERec, is not

straight-forward to perform using correlations because SERec uses

both user ratings and social network distances. We leave the design

and evaluation of an involved analysis for this case to future work.

7.5 Additional Remarks
Remark 1. In practical applications, selecting m is likely to be

application-dependent and require domain expertise or online tun-

ing. Note that our insights can be used in any algorithm that de-

pends on social contacts for recommendations. Furthermore, recom-

mendation algorithms can be designed using the private HCT with

the availability of additional information such as node attributes.

We consider such extensions promising future work.

Remark 2. We are aware of only one prior work that aims to de-

sign social recommendation algorithms in the LDP setup. LDPGen,

which appeared at CCS 2017, uses differentially private synthetic

graphs for recommendations [71]. It uses the direct graph edge infor-

mation in the synthetically generated graphs for recommendations,

unlike our work. The data structure they compute (synthetic graph)

is fundamentally different from ours (hierarchical cluster tree) and

therefore, their recommendation algorithm as well. However, a di-

rect comparison to LDPGen is not possible. LDPGen does not have a

publicly available implementation. After several attempts, we were

unable to reproduce findings reported therein. Furthermore, the

presented theoretical analysis in the LDPGen paper has potential

inaccuracies, which we have disclosed in a private communication

to the authors of LDPGen and discussed in more detail with one

of its authors. We outline our the observations about LDPGen in

Appendix A.3 with the goal of advancing research in this domain.

9
We expect MAP scores to have similar performance to NDCG scores.
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8 RELATEDWORK
Modeling networks as hierarchical clusters has been widely studied

for more than 70 years [28, 80]. The algorithms to mine hierarchical

clusters can be classified into two groups: 1) agglomerative/divisive

algorithms based on vertex similarities, and 2) algorithms optimiz-

ing quality functions based on probabilistic modeling of the graph.

The first group consists of traditional algorithms such as single,

average and complete linkage, given in the book Pattern Classifica-

tion [22]. Ward’s algorithm optimizes for the minimum variance of

cluster similarities [88]. While these algorithms are simple, they are

considered to be ad-hoc and there is no analytical way to compare

them. We refer the reader to this survey [61].

Unlike the ad-hoc algorithms, more systematic ones have been

proposed that optimize certain quality functions. The examples

include Hierarchical Random Graph model [13, 14] and, more re-

cently, the Hierarchical Stochastic Block Model (HSBM) [52]. All

the aforementioned algorithms are not designed with privacy as a

concern and require access to the complete graph for functioning.

Consequently, plenty of works try to address the privacy problem

in graphs. These works [19, 43, 63, 96] release degree distributions,

minimum spanning trees and subgraph counts under edge/node dif-

ferential privacy. More works generated synthetic graphs privately

by using graph statistics such as degree counts or edge information

as inputs [42, 51, 57, 87, 89]. All of them, however, work in the

trusted central-aggregator model.

In the LDP setup, many works have been proposed for fre-

quency estimation and heavy-hitters for categorical or set-valued

data [6, 21, 25, 27, 32, 37, 70, 90]. Rappor [25] has been used by

Google in the past to collect app statistics. Fanti et al. extend this

model to a situation when the number of categories is not known

beforehand [27]. Qin et al. give a multi-round approach like ours to

mine heavy hitters from set-valued data [70]. The mechanisms are

extended to numerical values and multi-dimensional data by Wang

et al. [86]. Further, Ye et al. present the first frequency and mean

estimation algorithms for key-valued data [95]. Bassily has a more

general setup of estimating linear queries [5]. Our work shares the

idea of using minimal tools at our disposal with them.

LDP mechanisms for graphs are less explored. Qin et al. [71]

proposes a multi-round decentralized synthetic graph generation

technique. They use degree vectors to flat cluster users and then

generate edges between users based on their cluster assignments.

Our work takes their degree vector insight. However, there are im-

portant differences in both problem setup and hence, the techniques

used. Our problem setup is different wherein we mine hierarchical

cluster trees as opposed to flat clustering of vertices. HCT requires

clustering at multiple levels, i.e., each vertex is assigned to many

hierarchical clusters, multiple rounds of refining flat clusters cannot

be directly applied in our setup. The challenges in learning HCT are

unique and require a principled design that builds on some existing

insights and many new ones that we talked about in Section 4.1.

