
Practical Verifiable In-network Filtering for DDoS Defense

Deli Gong∗, Muoi Tran∗, Shweta Shinde†?, Hao Jin‡?, Vyas Sekar§, Prateek Saxena∗, Min Suk Kang∗
∗National University of Singapore, {gongdeli, muoitran, prateeks, kangms}@comp.nus.edu.sg

†University of California, Berkeley, shwetas@eecs.berkeley.edu
‡Texas A&M University, haojin@tamu.edu

§Carnegie Mellon University, vsekar@andrew.cmu.edu

Abstract—In light of ever-increasing scale and sophistication
of modern distributed denial-of-service (DDoS) attacks, recent
proposals show that in-network filtering of DDoS traffic at
a handful of transit networks can handle volumetric attacks
effectively. In this paper, we identify a subtle but important
security risk in existing in-network filtering proposals. That is,
a transit network may use the in-network filtering services as
an excuse for any arbitrary packet drops made for its own
benefit. For example, a malicious transit network may execute
any filtering rules to discriminate against some of its neighboring
networks based on its business preference while claiming that
it is for the purpose of DDoS defense. We argue that this is
due to the lack of verifiable filtering — i.e., no single party can
check if a transit network executes the filter rules correctly as
requested by the DDoS victims. To make in-network filtering a
more robust defense primitive, we propose a verifiable in-network
filtering system, called VIF, that exploits emerging hardware-
based trusted execution environments (TEEs) and offers filtering
verifiability to DDoS victims and neighboring networks. Our
proof of concept demonstrates that a VIF filter implementation
on commodity servers with TEE support can handle traffic at
line rate (e.g., 10 Gb/s) and execute up to 3,000 filter rules.
We show that VIF can scale to handle larger traffic volume
(e.g., 500 Gb/s) and more complex filtering operations (e.g.,
150,000 filter rules) by parallelizing the TEE-based filters. As
a practical deployment model, we suggest that Internet exchange
points (IXPs) are the good candidates to be early adopters of
our verifiable filters due to their central locations and flexible
software-defined architecture. Our large-scale simulations of two
realistic attacks (i.e., DNS amplification, Mirai-based flooding)
show that adopting VIF filtering service at only a small number
(e.g., 5–25) of large IXPs is sufficient to handle the majority (e.g.,
up to 80–90%) of DDoS traffic.

I. INTRODUCTION

Distributed denial-of-service (DDoS) attacks are highly
prevalent, globally accounting to more than 20,000 attacks
per day [21]. In the last decade, new attack strategies such
as amplification [64] and new attack sources such as IoT
devices [80] have surfaced, which have resulted in attacks of
extremely high volume [78].

A large number of DDoS defenses have been extensively
studied over the past two decades. Among them, an effective
defense against the ever-increasing scale of DDoS attacks is in-
network filtering or empowering DDoS victim networks to in-
stall in-network traffic filters in the upstream transit networks.
This idea was proposed in early efforts (e.g., Pushback [50],
D-WARD [53], AITF [4]) and has repeatedly resurfaced in
standardization committees (e.g., see the recent DDoS Open
Threat Signaling [55]).

? Research done while working at National University of Singapore.

Dropping suspicious packets closer to the attack sources at
the requests of DDoS victims is desirable because it (1) reduces
wasted traffic on downstream ISPs, thereby reducing overall
network usage incurred by routing malicious traffic; and (2)
has the potential to handle increasing attack volumes (e.g.,
several Tb/s) as the volume at each distributed filtering point
is much lower than the aggregate volume at the victim [4].

Unsurprisingly, there is renewed interest in the research
community on revisiting in-network filtering solutions. Indeed,
a recent DDoS defense architecture, called SENSS [63], sug-
gests that the traffic filters installed at a few large transit ISPs
directly by the remote DDoS victims can prevent most of the
volumetric attack traffic from flooding the victim networks.
Also, an economic compensation model proposed in SENSS
allows the DDoS victims to pay the transit networks for the
requested filtering tasks.

In this paper, we identify that the adoption of in-line filter-
ing introduces a subtle but important shift in how we perceive
and handle packet drops in the Internet, which, unfortunately,
leads to a class of new network attacks. In a legacy transit
network (i.e., no in-network filtering), packet-drop events are
considered as faults, such as network failures or congestion;
see the secure network fault localization proposals [8], [85]. In
contrast, when packets are dropped in a transit network with
an in-network filtering service, it is unclear to neighboring
networks whether the drops are the results of network faults
or a legitimate in-network filtering operation on behalf of a
remote DDoS victim. With this ambiguity, a malicious transit
network can now execute arbitrary traffic filtering for its own
benefit with impunity and use DDoS defense as an excuse for
its packet filtering. Since packet drops may occur without any
network faults, network fault localization also becomes less
useful. As illustrated in Figure 1, when a transit network is
requested to execute a filter rule set by a DDoS victim, it
can arbitrarily modify the filter rules to discriminate against
some of its neighboring networks; e.g., dropping the majority
of traffic from neighboring network A but no filtering for
neighboring network B. Detecting such filter rule violations is
not straightforward because neighboring networks or a victim
network cannot individually reason about the correct filtering
execution. This is a practical concern considering the already-
existing disputes between transit networks (e.g., a dispute
between Level3 and Comcast [83]) in today’s competitive
transit market [27].

We argue that the verifiability of in-network filtering
mitigates such misbehaviors by malicious filtering service
providers. With filtering verifiability, when a filtering network
executes a manipulated filter rule, the DDoS victim network
who requested the filter rule or the direct neighboring au-

transit
ASes

filtering
network
(e.g., IXP)

DDoS victim
network

AS A

upstream
neighboring ASes

AS B

…

e.g., Drop 50% HTTP flows
coming to my network

requested filter rules:

VIF Verify
Verify

Fig. 1: Example of in-network filtering in a transit network.
VIF enables the direct neighboring networks or the DDoS
victim to verify if the filtering network executes the requested
filter rules correctly.

tonomous system (ASes) of the filtering network can detect
the misbehavior individually.

In this paper, we offer a technical mean for enabling
verifiability of filtering operations and develop a practical
and scalable in-network filtering system, called VIF.1 VIF
has a generic architecture designed for any transit networks
(e.g., Tier-1, large Tier-2 ISPs, IXPs). We exploit software
networking functions running on commodity hardware with
trusted execution environments (TEEs), such as Intel SGX [17]
and Arm TrustZone [5], mainly for the integrity of the network
function executions. TEEs are widely available in today’s com-
mercial off-the-shelf (COTS) server platforms; see Microsoft
and Google’s SGX-based cloud platforms [60], [65].

We identify two key technical challenges to realizing the
VIF vision in practice:
• Auditability. Making the overall traffic filtering operations

auditable is the key to the verifiable in-network filtering.
However, despite the TEE-based strong integrity guarantees
for filtering functions, achieving auditable filtering opera-
tions is not trivial. One challenge is that the correct filtering
operations are heavily affected by external inputs to the filter
(e.g., incoming packet order, time clock feeds), which can be
controlled by a malicious transit network. Another challenge
is that a malicious transit network can bypass our VIF filters
by reconfiguring its network and avoid using the filters for
adversary-selected packets.
• Scalability. With the growing size of DDoS attacks, VIF

should be able to scale out its filter capacity in terms of
the bandwidth and the number of filter rules. However, the
parallelization with multiple TEE-based auditable filters is
not straightforward because some necessary network compo-
nents for parallelization (e.g., traffic load balancers) are not
directly auditable. Moreover, distributing filter rules across
multiple auditable filters creates an optimization challenge,
which involves two-dimensional resource constraints.

Approach and Contributions. VIF design makes the fol-
lowing key contributions to address these aforementioned
challenges:
• We analyze the requirements for auditable filters, particu-

larly, their reliance on the external inputs to the filters, which
can be controlled by malicious filtering networks (§III-A).

1VIF stands for ‘Verifiable In-network Filtering’.

Our key insight is that it is sufficient that traffic filters are
stateless for auditable filter operations. We also implement
an effective bypass detection that relies on accountable
packet logs (with an efficient sketch implementation) mea-
sured inside the TEE (§III-B). The packet logs can be
used to identify packet drops/injections made outside of the
auditable filters. We demonstrate that an efficient line-rate
implementation (nearly 10 Gb/s throughput performance)
of the auditable traffic filters with the TEE support is
possible with several system optimizations (§V). Our proof
of concept of the VIF filter is open source and available
online2; and
• For highly scalable filtering architecture, we implement a

dynamic filter rule distribution algorithm across multiple
auditable filters and untrusted network components [28],
[58] (§IV). We implement a heuristic that can quickly
reconfigure a large number of filter rules (e.g., 150,000 filter
rules) and a large volume of incoming traffic (e.g., the total
volume of 500 Gb/s) with auditable filter instances (e.g., 50
filters).

As a practical deployment path, we argue that major
Internet exchange points (IXPs) are the promising adopters of
VIF (§VI). In the last decade, IXPs have become the central
infrastructure of the global Internet connectivity [1], [12], with
large IXPs handling daily traffic volumes comparable to those
carried by the largest Tier-1 ISPs, which makes the IXPs the
perfect candidates for our verifiable filtering service [22]; see
the recent prototype deployment of a DDoS filtering service
in one European IXP [23]. We perform large-scale simulations
with two realistic attacks (i.e., DNS amplification, Mirai-based
DDoS attacks) and show that deploying VIF in a small number
(e.g., 5–25) of large IXPs is enough to handle the majority
(e.g., up to 90%) of DDoS attacks (§VI-C).