GenTree differs from other algorithms that have been proposed

after the introduction of Dasgupta’s quality function. All of them are

greedy approaches and some of them require the edge information

of the graph. For similarity-based clustering, Dasgupta proposed a

greedy sparsest-cut based algorithm with O(cn logn) approxima-

tion. Charikar and Chatziafratis have improved it to a O(
√

logn)

approximation by using SDP. Addad et al. summarize the algorithms

and shows that average linkage achieves a 0.5 approximation in the

dissimilarity setting [15], coinciding with the findings of Moseley

et al. [59]. In comparison, although slower than greedy, GenTree

achieves better approximation 1 −O(
logn
n2−1

) in the dissimilarity set-

ting due to its MCMC design. Further, none of the other works

have been designed with a privacy objective and it is not straight-

forward to argue about their utility under differential privacy (e.g.,

using degree vectors). In contrast, we propose a privacy-aware and

easy to implement algorithm that performs better than the existing

greedy approaches. Our design also allows for analyzing its utility

guarantees under differential privacy. In fact, our final algorithm

turns out to have comparable simplicity to the popular algorithm

implemented by open-source libraries, e.g., R packages [47].

Social recommender systems are popular and have been studied

for over two decades [7, 83]. The correlation between social con-

tacts and their influence on user’s interests has been observed and

theoretically modeled in real-world networks [31, 34, 65, 81]. When

available, the most popular social recommendation algorithms com-

bine both item ratings data as well as social data for collaborative

filtering [10, 39]. The collaborative filtering techniques range from

matrix decomposition-based [33, 40, 41, 85, 93] to deep learning-

based [26]. All of these algorithms, however, require the exact social

graph. Differential private matrix factorization for recommender

systems is popular in the centralized setup [56, 97]. Recently, this

has been studied in the LDP setup as well [79, 84]. All these tech-

niques have a different privacy setup wherein they preserve the

privacy of the user’s ratings. Further, they do not have any social

component associated with them. Instead, in our work we do so-

cial recommendation while preserving the privacy of the inherent

social network rather than user ratings.

9 CONCLUSION & FUTUREWORK
With millions of users moving towards federated services and social

networks, studying how to enable existing analytics applications on

these platforms is a new challenge. In this work, we provide the first

algorithm to learn a differentially private hierarchical clustering of

in a federated network without a trusted authority. Our approach is

principled and follows theoretical analysis which explains why our

design choices expect to yield good utility. We apply our new algo-

rithms in social recommendation for the federated setup, replacing

privacy-invasive ones, and show promising results. We hope our

work encourages future work on supporting richer queries and the

full gamut of conventional analytics for federated networks with

no trusted coordinators. Enabling queries on graphs with private

node attributes and on interest graphs are promising next steps.
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A APPENDIX
A.1 Proofs
In this section, we give the detailed proofs for the theorems and

lemma presented throughout the paper.

Theorem 3. Given a graph G : (V ,E) and a dissimilarity matrix
S , the tree TOPT

: (Λ,θ ) that maximizes QD preserves the ideal
clustering property with

θ (λ) =

∑
x ∈L,y∈R S(x ,y)

|L| · |R |

where L, R are the left and right subtrees of λ.

Proof. We will prove the claim by contradiction.

LetTOPT
maximizeQD ; assume λ1 and λ2 be two internal nodes

where λ2 ∈ ancestors(λ1) such that the θ (λ1) > θ (λ2).