II. PROBLEM DEFINITION

In this section, we describe the threat model we consider
in this paper (§II-A), the desired properties of the VIF design
(§II-B), the trusted execution environment model (§II-C) and
the assumptions we make in this work (§II-D).

A. Threat Model

Our threat model focuses on the problem of a single
potentially malicious transit network that offers in-network
filtering services but manipulates the filter rules submitted
by the DDoS victim, which we call as filter rule violation
attacks. In general, let us consider a filter rule R requested by a
victim network. The malicious filtering network may change R
arbitrarily into a different filter rule R′ and apply it to all traffic
destined to the victim network. Also, the malicious filtering
network may apply different modified rules R′1, R

′
2, · · · for

different traffic flows (e.g., packets delivered via different
neighboring ASes).

We present two example attack goals, where the manip-
ulation of filter rules at a filtering network can seriously
disrupt the packet forwarding services for the neighboring
ASes and the remote DDoS victim networks. In both attacks,
we use the same example illustrated in Figure 1, i.e., the

2 https://github.com/InNetworkFiltering/SGX-DPDK.

2

https://github.com/InNetworkFiltering/SGX-DPDK

filtering network manipulates the DDoS-victim-submitted filter
rule R =[Drop 50% of HTTP flows destined to
victim network].

[Goal 1] Discriminating against some neighboring ASes.
ASes expect their traffic to be reliably forwarded by the
transit networks. Yet, when a transit network offers in-network
filtering services, it can silently differentiate the quality of
packet forwarding for different neighboring ASes. In particular,
the filtering network can apply the modified filter rules for
each neighboring AS based on its own business preference.
Instead of applying the same original rule R, the filtering
network may apply R′A =[Drop 20% of HTTP flows
destined to victim network] for traffic flows deliv-
ered by AS A and R′B =[Drop 80% of HTTP flows
destined to victim network] for traffic flows deliv-
ered by AS B. Such discriminatory filtering is hard to detect
because individual neighboring AS A and B do not know the
unmodified rule R and, even if they know R, they cannot
determine if the traffic filter applied to their packets is R.
Each neighboring AS may try to infer the packet drops of the
end-to-end path indirectly (e.g., via monitoring TCP sessions);
yet, it is insufficient because pinpointing the exact location of
packet losses (a.k.a. fault localization) is known to be hard
without large-scale network collaboration [3], [8].

[Goal 2] Reducing operational cost with inaccurate filter-
ing. To reduce the operational cost, the malicious filtering
network may violate the filter rules submitted by the DDoS
victims. For instance, consider that the malicious filtering
network wants to use only 10 Gb/s of its filtering capacity for
the rule R while total incoming traffic of 50 Gb/s should be
sent to the filters. To achieve this, the filtering network can send
only 10 Gb/s traffic to its filters and execute the unmodified
rule R. For the rest of the 40 Gb/s traffic, however, the filtering
network can simply allow or drop all without using the filtering
capacity. Since the victim network has no information about
the incoming traffic arrived at the filtering network, it cannot
directly detect this attack.

B. Desired Properties: Filtering Auditability and Scalability

We have the two desired properties of the VIF design. First,
VIF aims to have the filtering auditability and remove the
attack capabilities required for the filter-rule violation attacks.
A filter rule R is said to be auditable if any modification
of the rule R and its execution by the filtering network can
be detected by the victim networks or the direct neighboring
ASes. Second, our VIF system must be easily scaled up
because DDoS attacks are increasingly scalable in the number
of attack flows and the total bandwidth. We have observed an
escalation in the volume of DDoS attack traffic [74], [80] and
attacks are getting more sophisticated; e.g., multi-million bots
are becoming more common [52].

C. Trusted Execution Environment with Intel SGX

VIF uses TEEs, particularly Intel SGX in this work, as the
feasible hardware-based root of trust. Intel Software Guard
Extensions (SGX) is a recent architectural feature that allows
secure execution of a program on a computing infrastructure
in control of an adversarial operator [17], [51]. SGX also
supports secure execution of a user-level program with no

modification of underlying commodity software stacks [6],
[9], [70]. In particular, it offers the isolated execution of the
application logic in a protected memory region, called an
enclave, which prevents the operator from tampering it. More-
over, it supports remote attestation that allows a third party
to audit that the correct application and data has been loaded
in an enclave. The attestation process starts when a verifier
issues an attestation challenge to the enclaved application.
The enclave then provides a report, which is cryptographically
signed with the attestation key of the SGX hardware. Next,
the attestation report is verified by the Intel Attestation Service
(IAS), which is distributed globally [41]. Alternatively, Intel
also allows anyone, who gets a certificate from Intel, to run
their own remote attestation services and verify the attestation
report [66].

D. Assumptions

We assume an out-of-band channel between the victim
network and the filtering network that is available even when
the victim network is under DDoS attacks.3 We also consider
a typical DDoS attack scenario where the victim network is
congested but its upstream ISP networks are still available [4].

We assume that ISPs (e.g., victim networks) trust the
remote attestation process for the integrity guarantees of the
VIF enclave. We also assume an idealized implementation of
VIF that has no backdoor. We leave a formal verification of VIF
implementation as future work. Hardware and side-channel
attacks (e.g., [33], [38], [47]) are out of the scope of this
paper since countermeasures to these (e.g., [14], [18], [34],
[68], [69], [73]) are orthogonal to the design of VIF.

III. AUDITABLE FILTER DESIGN

The VIF filtering operation is enclosed by an SGX enclave
where the integrity of its execution is guaranteed, i.e., a
malicious filtering network cannot tamper it. Furthermore, the
filtering internal logic and states are also securely verified via
the remote attestation process [41]. The isolated execution and
remote attestation are useful in realizing the auditable filter;
yet, they are insufficient because (1) the filtering decisions
can be influenced by the external inputs to the filter such as
packet order and time clock feeds, which are controlled by the
filtering network; and (2) the malicious filtering network may
redirect the traffic within its network to bypass the filtering
operations.

To address these two challenges, we suggest that the
filtering operations be stateless and hence be independent from
the external inputs (§III-A) and implement the enclaved packet
logs to detect bypassing attempts (§III-B).

A. Stateless Filter Design

We first describe an abstract model for our enclaved filter
f to analyze the dependencies of the enclaved filters:

{ALLOW,DROP} ← f
(
〈p, a〉, (〈p1, a1〉, 〈p2, a2〉, · · ·)

)
, (1)

where 〈pi, ai〉 denotes that packet pi arrives at the enclaved
filter at time ai (measured by the enclave’s internal clock),

3ISPs traditionally have maintained out-of-band channels (e.g., external
email servers, telephone lines [55]) for inter-ISP communication.

3

〈p, a〉 represents the packet p that is being evaluated and its
arrival time a, and the following time relationship holds a >
a1 ≥ a2 ≥ · · · .

Notice that in this abstract model, the filtering operation of
a packet p depends on the packet arrival time and the order of
the packets, which can be exploited by the filtering network.
Here, we summarize the two properties that are needed to make
VIF filter auditable:
• Arrival-time independence. The filtering decision should be

independent of packet-arrival time because it can be easily
manipulated by a malicious filtering network (e.g., delaying
individual data packets). Moreover, a malicious filtering
network can delay the time query/response messages to/from
the trusted clock source for the enclave [40], slowing down
the enclave’s internal time clock.
• Packet-injection independence. The filtering decision should

not depend on the previous packets since a malicious
filtering network can also inject any arbitrary packets into
the traffic flow and influence the filtering decision.

Thus, to ensure that the filtering operations are auditable,
the filtering function f can be independent of all the previous
packets and their arrival times; that is,

f
(
〈p, a〉, (〈p1, a1〉, 〈p2, a2〉, · · ·)

)
= f(p), (2)

which simplifies the filter design to n-tuple (e.g., srcIP,
dstIP, srcPort, dstPort, protocol) per-packet
filters. In other words, the filtering decision of packet p solely
relies on p, e.g., five-tuple bits. Such a simple stateless n-
tuple filter design has its own limitations (e.g., incapable of
handling complicated application-level DoS attacks); yet, the
stateless filters are sufficient for handling the majority of large
volumetric attacks, e.g., more than 75% of DDoS attacks [21].

Particularly, for handling volumetric attacks, we allow
victim networks to express filter rules for exact-match five-
tuple flows (e.g., a specific TCP flow between two hosts)
or coarse-grained flow specifications (e.g., HTTP connections
from hosts in a /24 prefix); see Appendix A for several
practical design points for our enclaved filter.

B. Filter Bypass Detection

The auditability of the VIF filter guarantees that the fil-
ter operates correctly for the given packets from a filtering
network to a victim network. However, packets may not be
properly filtered when a malicious filtering network configures
the traffic to bypass the VIF filter, hence violating the filter
rules. Particularly, the manipulation of the traffic flows happen
outside of the protected enclave and thus cannot be detected by
the auditable VIF filter itself. We categorize the filter bypass
attacks as follows:
• Injection after filtering: The VIF filter drops a packet p but

the adversary injects a copy of p into the packet stream that
is forwarded to the victim;
• Drop after filtering: A packet p is allowed by the filter but

the adversary drops p before forwarding it to the victim; and
• Drop before filtering: The filtering network drops a packet
p even before it is processed by the filter.