Then, the three configurations of a tree with λ1, λ2 are shown in

the Figure 4. If configuration L is TOPT
, then one of the other two

configurations,M or N , will have a higher quality than TOPT
. Let

|A| = a, |B | = b, |C | = c and x ∈ A,y ∈ B, z ∈ C .
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Given, (1)

θ (λ2) < θ (λ1) (2)

i.e.,

∑
S(x , z) +

∑
S(y, z)

(a + b) · c
<

∑
S(x ,y)

a · b
(3)

=⇒ (a · c
∑

S(x ,y) − a · b
∑

S(x , z)) (4)

+ (b · c
∑

S(x ,y) − a · b
∑

S(y, z)) > 0 (5)

(6)

Next,

QD (M) − QD (L) = (a + c) ·
∑

S(x , z)

+ (a + b + c) ·
(∑

S(x ,y) +
∑

S(y, z)
)

− (a + b) ·
∑

S(x ,y)

− (a + b + c) ·
(∑

S(x , z) +
∑

S(y, z)
)

= c ·
∑

S(x ,y) − b ·
∑

S(x , z) (7)

Similarly,

QD (N ) − QD (L) = c ·
∑

S(x ,y) − a ·
∑

S(y, z) (8)

Observe that (5) implies at least one of (7) and (8) has to be

greater than 0. Hence the contradiction. □

Lemma5.1. The probability of sampling a treeT with quality OPT−
c ′ · n · logn decreases exponentially in n (where constant c ′ ≪ n).

Pr
(
QD (T ) ≤ OPT − c ′ · n · logn

)
≤ e−n ·logn

Proof. Let n = |V |, QD (T ) represent the quality of the sampled

treeT , from the stationary distribution and letN be the total number

of possible trees/states. The quality of the optimal tree TOPT
is

OPT .

Pr (QD (T ) ≤ m) ≤
Pr (QD (T ) ≤ m)

Pr (QD (T ) = OPT )

≤

N · em∑
eQD(T )

1 · eOPT∑
eQD(T )

≤ N · em−OPT

Since at maximum only N states can have less quality thanm
and assume only one state has OPT . The maximum value of N is

2
cn logn

, therefore, if we substitutem = OPT − logN − t , then

Pr (QD (T ) ≤ OPT − logN − t) ≤ N · e− logN−t

≤ e−t

Pr (QD (T ) ≤ OPT − c · n · logn − t) ≤ e−t

Pr (QD (T ) ≤ OPT − c ′ · n · logn) ≤ e−n ·logn
(9)

Observe that while QD is a polynomial in n, the probability of

being far fromOPT falls exponentially in n. Therefore, the expected

loss in utility is smaller than c ′ ·n · logn =
c ′ logn
n2−1

· ρ which implies

it is also smaller than
c ′ logn
n2−1

·OPT . □

Lemma 6.1. The expected value of the noisy quality д(T ) over ran-
domness R is bounded in terms of the actual quality f (T ) by

|ER [д(T )] − f (T )| ≤
3K

2ϵ
· ρ

Proof. Let the degree vector of vertexvi bedvi = (c1

i , c
2

i , ·..., c
K
i )

and the noisy degree vector
¯dvi = (c̄1

i , c̄
2

i , ·..., c̄
K
i ) such that c̄li =

c1

i + Rli . Similarly, for vertex vj dvj = (c1

j , c
2

j , ·..., c
K
j ) and

¯dv j =

(c̄1

j , c̄
2

j , ·..., c̄
K
j ). Recall that the dissimilarity between two vertices

is computed as L1-norm of their degree vector counts Let’s bound

the expected difference between original and noisy dissimilarities

for two nodes vi ,vj i.e., ER [|S̄(vi ,vj ) − S(vi ,vj )|].

ER [|S̄(vi ,vj ) − S(vi ,vj )|] =

ER [
���l=K∑
l=1

|c̄li − c̄lj | −
l=K∑
l=1

|cli − clj |
���]

≤ER [
l=K∑
l=1

|Rli − Rlj |]

Note that if z = Rli − Rlj , then PDF of z, fRli−R
l
j
(z) is

fRli−R
l
j
(z) =

1

4 · σ
[e

−|z |
σ +

|z |

σ
· e

−|z |
σ ]

∴ E |z |[fRli−R
l
j
(z)] =

3σ

2

Finally, we bound the difference between д(T ) and f (T )���ER [д(T ) − f (T )]
��� =���∑
i, j

(S̄(vi ,vj ) − S(vi ,vj )) · pi, j

���
where pi, j = |leaves(T [i ∨ j])|

≤
∑
i, j

���ER [|S̄(vi ,vj ) − S(vi ,vj )|] · pi, j

���
≤

3K

2ϵ
·
∑
i, j

(1 · |leaves(T [i ∨ j])|)

≤
3K

2ϵ
· ρ

□

Lemma 6.2. The variance of the noisy quality д(T ) is bounded by

VarR [д(T )] ≤
4K

ϵ2
· ρ2
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Proof. Let Li, j denote |leaves(T [i ∨ j])|. The variance of д(T ) is
given by,

Var[д(T )] = Var[
∑
i, j

S̄(i, j) · Li, j ]

= L2

i, j ·
∑
i, j

Var[S̄(i, j)]

+ 2

∑
i, j

∑
i,k :i,j,k

Cov[S̄(i, j), S̄(i,k)] (10)

First let’s look at Var[S̄(i, j)],

Var[S̄(i, j)] = Var[

l=K∑
l=1

|c̄li − c̄lj |]

If Xl = |c̄li − c̄lj | then observe that Xl∀l ∈ {1, 2 · ...,K} are indepen-

dent. Therefore,

Var[S̄(i, j)] = K · Var[|c̄li − c̄lj |]

for some l ∈ {1, 2 · ...,K}

= K · Var[|cli − clj + R
l
i − Rlj |] (11)

Fact, Var[|X |] = Var[X ] + E[X ]2 − E[|X |]2 for any random variable

X . In our case X = |cli − clj + R
l
i − Rlj | therefore, evaluating each of

the terms in R.H.S

Var[X ] = Var[cli − clj + R
l
i − Rlj ]

= Var[Rli − Rlj ]

= Var[Rli ] + Var[Rli ]

= 4 · σ 2(σ =
1

ϵ
)

E[X ]2 = (cli − c
j
i )

2(E[Rli ] = 0∀i ∈ [n])

E[|X |]2 ≥ E[X ]2

≥ (cli − c
j
i )

2 ∴

Var[|X |] ≤ 4 · σ 2
(12)

From Equations (11),(12),

Var[S̄(i, j)] ≤ 4Kσ 2
(13)

Now let’s bound the covariance term from Equation 10 i.e.,

Cov[S̄(i, j), S̄(i,k)]. Similar to Xl assume Yl = |c̄li − c̄lk |

S̄(i, j) =
l=K∑
l=1

Xl , S̄(i,k) =
l=K∑
l=1

Yl

Observe that Xi ,Yj when i , j are independent. Therefore,

Cov[S̄(i, j), S̄(i,k)] =
l=K∑
l=1

Cov[Xl ,Yl ] (14)

We will investigate Cov[Xl ,Yl ] for some l ,

Cov[Xl ,Yl ] = Cov[|c̄li − c̄lj |, |c̄
l
i − c̄lk |]

= Cov

[
|cli − clj + R

l
i − Rlj | ,

|cli − clk + R
l
i − Rlk |

]
Observe that Rli − Rlj , R

l
i − Rlk are identical random variables but

not independent, therefore, we replace both of them with a random

variable Xid .

Cov[Xl ,Yl ] =
[
|cli − clj + Xid |,

|cli − clk + Xid |
]

= [|a + Xid |, |b + Xid |]

replacing a + Xid with X ′
id (15)

=
[
|X ′
id |, |(b − a) + X ′

id |
]

Fact, Cov [|X |, |a + X |] ≤ Cov [|X |, |X |].

∴,Cov[Xl ,Yl ] ≤
[
|X ′
id |, |X

′
id |

]
= Var[|X ′

id |]

= Var [|a + Xid |] From 15

= Var

[
|a + Rli − Rlj |

]
≤ 4 · σ 2

From Equation 12 (16)

Similar analysis works for all l , therefore, Cov[Xl ,Yl ] ≤ 4 · σ 2∀l ∈
{1, 2, ·...,K}. Therefore, from Equation 14,16

Cov[S̄(i, j), S̄(i,k)] ≤ 4Kσ 2
(17)

From Equations 10,13,17 this follows

Var[д(T )] ≤ 4Kσ 2 ·
©«
∑
i, j

L2

i, j + 2 ·
∑
i, j

∑
i,k

Li, jLi,k
ª®¬

≤ 4Kσ 2 ·
©«
∑
i, j

1 · Li, j
ª®¬

2

≤ 4Kσ 2 · ρ2

Hence Proved. □

Lemma 6.3. The noisy quality д(T ) is in the interval [f (T )−P , f (T )
+P] with a high probability (> 8/9) where

P =
K

ϵ
·

(
3

2

+
6

√
K

)
· ρ

Proof. We know from Lemma 6.1,���ER [д(T ) − f (T )]
��� ≤ 3K

2ϵ
· ρ

Also, we know a bound on variance of д(T ) from theorem 6.3.