Note that, we do not consider injection before filtering
operations by a filtering network as an attack because it does

VIF enclave

filter

Filtering network

incoming
packet logs

Victim network

packet
logs

Neighboring ASes

packet
logs

Detect
Bypass

transit
ASes

packet
logs

Detect
Bypass
Detect
Bypass

outgoing
packet logs

Fig. 2: Neighboring ASes and victim network individually
detect filter bypass attacks. VIF uses an efficient sketch data
structure for packet logs.

not affect the filtering decision due to the packet-injection
independence property of the filters (see Section III-A).4

Bypass Detection. We allow the victim network and the
neighboring ASes of the filtering network to detect such bypass
attempts individually by implementing the accountable packet
logs inside the enclave for incoming and outgoing packet
streams, see Figure 2. For each packet log, we utilize a
sketch, particularly a count-min sketch, a memory-efficient
data structure that stores summaries of streaming data [16].
With the sketch-based packet logging, the VIF filter keeps only
the measurement summary inside an enclave and significantly
minimizes the memory footprint; e.g., less than 1 MB per
sketch. With some additional data-plane optimizations (see
Section V-A), the computational overhead of computing two
sketches per packet is negligible (see Section V-B).

To detect bypass attempts by the filtering network, the
victim network queries the authenticated outgoing packet logs
from the VIF enclave and compares it with its own local sketch.
Since the count-min sketch logs do not record non-existent
packets (i.e., no false negative), any discrepancy between the
two sketches implies injection after filter and/or drop after
filter attacks by the filtering network. The computation and
bandwidth overhead for the logs queries is negligible; i.e.,
sketching is highly efficient and requires sending only a few
MBs of sketch memory via the already established channel
with the victim network.5 Similarly, individual neighboring
ASes of the filtering network can detect the drop before
filtering attacks by comparing their own local packet logs with
the authenticated incoming packet logs of the VIF filter.

Handling misbehaviors. When the victim network detects any
bypass attempt, it can decide to abort the ongoing filtering
request with the filtering network. In practice, the VIF filtering
network should allow a short (e.g., a few minutes) time
duration for each filtering round so that victim network can
abort any further request quickly when it detects any bypass
attempts. The neighboring ASes can choose another down-
stream network when they obtain the evidence that their current
downstream network offers filtering services but intentionally
drops their packets before they reach the VIF filters.

Handling malicious intermediate ASes. The bypass detection
mechanism may cause false positives when some packets are
dropped after leaving the VIF filter but before reaching the

4Moreover, the detection of packet injections before the enclave operations
is hard without explicit coordination with traffic sources.

5The computational overhead of the victim network should also be low
since it only requires an efficient sketch on a commodity server without SGX
overhead.

4

0 2000 4000 6000 8000 10000
Number of rules

0.0

5.0

10.0

15.0
Th

ro
ug

hp
ut

 (M
pp

s) 3000 rules

(a) Filter throughput

0 2000 4000 6000 800010000
Number of rules

0.0

50.0

100.0

150.0

En
cla

ve
 M

em
or

y
Fo

ot
pr

in
t (

M
B)

EPC limit

(b) Filter memory footprint

Fig. 3: Filter throughput degradation with the increasing num-
ber of filtering rules.

victim network. When this happens, the victim network cannot
accurately pinpoint where the packet drop has happened [3],
[8]. The packet could have been dropped by one of the in-
termediate transit networks between the VIF filtering network
and the victim network, or by the VIF filtering network itself.

Therefore, instead of locating such packet drops, VIF
allows the victim network to dynamically test all the interme-
diate ASes (an inter-domain path usually have only 3–6 ASes)
by rerouting its inbound traffic to avoid each of ASes being
tested in a short time using the well-known BGP poisoning-
based techniques (e.g., [42], [72]). BGP poisoning does not
require network collaboration and can detour the traffic in only
a few minutes [71], [72], [77]. We describe the detailed test
steps in Appendix B.

IV. SCALABLE FILTER DESIGN

In this section, we first analyze the performance (e.g.,
throughput, network I/O) bottlenecks of a single auditable
filter (§IV-A) and then describe a scalable filtering design with
multiple enclaved filters running in parallel and an untrusted
load balancer (§IV-B).

A. Bottlenecks: Maximum Bandwidth and Number of Rules
per SGX Filter

Recent works such as mbTLS have demonstrated that the
10Gb/s performance per enclave can be reached with a four
SGX cores machine [56]. Although the processors with six or
more cores available on the market6 may support larger band-
width, we consider the maximum network I/O performance of
each SGX enclave is 10 Gb/s in the rest of the paper.

Since the SGX-based filter must match the installed rules
with incoming flows to perform filtering, the number of
filter rules naturally becomes the bottleneck of the filter’s
performance. Indeed, we measure the throughput of traffic
processed by a single enclaved filter with different numbers
of filter rules and show the results in Figure 3a. We can see
from Figure 3a that when the number of filter rules exceeds
approximately 3,000, the VIF filter’s throughput performance
rapidly degrades.

One of the explanations is that, when the number of filter
rules increases, the lookup table for the packet processing
inside an SGX enclave also grows accordingly. Even when we

6List of SGX-enabled processors is available at: https://ark.intel.com.

E0

filter

VIF Filtering Network

En-1

filter

…

untrusted
switching fabric

per-enclave limitations:
(1) bandwidth (10 Gb/s)
(2) # rules (3,000)

incoming
traffic

victim networkload
balance

untrusted
controller

Fig. 4: Scalable VIF architecture. Multiple VIF enclaves are
parallelized with an untrusted load balancer.

E0 E1 E2 LB
(master) (slave1) (slave2) (load balancer)

time

rule config. (i-1)

rule config. i

{R1,B1} {R2,B2}{R0,B0}
filter
rule

re-calc.
R1’ R2’R0’

{R0’,R1’,R2’}
rule config. (i+1)

Fig. 5: Protocol for filter rule recalculation and redistribution
across three enclaved filters: E0, E1, and E2.

use the state-of-the-art multi-bit tries data structure for looking
up the filter rules (see Section V for details), the memory size
of the lookup table still grows linearly with the number of
filter rules, as shown in Figure 3b. This result also confirms
that the Enclave Page Cache (EPC) limit is around 92 MB, as
seen in many other works (e.g., [45]).

B. Scalable Filtering with Multiple SGX Filters

Given the architectural limitation of secure computing
resources in currently available SGX architecture, the single-
enclave filtering deployment may not be able to deal with the
increasing attack volume and number of attack flows. Hence,
we propose a generic VIF architecture that can easily scale
up as the number of filters grows, as shown in Figure 4. The
scalable VIF design includes multiple enclaved filters running
in parallel and some untrusted facilitating components such as
the high-bandwidth switching fabric and the controller.

Our multiple SGX filters design is robust against attacks
by the untrusted load balancer that may redirect to a filter the
traffic flows that do not match with the filter rules assigned
for that filter. Our individual trusted filter can easily detect
such a misbehavior by comparing the packets it receives with
the assigned rules. Also, if the load balancer drops the traffic
flows that are supposed to be redirected to an enclave, it can
be detected by the bypass detection of the auditable filters (see
Section III).

Next, we describe how filter rules are distributed and
dynamically adjusted among multiple enclaves.

Filter rules distribution protocol. Since the traffic flows
being filtered are frequently changed, the filter rules also need
to be updated and redistributed among the filters accordingly.

5

https://ark.intel.com

We consider that the distribution of the filter rules happens in
rounds, i.e., the entire filter rule set is known and does not
change until the next rule reconfiguration is executed. In each
round, the filter rules are calculated and redistributed via a
simple master-slave topology among multiple enclaved filters.
We illustrate the protocol in Figure 5, where we have filter E0

as the master node and E1, E2 as the slave nodes. In particular,
when a reconfiguration of filter rules is desired (e.g., traffic
volume or the number of filter rules handled by a certain filter
exceeds a threshold), any enclaved filter may initiate a rule
redistribution round and become the master node. Then, all
the slave nodes upload their filter rule sets (Ri for Ei) and
the array of the average received flow rates of each rule set
Ri (Bi for Ei) to the master node. The master node calculates
re-configured filter rules, which then are redistributed to all the
slave nodes and the load balancer. If the calculation requires
changes to the number of enclaves, necessary additional steps
(e.g., creating and attesting more enclaved filters) may be
required before the rule redistribution.

Filter rules calculation optimization problem. In each fil-
ter rules redistribution, the master node has to allocate the
bandwidth and rules to all enclaved filters. We consider the
calculation of the optimal rule sets for each filter enclave as
solving a mixed integer linear programming (ILP) optimization
problem. We assume k filter rules as ri (1 ≤ i ≤ k) and the
corresponding incoming bandwidth as bi (1 ≤ i ≤ k).7 A
single enclave has a memory limit M (e.g., 92 MB) and a
bandwidth capacity G (e.g., 10 Gb/s) as we have discussed in
Section IV-A. Then, we can decide the minimum number of
enclaves as needed as nmin = dmax

(
1
G

∑k
i=1 bi,

ku
M−v

)
e. To

allow some room for optimization, the number of enclaves is
taken as n = dmax

(
1
G

∑k
i=1 bi,

ku
M−v

)
×(1+λ)e where λ ≥ 0

is an adjustable parameter for additional enclaves. We define
real-valued variables xi,j (1≤i≤k,1≤j≤n) denoting the portion
of bandwidth bi allocated to the j-th enclave, and binary
variables yi,j (1≤i≤k,1≤j≤n) representing if rule ri is installed
on the j-th enclave (i.e., yi,j = 1). Based on the allocation plan
indicated by xi,j and yi,j , we consider Cj = u ×

∑
i

yi,j + v

as the memory cost function, which is a linear function of
the number of rules installed (where u, v are constants). Also,
Ij =

∑
i

xi,jyi,j is considered as the allocated bandwidth. We

present the detailed ILP formulation in Appendix C.

Greedy algorithm to calculate filter rules. Solving the above-
mentioned optimization problem is inherently costly when k×
n is large (e.g., > 10K). Thus, we propose a greedy algorithm
(see Appendix D) that finds a sub-optional solution within a
reasonably short time period. The high-level intuition of the
greedy algorithm is to pre-compute the two parameters—(1)
the number of rules per enclave h and (2) the bandwidth quota
per enclave g—and arrange the rules and bandwidths for the
obtained two parameters heuristically.

7We denote bi as the incoming bandwidth measured for a filter rule for eas-
ier understanding. In practice, each enclave would produce byte counts without
timestamping them because their individual clock sources are untrusted (see
Section III-A). The byte counts are then collected in a timely manner and
used for the optimization problem.

User Application: VIF

Enclave Memory Data-Plane
Control-Plane Filter Thread

Input Log

per-source-IP
count-min sketch

Filter Rule Lookup Table
multi-bit tries

Output Log
count-min sketch

Packet Header Buffer (5-tuple + size)

RX Thread TX Thread Packet
Memory

Pool

Master Thread

Kernel
Space

In
co

m
in

g
pa

ck
et

s
Fo

rw
ar

de
d

pa
ck

et
s

E
nc

ry
pt

ed
M

es
sa

ge
s

NIC
secure channel

NIC
packet processing

RX Queues

TX Queues

Attestation

SSL Library

SGX/DPDK runtime

SGX Library

DPDK Library

RX
ring

DROP
ring

TX
ring

D
M
A

AllowDrop

SGX Module

DPDK UIO
Module

Fig. 6: VIF architecture.

(a) Full packet copy approach

Enclave memory

Untrusted packet memory pool

NIC

filter
packet

logs
packet

logs

Rx Queues

Incoming packets

packet

packet

Tx Queues

Forwarded packets

allow! Enclave memory

Untrusted packet memory pool

NIC

filter
sketch
(srcIP)

sketch
(5T)

Rx Queues

Incoming packets

Tx Queues

Forwarded packets

drop!

allow!

a/d?

allow or drop!

only when allowed

(b) Near zero-copy approach

drop!
a/d?

allow or drop!

only when allowed
packet

5T s

Fig. 7: Two packet copy approaches for the auditable filter and
packet logs. In the near zero-copy approach, we copy only the
memory reference (∗), the five-tuple (5T), and the size (s) of
the packet into the enclave.

V. IMPLEMENTATION AND EVALUATION

We implement a proof of concept of the VIF filter using
SGX and various optimizations (§V-A) and then evaluate its
data-plane (§V-B) and scalability performance (§V-C) for large
attack volume and number of attack flows.

A. Implementation

Overview. We build the VIF filter as a Linux userspace appli-
cation with Intel SGX SDK 2.1 and DPDK 17.05.2 for high-
speed packet processing. Figure 6 shows the main components
of the VIF filter and the minimal trusted computing base
(TCB) of code and data inside the enclave, which includes the
entire control-plane and the key parts of the data-plane logic
(e.g., packet logging and filtering). The control plane performs
remote attestation and manages the keys for communication
with a DDoS victim. The design of the data plane follows
DPDK pipeline model, where three threads (i.e., RX thread,
Filter thread, and TX thread) run on individual CPU cores and
packets are passed between cores via DPDK lockless rings
(i.e., RX ring, DROP ring, and TX ring). Every thread runs
a small loop polling the hardware or software buffers in the
previous stage, processes a batch of the packets, and passes it
to the next stage in the pipeline.

Optimization: Near zero-copy design. For every incoming
data-plane packet, a VIF filter logs the packet, filters it based
on the given filter rule set, and logs it again if it is allowed
by the filter, as shown in Figure 7. Figure 7(a) shows a
naive approach, where a VIF filter makes the entire copy

6

of incoming packets into the enclave and operates these
functions over the packet copies inside the enclave. This full-
packet copy approach can be considered as the baseline packet
processing mechanism of other existing SGX-based middlebox
applications (e.g., Tor nodes [43], [70], TLS middleboxes [32],
[39], [56], inter-domain routing [15], [44], and IDSs [32], [67],
[76]), where secure operations over the full packet bytes are
required (e.g., full packet read or encryption). However, this
approach may incur too much overhead when performing line-
rate processing due to the remaining EPC memory for a VIF
filter is only about 92 MB.

We thus minimize the dynamic memory usage and avoid
the paging by copying only certain header fields into the
enclave, which we call near zero-copy optimization. This
allows more memory space for filter rules and the lookup table.
In particular, only a fraction of each packet’s header fields (i.e.,
the five-tuple fields, 5T , and the packet size, s) are copied into
the enclave memory along with the memory reference (∗) of
the packet, as shown in Figure 7(b).8 The copied data 〈5T, s〉
represents the packet and is used for the logging functions and
the filter operation. The memory reference ∗ is used to perform
the corresponding operation (e.g., allow or drop) for the packet
in the untrusted memory pool.

With the copied five-tuple and the size, we first log each
packet using a count-min sketch [16] (with two independent
linear hash functions, 64K sketch bins, and 64-bit counters)
for memory efficient (e.g., 1 MB) per-source-IP counters. The
per-source-IP sketch for the incoming packets enables each
neighboring ISPs of the filtering network to detect the ‘drop
before filtering’ bypass attack discussed in Section III-B. For
forwarded packets, we also record another count-min sketch
based on the full 5-tuple bits so that the victim network can
detect bypass attempts. The latencies increased by the two
sketch operations are negligible because only four linear hash
function operations are conducted in the data-plane path. Each
counter has 64 bits and takes only around 1 MB EPC memory
per instance of the count-min sketch.

Optimization: Reducing the number of context switches.
Another major overhead stems from the context switches
when user application calls the enclave functions (ECall) or
the enclaved function calls the outside functions (OCall). We
address this performance degradation by reducing both types
of calls in the filter thread: (1) VIF only needs one ECall
to launch the filter thread and initiates its polling; and (2) the
filter thread makes no OCalls as the communication with other
threads relies only on the software rings.

Trusted computing base (TCB). Beyond the DPDK library
containing about 64K lines of code (LOC), our VIF filter
contributes to the TCB only 1,206 LOC which includes the
modification of DPDK ip_pipeline (1044 LOC) and the
packet logging and near zero-copy functions (162 LOC).

B. Line-rate Data-plane Performance

Testbed Setup. We test our implementation with two ma-
chines: one is a packet generator and one deploys VIF filter.

8Such reduction of byte copies is allowed for our auditable filter applications
but this does not necessarily apply to any other SGX-based middlebox
applications.

64 128 256 512 1024 1500
Packet Size (bytes)

0.0

2.0

4.0

6.0

8.0

10.0

Th
ro

ug
hp

ut
 (G

bp
s)

Native (no SGX)
SGX with full packet copy
SGX with near zero copy

Fig. 8: Throughput performance in bit-per-second for varying
packet sizes and 3,000 rules with three implementation ver-
sions: (1) Native (no SGX), (2) SGX with full packet copy,
and (3) SGX with near zero copy.

The packet generator has an Intel E5-2630 v3 CPU (2.40 GHz,
8 cores) and 32 GB memory. The filtering machine has an Intel
i7-6700 CPU (3.40 GHz, 4 cores) and 8 GB memory. Both
have 10 GbE Intel X540-AT2 network cards and run Ubuntu
16.04.3 LTS with Linux kernel 4.10. On the packet generator
machine, we use pktgen-dpdk 3.4.2 [24] to generate the
traffic saturating the 10 Gb/s link between the two machines.

Throughput performance. We benchmark the maximum
throughput performance of the filter with the packet size of
64, 128, 256, 512, 1024, and 1500 bytes for three different
versions of the VIF filter implementations: (1) native filter
without SGX, (2) SGX-based filter with full packet copy, and
(3) SGX-based filter with near zero-copy.

Figure 8 shows the throughput performance for varying
packet sizes for the three implementations. For the packet
sizes of 256 Byte or larger, all the three implementations
achieve the full line-rate of 10 Gb/s. With small packet sizes,
however, we observe some degradation due to the use of
SGX. Particularly, when we make full packet copies for each
incoming packet, the filter experiences significant throughput
degradation. The near zero-copy implementation demonstrates
8 Gb/s throughput performance even with 64 Byte packets
and 3,000 filter rules. Additionally, we present the experiment
results of VIF evaluation in packet per second metric in
Appendix E.

Latency performance. We also measure the latency for the
near zero-copy version with various packet size starting from
128 bytes. The results are 34 µs (128 bytes), 38 µs (256 bytes),
52 µs (512 bytes), 80 µs (1024 bytes), 107 µs (1500 bytes). All
the measurements are average latency over 10-second run with
8 Gb/s constant traffic load, which are reported by pktgen’s
latency measurement function.

Connection-preserving filtering performance. We evaluate
the detailed performance of connection-preserving filtering.
We present the result in Appendix F.

Remote attestation performance. Our detailed remote attes-
tation performance can be found in Appendix G.

C. Scalable Filter Rule Distribution

We evaluate the solving performance of the mixed ILP op-
timization problem described in Section IV-B with the CPLEX
solver [20] in a server-grade machine with 20 cores. We use
3,000 or more filter rules that would cause the throughput
degradation of each VIF filter. In this evaluation, we consider

7

TABLE I: Execution times for the ILP solution and the
greedy algorithm solution. The CPLEX’s mixed ILP solver
is configured to stop when sub-optimal solutions are found.