Var[д(T )] ≤ 4Kσ 2 · ρ2
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Applying Chebyshev’s inequality,

Pr
(���д(T ) − ER [д(T )]��� ≥ δ

)
≤

Var[д(T )]

δ2

Substituting, δ =
6

√
K

ϵ
· ρ

Pr

(���д(T ) − ER [д(T )]��� ≥ 6

√
K

ϵ
· ρ

)
≤

1

9

∴ |д(T ) − f (T )| ≤
3K

2ϵ
· ρ +

6

√
K

ϵ
· ρ w.h.p (18)

Hence proved. □

Theorem 6. Let Tdp be the output of PrivaCT and ρ be the least
maximum quality of any hierarchical cluster tree. The expected utility
loss of PrivaCT with a high probability (> 8/9) is given by

OPT − ETdp [f (Tdp )] ≤
2K

ϵ
·

(
3

2

+
6

√
K

)
· ρ

Proof. In PrivaCT, the sampling is done based on the noisy

probabilities Pr (Tdp ) =
eд(Tdp )∑
T ′ eд(T ′)

. In order to measure utility loss,

the quality of sampled tree Tdp is computed using f (Tdp ). Let T be

a tree with f (T ) =m and the set of trees with quality less than f (T )
are Tset and T

′′
has the highest probability to be sampled among

them. If

P =
2K

ϵ
·

(
3

2

+
6

√
K

)
· ρ

then,

Pr (f (Tdp ) ≤ m) ≤
Pr (f (Tdp ) ≤ m)

Pr (f (Tdp ) = OPT )

≤ |Tset | · e
д(T ′′)−д(TOPT )

≤ N · e(f (T
′′)+P )−(f (TOPT )−P )

w.h.p. from Lemma 6.3

≤ N · e2P · ef (T )−OPT
replace T ′′

with T

Now, given Lemma 6.3 w.h.p., substitutem = OPT − 2P − 2 · logN

Pr (f (Tdp ) ≤ OPT − 2P − 2 · logN ) ≤ e−n logn

since, logN = c · n logn (19)

∴ Expected Utility Loss ≤ 2P

=
2K

ϵ
·

(
3

2

+
6

√
K

)
· ρ

the logN is ≪ P

Hence proved. □

A.2 Evaluation Metrics for Social
Recommendations

We use mean average precision (MAP) and normalized discounted

cumulative gain (NDCG) for evaluating the performance of our

recommendation algorithms. These two metrics give a sense of how

relevant the top-k recommendations are based on their presence

Table 5: Results for the cold start setupwith arbitrary prefer-
ence order for items not rated by any of the suggested top-m
users in PrivaCT-CF and friendsCF .

Top-100 itemAvg friendsCF PrivaCT-CF

lastfm
NDCG 5.33E-04 1.58E-01 6.21E-02

MAP 2.56E-05 4.03E-02 8.63E-03

delicious
NDCG 8.80E-04 6.70E-03 9.00E-04

MAP 7.18E-05 8.00E-04 6.59E-05

douban
NDCG 2.00E-04 7.49E-02 7.800E-02

MAP 1.46E-05 1.87E-02 2.000E-02

as well as the order in which they are presented to the user. MAP

is the mean of average precisions that are computed on predicted

recommendations for each user. Average precision (APk ) is the
weighted average of precisions measured at every cut-off point in

the predictions. The precisionpi at the cut-off point of i is defined as
the number of true positives in the sequence of i recommendations

divided by i . The relevance ri of an item i is an indicator function

which equals 1 if the item at rank i is relevant and 0 otherwise. The

APk andMAPk for N target users are thus given by:

APk =
1

k

i=k∑
i=1

pi · ri ;MAPk =
1

N

∑
N users

APuserk

The normalized discounted gain is the discounted cumulative

gain (DCG) normalized by the ideal DCG (IDCG). DCGk is a metric

that evaluates the gain of an item based on its position in the top-k
recommendation. In DCGk , the highly relevant items that appear

lower in the recommendation list are penalized by reducing their

relevance ri . IDCGk represents the DCGk for ground truth items.