Number of rules (k) CPLEX (sub-optimal) Greedy

5,000 210.49s 0.31s
10,000 772.43s 0.50s
15,000 1,614.96s 0.73s

0 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K110K120K130K140K150K
Number of rules

0
5

10
15
20
25
30
35
40

R
un

ni
ng

 ti
m

e
(s

)

Fig. 9: The time taken to complete the heuristic algorithm for
optimizing filter rules across multiple enclaves with varying
number of rules k. Red bands indicate the median.

that the total traffic rate going through the entire VIF filter
is 100 Gb/s. The incoming traffic distribution across the filter
rules follows a lognormal distribution.

With the number of rules more than 3,000 and the number
of enclaves more than 10, we find that the CPLEX’s mixed
ILP solver cannot return the optimal solutions within any
reasonable time period. To evaluate the effectiveness of our
greedy algorithm in Section IV-B, that is, how close it is to
the optimal solutions, we use a small number of filter rules
(10 ≤ k ≤ 15) and confirm that the difference between the
optimal cost function calculated by the CPLEX’s mixed ILP
solver and the results from our greedy algorithm is only 5.2%.

We now compare the execution time of the CPLEX’s mixed
ILP solver and our greedy algorithm when the number of rules
is between 5,000 and 15,000 and show the results in Table I.
To measure the execution time of the CPLEX’s mixed ILP
solver for our optimization problem, we configure the solver
to stop earlier when it finds a first, sub-optimal solution. As
shown in Table I, the CPLEX solver even requires about 200
– 1,600 seconds to find the sub-optimal solutions, which are
unacceptably slow for the dynamic filter rules redistribution
operations. On the other hand, our greedy algorithm runs three
orders of magnitude faster than the CPLEX solver with the
same number of filter rules.

Figure 9 shows the extended experiments on the execution
times of the greedy algorithm for varying number of rules at a
much larger range. We also run this experiment with the total
traffic bandwidth of 500 Gb/s, which follows the log-normal
distribution. In all the range we test (10K–150K filter rules),
the greedy algorithm requires no more than 40 seconds. This
enables a near real-time dynamic filter rule re-distribution for
large numbers of VIF filters.

VI. PRACTICAL DEPLOYMENT AT IXP

VIF has a generic architecture designed for any transit
networks (e.g., Tier-1 or large Tier-2 ISPs); yet, as the first
deployment model, we suggest to deploy it in major Internet
exchange points (IXPs). In this section, we present why IXPs,

IXP

switch fabric

controller Enclave

filter
rules

remote
victim network

AS A

AS C

AS B

Enclave

filter
rules

Enclave

filter
rules

remote attestation/
filter rule insertion

…

VIF filtersro
ut

e
co

nt
ro

l
(e

.g
.,

re
di

re
ct

,
lo

ad
 b

al
an

cin
g)

Fig. 10: Deployment example of VIF at IXP.

among other transit infrastructure, are the good candidates to
deploy our verifiable in-network filtering (§VI-A). We also
provide a deployment example of VIF at an IXP (§VI-B) and
then evaluate the effectiveness of VIF at IXPs against DDoS
attacks with two real attack source data (§VI-C). Finally, we
provide a simple cost analysis for deploying VIF service at an
IXP for filtering up to 500 Gb/s traffic (§VI-D).

A. Internet Exchange Points (IXPs)

IXPs are physical locations where multiple autonomous
systems (ASes) peer and exchange traffic and BGP routes.
Essentially, an IXP is a large layer-2 fabric and connects ASes
(e.g., ISPs, content providers, cloud providers) in close proxim-
ity. IXPs provide great convenience to ASes in making peering
relationship with many (e.g., hundreds or thousands) other
ISPs without the hassle of individual bilateral agreements.
The Internet currently has more than 600 globally distributed
IXPs [11] and some large IXPs serve multi-Tera b/s traffic
volume, which is comparable to large Tier-1 ISPs [1], [12].

Recently, as more video content providers and large cloud
providers rely on IXPs for a lower cost but faster transit
of their traffic, emerging value-added services are expected
from IXPs; e.g., application-specific peering, inbound traffic
engineering, wide-area server load balancing, and redirection
through middleboxes [37]. New innovation for these value-
added services has been possible because IXPs have a flexible
architecture model (especially, compared to traditional transit
networks, such as ISPs). An IXP usually consists of a single
data center in a single physical facility; thus, software-based
architecture available for data centers can be easily adopted;
see software-defined IXPs [35]–[37].

Due to their topological centrality, however, IXPs un-
fortunately often suffer from collateral damage when other
networks are targeted by DDoS attacks [61]. Worse yet, IXPs
are sometimes directly targeted by DDoS attacks; see an attack
incident in 2016 against multiple IXPs: AMS, LINX, and DE-
CIX [10]. A traffic filtering service could easily be a natural
next value-added service for IXPs [22].

B. Deployment Example at IXP

We consider the VIF IXP has a generic architecture that
includes a layer-2 switching fabric, a route server (which is
not highlighted in our paper), and a logical central controller
for software-defined switches [36], [37]. Figure 10 illustrates
a deployment example of VIF at an IXP. The filtering IXP
sets up one or more commodity servers with SGX support.

8

Top
-1

IXP

*

Top
-2

IXPs

*

Top
-3

IXPs
*

Top
-4

IXPs

*

Top
-5

IXPs

*
0

0.2

0.4

0.6

0.8

1
R

at
io

 o
f a

tta
ck

 s
ou

rc
e

IP
s

 h
an

dl
ed

 b
y

VI
F

IX
Ps

(a) Vulnerable DNS resolvers

Top
-1

IXP

*

Top
-2

IXPs

*

Top
-3

IXPs

*

Top
-4

IXPs

*

Top
-5

IXPs

*
0

0.2

0.4

0.6

0.8

1

(b) Mirai botnets

Fig. 11: The ratio of attack sources that are handled by the VIF
filters for the two attack source data. (∗): Top-n IXPs denote
the n largest IXPs in each of the five regions, see Table III in
Appendix H.

When a victim network is under DDoS attack, it contacts
the controller of the VIF IXP via an out-of-band channel. As
suggested in [63], the victim network can easily authenticate to
the IXP via Resource Public Key Infrastructure (RPKI) [46].
The victim network asks the filtering IXP to create one or more
SGX filters and audits it by receiving the validation attestation
report(s). After being convinced that the filters have been set up
properly (i.e., the remote attestation is successful), the victim
network establishes a secure channel with the enclaves (e.g.,
TLS channels) and submits the filtering rules. The load bal-
ancing algorithm at the IXP controller receives the rules from
the filter parallelization (see Section IV-B) and accordingly
controls the switches to distribute traffic destined to the victim
network to the enclaved filters. The VIF IXP eventually learns
and analyzes all the rules in this step. Finally, the enclave
filters perform packet filtering based on the submitted rules
and forward the allowed traffic to the victim network.

C. Effectiveness of VIF at IXPs against DDoS Attacks

We analyze how much DDoS attack traffic can be filtered
by VIF at IXPs with two real attack source data: 3 million
vulnerable open DNS resolver IP addresses [79] and 250
thousand Mirai bot IP addresses [52].

Simulation setup. In our inter-domain routing simulation, we
use the CAIDA Internet measurement data with the inferred
AS business relationship [7] and the peering membership of
world-wide IXPs [11]. We randomly choose 1,000 Tier-3 ISPs
as the DDoS victims and consider that each victim receives
attack traffic from all the attack sources (e.g., open resolvers
and bots) in each case. To determine a traffic forwarding path
between autonomous systems (ASes), we assume that each
of them applies the following widely adopted BGP routing
policies in order [29], [31]: (1) the AS prefers customer links
over peer links and peer links over provider links; (2) the AS
prefers the shortest AS-path length route; and (3) if multiple
best paths exist, the AS uses the AS numbers to break the tie.

We assume that the victim network establishes VIF sessions
with several largest IXPs (e.g., the biggest IXPs in each of
the five regions, as shown in Table III, see Appendix H). We
compute the ratio of flows from the attack IP addresses to
the victim network that are handled by at least one of the
established VIF filters at the selected IXPs. A traffic flow is
said to be transited at an IXP if it traverses along an AS-path
that include two consecutive ASes that are the members of the
IXP.

Results. Figure 11 shows how many attack flows can be
effectively handled by the in-network filters if installed in some
large IXPs. The box-and-whisker plots show the distribution
of the ratio of handled attack IPs when Top 1–5 biggest IXPs
in the five regions (thus, 5–25 IXPs globally in total) perform
in-network filtering service for DDoS defense. In each plot,
the solid lines represent the first and the fourth quartile of the
data set and the ends of the whisker indicate the 5th- and 95th-
percentiles. Also, the red band inside the box represents the
median.

Even when a single IXP in each region (thus, total five
IXPs worldwide) adopts the VIF filters, the majority of both
attack sources (e.g., vulnerable resolvers, botnet) are handled
by the VIF IXPs. Approximately, 60% of attack mitigation is
expected for the median cases, and 70-80% mitigation can be
achieved for the top quarter cases. As more IXPs adopt the VIF
filters, even more effective mitigation is achieved. Particularly,
Top-5 IXPs per these regions appear to be sufficient enough to
offer more than 75% attack mitigation for the median cases,
and 80-90% of attack mitigation for the upper quarter cases.

D. Deployment Cost Analysis

Let us provide a ballpark estimate of the cost of deploying
VIF at an IXP to handle 500 Gb/s of traffic. Note that the 500
Gb/s filter capacity at a single IXP appears to be sufficient
because the attack volume at each IXP can be much lower than
the aggregated volume at the victim network. For instance, it
would require only a few VIF IXPs with similar capabilities to
mitigate the biggest DDoS attack ever recorded with 1.7 Tb/s
attack traffic [78].

Our experiment in Section V-B shows that a near full line-
rate performance of 10 Gb/s per server with four SGX cores
is easily achieved. Thus, to handle 500 Gb/s attack traffic, an
IXP needs to invest in 50 modest SGX-supporting commodity
servers, which would require only one or two server racks.
With a commodity server cost is approximately US$ 2,000,
the filtering IXP only needs to spend for one-time investment
for US$ 100K to offer an extremely large defense capability
of 500 Gb/s. The capital expenditure can be borne by the
member ASes (hundreds or thousands) and/or can be amortized
by the service fees if the filtering service is economically
compensated by the payment from the victims [63]. A rigorous
economic analysis of VIF operations in IXPs is out of the scope
of this paper and is left for future work.

VII. RELATED WORK

Network DDoS attacks and defenses have been extensively
studied in the last 2–3 decades [54]. Here, we summarize a few
categories of DDoS defenses and related projects.

A. In-network Filtering

The idea of in-network filtering has been the core idea
of many DDoS mitigation proposals. There are two promi-
nent approaches to implementation: dynamic filtering and
capability-based approaches. Dynamic filtering suggests that
the destination ISP requests the ISPs on the forwarding paths
to install filter rules at the time of attack, for instance as
proposed in Pushback [50], D-WARD [53], AITF [4], Sto-
pIt [48]. Capability-based approaches embed capabilities in
the packet flows, which can be controlled by the destination

9

hosts to authorize flows in upstream, as proposed in SIFF [81],
TVA [82], and Portcullis [57].

Closest to our work is the recent SENSS defense architec-
ture by Ramanathan et al. [63]. SENSS proposes to install
DDoS-victim submitted filters at a small number of major
ISPs. Ramanathan et al. show that in-network filtering at only
four major ISPs in the US would have stopped the Dyn attack
happened in 2016 [84]. SENSS also suggests an automated
payment channel between a DDoS victim and a filtering ISP
so that the ISP can get compensation for the extra filtering
tasks. Although the idea is solid and evaluation is promising,
the SENSS proposal lacks the filtering verifiability and thus
allows several undetectable misbehaviors of the filtering ISPs.9

Unlike previous in-line filtering proposals, our system VIF
focuses on the highly desired but yet-unaddressed security
property for in-network filtering system, i.e., the verifiable
filter, and demonstrates its feasibility and scalability.

B. Secure Network Fault Localization

Existing secure network fault localization proposals [3],
[8], [85] aim to identify the faulty network or link that causes
undesirable packet drops in the Internet. When in-network
filtering is deployed in transit networks, however, the network
fault localization tools would become less useful. They can
detect that a certain transit network drops packets; yet, the
packet drops may, in fact, be the legitimate operation of DDoS
traffic filtering requested by a remote DDoS victim.

Our VIF system enables the neighboring ASes and DDoS
victim networks to distinguish whether certain packet drops
are due to the DDoS defense or not. Moreover, it can verify
the correct execution of the DDoS filters.

C. Network Function Virtualization with Trusted Hardware

We categorize some of them:
• Middleboxes: Various network middleboxes have been

tested with the SGX capability. TLS middleboxes [39], [56]
demonstrate that an SGX-protected middlebox can handle
thousands of TLS sessions without violating their end-to-
end encryption. ShieldBox [76] and Trusted Click [19]
demonstrate that SGX can protect the Click modular router
to implement various trusted network functions. S-NFV [67]
also discusses general policy, data privacy issues of network
functions. LightBox [25] demonstrates the line-rate perfor-
mance for simple secure packet processing functions. Snort-
SGX [45] also demonstrates the line-rate performance of
Snort 3 along with a DPDK network layer. SafeBricks [59]
implements a highly modularized and safe network function
architecture in the Intel SGX platform.

Our main contribution is not merely an integration of
a simple flow filter function and an SGX architecture but
more on addressing scalability and filter-rule violations
at network layer that are specific to verifiable in-network
filtering defense systems.
• Privacy-preserving systems: Several systems demonstrate

that SGX-based network functions can improve the privacy
of anonymity systems: SGX-protected Tor nodes [43], [70],

9Ramanathan et al. [63] sketch a reputation-based mitigation, which can be
used together with our VIF proposal.

• Inter-domain routing: Also, several secure inter-domain
routing applications have been proposed to leverage the
security guarantees of Intel SGX [15], [44].
• Verifiable accounting: There also have been some proto-

type systems that enable the outsource network functions
to securely measure the amount of resource used for the
requested tasks (e.g., [75] in an SGX platform, [13] in a
TPM platform).

With VIF we investigate a unique design point of auditable
traffic filters. Particularly, our contribution of VIF is in the
design of TEE based auditable filters that can handle DDoS
attacks with an increase in the number of attack flows and the
total bandwidth.

D. Cloud-based DDoS Mitigations

The predominant DDoS defense in practice today is an
overlay-based filtering approach, such as cloud-based scrub-
bing services, that performs outsourced filtering in a third-party
network on behalf of the DDoS victims (e.g., AWS-Shield [2],
Radware DefensePro [62]). Overlay-based filtering approaches
are popular particularly because they require no changes to
the current Internet architecture. Recent works have proposed
advances in such overlay filtering using middleboxes [30], [49]
and proposals have discussed large-scale filtering locally at
ISPs [26]. However, end users are not satisfied with the status
quo. Reports suggest that relying on third-party providers
centralizes the DDoS marketplace [30]; costs for small and
medium-size victims are high and services are left to the
discretion of large service providers [30], [80].

Unlike these proposals, VIF does not rely on the cloud or
the local victim network’s capability but directly establishes
filtering rules at the transit networks.

VIII. CONCLUSION

In-network filtering has numerous known advantages over
other proposed DDoS defenses; yet, it enables a potential
malicious transit network to execute arbitrary filtering policies
with impunity because of the lack of filtering verifiability. Our
proof of concept VIF system demonstrates that verifiable in-
network filtering is indeed possible with a practical hardware
root of trust support. We hope that our study renews discussion
on the deployment of in-network filtering in the IXPs and
encourages more sophisticated yet auditable filter designs, such
as stateful firewalls.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of this paper for their
helpful feedback. We also thank Dmitrii Kuvaiskii, Virgil
Gligor, and Hsu-Chun Hsiao for useful feedback on an early
version of the paper. We thank Jun Seung You for his assistance
in testing and publishing our open source codes. This research
is supported in part by the National Research Foundation,
Prime Ministers Office, Singapore under its National Cy-
bersecurity R&D Program (TSUNAMi project, Award No.
NRF2014NCR-NCR001-21). This research was also partially
supported by a grant from Singapore Ministry of Education
Academic Research Fund Tier-1 (R-252-000-624-133) and was
supported in part by US NSF under award CNS-1565343.

10

REFERENCES

[1] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger,
“Anatomy of a large European IXP,” Proc. ACM SIGCOMM CCR,
2012.

[2] “Amazon AWS Shield,” https://aws.amazon.com/shield/, 2019.
[3] K. Argyraki, P. Maniatis, and A. Singla, “Verifiable network-

performance measurements,” in Proc. ACM Co-NEXT, 2010.
[4] K. J. Argyraki and D. R. Cheriton, “Active Internet Traffic Filtering:

Real-Time Response to Denial-of-Service Attacks,” in Proc. USENIX
ATC, 2005.

[5] A. ARM, “Security technology building a secure system using trustzone
technology (white paper),” ARM Limited, 2009.

[6] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell et al., “SCONE:
Secure Linux Containers with Intel SGX,” in Proc. OSDI, 2016.

[7] “AS Relationships by CAIDA,” http://www.caida.org/data/
as-relationships/, 2019.

[8] C. Basescu, Y.-H. Lin, H. Zhang, and A. Perrig, “High-speed inter-
domain fault localization,” in Proc. IEEE S&P, 2016.

[9] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in Proc. OSDI, 2015.

[10] P. Bright, “Can a ddos break the internet? sure... just not all of it,” Ars
Technica, 2013.

[11] “CAIDA Internet eXchange Points (IXPs) Dataset,” https://www.caida.
org/data/ixps/, 2019.

[12] N. Chatzis, G. Smaragdakis, A. Feldmann, and W. Willinger, “There is
more to IXPs than meets the eye,” in Proc. ACM SIGCOMM, 2013.

[13] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. Sekar, “Towards
verifiable resource accounting for outsourced computation,” in ACM
SIGPLAN Notices, 2013.

[14] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged
side-channel attacks in shielded execution with Déjá Vu,” in Proc. ACM
AsiaCCS, 2017.

[15] M. Chiesa, R. di Lallo, G. Lospoto, H. Mostafaei, M. Rimondini, and
G. D. Battista, “PrIXP: Preserving the privacy of routing policies at
Internet eXchange Points,” in Proc. IFIP/IEEE IM, 2017.

[16] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” Journal of Algorithms,
2005.

[17] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptology
ePrint Archive, 2016.

[18] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation,” in Proc. USENIX Security,
2016.

[19] M. Coughlin, E. Keller, and E. Wustrow, “Trusted Click: Overcoming
Security Issues of NFV in the Cloud,” in Proc. SDN-NFVSec, 2017.