We compute the mean of NDCGk across all user’s predictions.

DCGk =

i=k∑
i=1

ri
log

2
(i + 1)

; NDCGk =
DCGk
IDCGk

Score computation for edge cases. In friendsCF and PrivaCT-CF,

there are items that have not been rated by any of the suggested

top-m users. In such a scenario, their predicted rating will be com-

puted by itemAvg instead. Therefore, NDCG and MAP have to be

computed for both items that are rated by top-m users as well as

the items that have not been rated. We give preference to the items

that have been rated by top-m users and keep them before the

other category of items irrespective of their predicted rating. For in-

stance, consider the items and their predicted ratings (a, 4.5), (b, 2.5)
as rated by top-m suggested users (in friendsCF or PrivaCT-CF).

However, say (c, 3.0) is not rated by any of them and 3.0 is the

average rating across all users outside of top-m suggested users

(itemAvg). Then {(a, 4.5), (b, 2.5), (c, 3.0)} will be the final order of
recommendations rather than {(a, 4.5), (c, 3.0), (b, 2.5)}.

Note. Instead of using itemAvg for such unrated items one could

also give preference to them in any arbitrary order which may not

be sensible. This might lead to unintended results depending on

the datasets. For instance, in a previous version of this paper the

results, as given in Table 5, were computed by fixing their preference

order according to the order in which they appeared in the dataset.

Coincidentally, these items affected the NDCG and MAP scores
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Table 6: The correlations between the user-user similarities
and the shortest path distances between them is given here.

Rating profile % negative corr. corr. range

lastfm
Partial 76.8 [-0.25, 0.17]

Full 100.0 [-0.23, 0.02]

delicious
Partial 96.6 [-0.26, 0.04]

Full 100.0 [-0.23, 0.02]

douban
Partial 95.1 [-0.14, 0.05]

Full 100.0 [-0.28, -0.01]

even though they were not intended to. By using itemAvg for such

items we alleviate this problem by rating and presenting them to

the user in an order that is backed by a meaningful metric.

A.3 Comparision with LDPGen
We detail our efforts to reproduce both experiments and theoretical

analysis of prior work that is closely related to ours [71]. The paper

provides good insights, including but not limited to using degree

vectors to capture edge information. However, we find some issues

with the paper and knowledge of these issues might be helpful to

the reader. LDPGen implementation was not available at the time

of this writing, so direct comparison or refutation of these issues

has not been feasible for us.

The formula for number of clusters is not valid for their datasets.
The paper has derived a formula for number of bins (K ) to choose

for obtaining degree vectors in Section 4.2 (page 431). However,

their assumption that the degree of nodes is between 0-50 is not

valid for their evaluated networks. So, it is not clear if the derived

formula can be used for these networks.

The formula for the probability of an edge between two nodes u,v
does not seem to be correct. The formula given in Section 4.4 is not

symmetric, i.e., pu,v is not equal to pv,u . Therefore, for undirected
graphs it is not clear how to choose the probability. Therefore, we

tried to replace the formula with our own expertise, however, we

could not reproduce their results using our formulas.

Recommender system performance seems high. To the best of our

ability, we have looked for state-of-the-art social recommendation

systems that are not private and they seem to record an NDCG score

of 0.3 on lastfm [85]. However, LDPGen based differentially private

technique records an NDCG score close to 0.8. LDPGen reported

results are better than the previous non-private state-of-the-art.

The epsilon values reported are half of what they should be. In
the LDP setup, the same edge is queried twice, once by each user.

Therefore, the privacy loss is twice the amount used for one query.

We have informed the authors of LDPGen about our findings and

have discussed the above with one of the authors in more detail.

A.4 Observations that help PrivaCT-CF
The correlations between user-user similarities and their shortest

path distances on the network are given in Table 6.
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