[20] I. I. Cplex, “V12. 1: Users Manual for CPLEX,” International Business
Machines Corporation, 2009.

[21] “DDoS Mon: Insight into Global DDoS Threat Landscape,” https:
//ddosmon.net/insight/, 2019.

[22] C. Dietzel, A. Feldmann, and T. King, “Blackholing at IXPs: On the
effectiveness of DDoS mitigation in the wild,” in Proc. PAM, 2016.

[23] C. Dietzel, G. Smaragdakis, M. Wichtlhuber, and A. Feldmann, “Stellar:
network attack mitigation using advanced blackholing,” in Proc. ACM
CoNEXT, 2018.

[24] “DPDK Pktgen,” http://dpdk.org/browse/apps/pktgen-dpdk/refs/, 2019.
[25] H. Duan, X. Yuan, and C. Wang, “LightBox: Full-stack Protected State-

ful Middlebox at Lightning Speed,” arXiv preprint arXiv:1706.06261v2,
2018.

[26] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and Elastic DDoS Defense,” in Proc. USENIX Security, 2015.

[27] B. Fung, “What Europe can teach us about keeping the Internet open
and free.” in The Washington Post, Sept 20, 2013.

[28] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM CCR, 2015.

[29] L. Gao, “On inferring autonomous system relationships in the Internet,”
IEEE/ACM TON, 2001.

[30] Y. Gilad, A. Herzberg, M. Sudkovitch, and M. Goberman, “CDN-on-
Demand: An affordable DDoS Defense via Untrusted Clouds,” in Proc.
NDSS, 2016.

[31] P. Gill, M. Schapira, and S. Goldberg, “A survey of interdomain routing
policies,” ACM SIGCOMM CCR, 2013.

[32] D. Goltzsche, S. Rüsch, M. Nieke, S. Vaucher, N. Weichbrodt, V. Schi-
avoni, P.-L. Aublin, P. Costa, C. Fetzer, P. Felber, P. Pietzuch, and
R. Kapitza, “EndBox: Scalable middlebox functions using client-side
trusted execution,” in Proc. IEEE DSN, 2018.

[33] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
Intel SGX,” in ACM EuroSec, 2017.

[34] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in USENIX Security, 2017.

[35] A. Gupta, N. Feamster, and L. Vanbever, “Authorizing network control
at software defined Internet exchange points,” in Proc. SOSR, 2016.

[36] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rex-
ford, and L. Vanbever, “An Industrial-Scale Software Defined Internet
Exchange Point,” in Proc. NSDI, 2016.

[37] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A software defined Internet exchange,” ACM SIGCOMM CCR,
2015.

[38] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels
for untrusted operating systems,” in USENIX ATC, 2017.

[39] J. Han, S. Kim, J. Ha, and D. Han, “SGX-Box: Enabling Visibility on
Encrypted Traffic using a Secure Middlebox Module,” in Proc. ACM
APNet, 2017.

[40] “Intel Linux-SGX: sgx_get_trusted_time,” https://github.com/
intel/linux-sgx/issues/161, 2019.

[41] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “In-
tel® Software Guard Extensions: EPID Provisioning and Attestation
Services,” 2016.

[42] E. Katz-Bassett, C. Scott, D. R. Choffnes, Í. Cunha, V. Valancius,
N. Feamster, H. V. Madhyastha, T. Anderson, and A. Krishnamurthy,
“LIFEGUARD: Practical repair of persistent route failures,” in Proc.
ACM SIGCOMM, 2012.

[43] S. M. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Enhancing security and
privacy of tor’s ecosystem by using trusted execution environments.” in
NSDI, 2017.

[44] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han, “A first step towards
leveraging commodity trusted execution environments for network
applications,” in Proc. ACM HotNets, 2015.

[45] D. Kuvaiskii, S. Chakrabarti, and M. Vij, “Snort® Intrusion Detection
System with Intel® Software Guard Extension (Intel® SGX),” arXiv
preprint arXiv:1802.00508, 2018.

[46] M. Lepinski, R. Barnes, and S. Kent, “An Infrastructure to Support
Secure Internet Routing,” RFC 6480 (Informational), 2012.

[47] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in Proc. IEEE S&P, 2015.

[48] X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: Network-
layer DoS defense against multimillion-node botnets,” in Proc. ACM
SIGCOMM, 2008.

[49] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “MiddlePolice: Toward
Enforcing Destination-Defined Policies in the Middle of the Internet,”
in Proc. ACM CCS, 2016.

[50] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
ACM SIGCOMM CCR, 2002.

[51] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel® software guard extensions (intel® sgx)
support for dynamic memory management inside an enclave,” in Proc.
of HASP, 2016.

[52] “Mirai-like Botnet by Bad Packets Report,” https://mirai.badpackets.
net/, 2019.

11

https://aws.amazon.com/shield/
http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
https://www.caida.org/data/ixps/
https://www.caida.org/data/ixps/
https://ddosmon.net/insight/
https://ddosmon.net/insight/
http://dpdk.org/browse/apps/pktgen-dpdk/refs/
https://github.com/intel/linux-sgx/issues/161
https://github.com/intel/linux-sgx/issues/161
https://mirai.badpackets.net/
https://mirai.badpackets.net/

[53] J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at the source,”
in Proc. ICNP, 2002.

[54] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM CCR, 2004.

[55] C. Morrow and R. Dobbins, “DDoS Open Threat Signaling (DOTS)
Working Group: Operational Requirements,” Proc. IETF 93 Prague,
2015.

[56] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste, “And
Then There Were More: Secure Communication for More Than Two
Parties,” in Proc. ACM CoNEXT, 2017.

[57] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C.
Hu, “Portcullis: protecting connection setup from denial-of-capability
attacks,” Proc. ACM SIGCOMM, 2007.

[58] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: Cloud scale load
balancing,” ACM SIGCOMM CCR, 2013.

[59] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks:
Shielding network functions in the cloud,” in USENIX NSDI, 2018.

[60] N. Porter, J. Garms, and S. Simakov, “Introducing Asylo: an open-
source framework for confidential computing,” 2018.

[61] Z. Pospichal, “New generation of DDoS mitigation in NIX.CZ,” in RIPE
74, 2017.

[62] “Radware’s DefensePro DDoS Protection,” https://www.radware.com/
products/defensepro/, 2019.

[63] S. Ramanathan, J. Mirkovic, M. Yu, and Y. Zhang, “SENSS Against
Volumetric DDoS Attacks,” in Proc. ACSAC, 2018.

[64] C. Rossow, “Amplification Hell: Revisiting Network Protocols for
DDoS Abuse,” in Proc. NDSS, 2014.

[65] M. Russinovich, “Introducing Azure confidential computing,” in Mi-
crosoft Azure Blog, 2017.

[66] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Supporting Third
Party Attestation for Intel® SGX with Intel® Data Center Attestation
Primitives,” 2018.

[67] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-NFV: Securing
NFV states by using SGX,” in Proc. ACM SDN-NFV Security, 2016.

[68] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs,” in Proc. NDSS,
2017.

[69] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proc. AsiaCCS, 2016.

[70] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “PANOPLY: Low-TCB
Linux Applications With SGX Enclaves,” in Proc. NDSS, 2017.

[71] J. M. Smith, K. Birkeland, and M. Schuchard, “An Internet-Scale
Feasibility Study of BGP Poisoning as a Security Primitive,” arXiv
preprint arXiv:1811.03716, 2018.

[72] J. M. Smith and M. Schuchard, “Routing Around Congestion: Defeating
DDoS Attacks and Adverse Network Conditions via Reactive BGP
Routing,” in Proc. IEEE S&P, 2018.

[73] D. Song, “Towards An Open-Source, Formally-Verified Secure En-
clave,” in Workshop on Inter-Disciplinary Research Challenges in
Computer Systems, 2018.

[74] D. Storm, “Biggest DDoS attack in history slows Internet, breaks record
at 300 Gbps,” in ComputerWorld, 2013.

[75] S. Tople, S. Park, M. S. Kang, and P. Saxena, “VeriCount: Verifiable
Resource Accounting Using Hardware and Software Isolation,” in
ACNS, 2018.

[76] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“Shieldbox: Secure middleboxes using shielded execution,” in Proc.
ACM SOSR, 2018.

[77] M. Tran, M. S. Kang, H.-C. Hsiao, W.-H. Chiang, S.-P. Tung, and Y.-
S. Wang, “On the Feasibility of Rerouting-based DDoS Defenses,” in
Proc. IEEE S&P, 2019.

[78] L. Tung, “New world record DDoS attack hits 1.7Tbps days after
landmark GitHub outage,” in ZDNet, 2018.

[79] D. Wessels and A. Mohaisen, “Open Resolvers in COM/NET Resolu-
tion,” DNS-OARC Spring Workshop, 2014.

[80] N. Woolf, “DDoS attack that disrupted internet was largest of its kind
in history, experts say,” in ComputerWorld, 2016.

[81] A. Yaar, A. Perrig, and D. Song, “SIFF: A stateless internet flow filter
to mitigate DDoS flooding attacks,” in Proc. IEEE S&P, 2004.

[82] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network
architecture,” in Proc. ACM SIGCOM, 2005.

[83] S. Yegulalp, “Level 3 accuses Comcast, other ISPs of ‘deliberately
harming’ broadband service,” in InfoWorld, 2014.

[84] K. York, “Dyn statement on 10/21/2016 DDoS attack,” Dyn Blog, 2016.
[85] X. Zhang, C. Lan, and A. Perrig, “Secure and scalable fault localization

under dynamic traffic patterns,” in Proc. IEEE S&P, 2012.

APPENDIX A
FLOW-AWARE FILTER DESIGN

We consider deterministic and non-deterministic filter rule
types:
• A deterministic filter rule defines a static {ALLOW, DROP}

decision for a specified flow; and
• A non-deterministic filter rule expresses only the static prob-

ability distribution (PALLOW, PDROP, where PALLOW+PDROP = 1)
for a specified flow and the final filter decision for each exact
flows is made by the VIF filter. We guarantee the connection-
preserving property in VIF filters so that all the packets in
a TCP/UDP flow are allowed or dropped together.

The execution of non-deterministic rules with the
connection-preserving property can be implemented in two
different ways:
• Hash-based filtering. For each incoming packet p, we com-

pute the cryptographic hash (e.g., SHA-256) of its five-tuple
bits and the enclave’s secrecy to make filtering decision
based on the given probability distribution. For example,
packet p is allowed if H(five-tuple-bits||secrecy) <
(2256 − 1)× pALLOW with H(·) =SHA-256; and
• Exact-match rule filtering. For each TCP/UDP connection,

the filter installs an exact-match rule with a filtering decision
randomly chosen based on the given probability distribution.

Note that the two design points have different advantages and
disadvantages. The hash-based filtering has a smaller memory
footprint for lookup table but it incurs per-packet additional
latency for cryptographic hash operations. In contrast, the
exact-match filter design tends to have shorter per-packet
processing time since it executes only one lookup but it
requires a larger memory footprint for lookup tables and adds
latency for frequent lookup table updates. We propose a hybrid
design where hash-based filtering is performed for new flows
until these new flows are installed with exact-match rules at
every rule update period (e.g., 5–40 seconds).

APPENDIX B
DYNAMIC TEST OF INTERMEDIATE ASES

A victim network finds and avoids suspicious ASes that
drop the VIF-allowed packets. Particularly, we utilize the well-
known BGP poisoning-based inbound rerouting techniques
(e.g., LIFEGUARD [42] and Nyx [72]) to reroute (or detour)
inbound traffic and avoid traversing any intermediate ASes for
a short period of time (e.g., a few tens of seconds). These
BGP poisoning-based rerouting technologies do not require
any inter-AS coordination and thus the victim network can
independently test if any intermediate ASes drop packets (even
without the VIF IXP’s agreement).

12

https://www.radware.com/products/defensepro/
https://www.radware.com/products/defensepro/

Minimize z

s.t. ∀p, q : z ≥ α
(
u

k∑
i=1

yi,p + v
)
+

k∑
i=1

xi,qyi,q (3)

∀i : u ·
n∑

j=1

yi,j + v ≤M (4)

∀j :
k∑

i=1

xi,jyi,j ≤ G (5)

∀i :
n∑

j=1

xi,j = bi (6)

∀xi,j , yi,j : (1− yi,j)xi,j = 0 (7)
∀xi,j ≥ 0 and ∀yi,j ∈ {0, 1} (8)

Fig. 12: ILP formulation for the optimal rule distribution.

If the misbehavior of an intermediate AS is detected by
the victim network, then the misbehaving AS can be avoided
for the extended period of time (at least during the VIF
session) for auditable filtering. Or, if the victim network
continuously witnesses that VIF-allowed packets are dropped
continuously when dynamically changing the inbound routes,
it may conclude that the VIF IXP itself has been misbehaving.
The victim network can then discontinue the VIF contract with
the VIF IXP at its discretion.

Note that we do not consider extremely adverse network
adversaries, such as dropping all the packets between the VIF
IXP and the victim network, which cannot be handled properly
by any possible defenses in the current Internet architecture.

APPENDIX C
ILP FORMULATION FOR MULTI-ENCLAVE OPTIMIZATION

Our goal is to fully utilize the available resource on n
enclaves in terms of the bandwidth and memory, without
triggering the performance degradation. Also, the load on each
enclave should be balanced, in order to reduce the chance
of any enclave getting closer to the limit of G or M , see
Figure 12. Hence, the maximum Cj and maximum Ij should
all be as small as possible, as shown in Equation 3. Note that
a constant coefficient α is used to balance two maximums
in the sum. Because of the capacity limit of a single enclaved
filter, any filter should have less than M memory consumption
(Equation 4) and less than G bandwidth load (Equation 5).
Since bi is distributed to multiple filters, so their allocated
bandwidth with respect to rule i should sum up to the value
of bi (Equation 6). Two decision variables are not independent
since when yi,j = 0, xi,j should never be a positive value.
(Equation 7).

APPENDIX D
GREEDY ALGORITHM FOR SCALABLE FILTER DESIGN

The pseudocode in Algorithm 1 summarizes the greedy
algorithm we use for the filter rule distribution problem for
the scalable VIF filter design in Section IV-B.

Algorithm 1 Greedy algorithm for rule distribution and band-
width allocation

1: procedure GREEDYSOLVER(b1, b2, ...bk , M , G, λ, u, v)
2: B ← {b1, b2, ..., bk}, g ← 1

n

∑k
i=1 bi, h← k

n
3: while g ≤ G and h ≤ (M − v)/u do
4: X ←ASSIGNBANDWIDTH(B, h, g, n)
5: if X 6= ∅ then
6: return X
7: end if
8: g ← g + ∆g
9: if g > G then

10: h← h+ ∆h, g ← 1
n

∑k
i=1 bi

11: end if
12: end while
13: end procedure
14: procedure ASSIGNBANDWIDTH(B, h, g, n)
15: X ← ∅, j ← 1
16: while B 6= ∅ and j ≤ n do
17: r ← g, c← 0 . c: remaining bandwidth for filter j; f : rule counter
18: while B 6= ∅ and c ≤ h do
19: bi ← PopMin(B)
20: if bi < r and j + 1 ≤ h then
21: xi,j ← bi, X ← X ∪ {xi,j}, c← c+ 1, r ← r − bi
22: continue
23: end if
24: B ← B ∪ {bi}, bi ← PopMax(B)
25: if bi ≤ r then
26: xi,j ← bi, X ← X ∪ {xi,j}, c← c+ 1, j ← j + 1
27: else
28: xi,j ← r, X ← X ∪ {xi,j}, bi ← bi − r, B ← B ∪ {bi}
29: end if
30: break
31: end while
32: end while
33: if B = ∅ then
34: return ∅
35: end if
36: return X
37: end procedure

64 128 256 512 1024 1500
Packet Size (bytes)

0.0

5.0

10.0

15.0

Th
ro

ug
hp

ut
 (M

pp
s) Native (no SGX)

SGX with full packet copy
SGX with near zero copy

Fig. 13: Throughput performance in packet-per-second for
varying packet sizes and 3,000 rules with three implementation
versions: (1) Native (no SGX), (2) SGX with full packet copy,
and (3) SGX with near zero copy.

TABLE II: Overhead of filter rule batch insertion to a multi-bit
trie lookup table.

Number of rules in a batch 1 10 100 1000

Insert time (millisecond) 50 52 53 75

APPENDIX E
ADDITIONAL EVALUATION OF THROUGHPUT

PERFORMANCE OF VIF

Figure 13 shows the throughput evaluation in packet per
second metric. Taking a closer look at the SGX with full packet
copy implementation, we notice that the maximum packet
processing rate is capped at roughly 6 Mpps, which suggests
the inherent capacity limit of the full packet-copy operations.
Unlike the full packet copy version, the near zero-copy version
shows no such throughput cap in terms of packet per second.

13

TABLE III: Top five IXPs in each of the five regions. Numbers inside the parentheses denote the member sizes of the IXPs.

Rank Europe North America South America Asia Pacific Africa

1 AMS-IX (1660) Equinix Ashburn (598) IX.br São Paulo (2082) Equinix Singapore (504) NAPAfrica Johannesburg (506)
2 DE-CIX (1494) Any2 (557) PTT Porto Alegre (258) Equinix Sydney (393) NAPAfrica Cape Town (258)
3 LINX Juniper (755) SIX (462) PTT Rio de Janeiro (246) Megaport Sydney (383) JINX (180)
4 EPIX Katowice (732) TorIX (426) CABASE-BUE (183) BBIX Tokyo (286) NAPAfrica Durban (122)
5 LINX LON1 (697) Equinix Chicago (384) PTT Curitiba (140) HKIX (281) IXPN Lagos (69)

10-2 10-1 100

Ratio Hashed (SHA-256) Packets

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

64-byte packets
128-byte packets
256-byte packets
512-byte packets
1024-byte packets
1500-byte packets

Fig. 14: Throughput performance of the maximum 10 Gbps
VIF filter when a varying fraction of packets are hashed (i.e.,
SHA-256 is calculated for the 5-tuple bits).

APPENDIX F
CONNECTION-PRESERVING FILTERING PERFORMANCE OF

VIF

As we discussed in Appendix A, the two mechanisms
for connection preservation (i.e., hash-based filtering, exact-
match rule based filtering) have different advantages and
disadvantages. Thus, we present a hybrid design for practical
operations. For any new flow that does not match any existing
exact-match filter rules, the filter allows/drops based on the
hash digest of the 5-tuple of the packets and queues this 5-
tuple. At every filter rule update (e.g., every 5 seconds)10, all
the newly received flows since the last update are converted
into exact-match rules and inserted to the lookup table. This
hybrid design amortizes the cost of lookup table update by
batch processing multiple newly observed flows at every
update period. Also, it limits the per-packet latency increase
due to hash operations since newly observed flows should
be the minority in general. Indeed, our experiments on the
performance overhead of the use of hash-based filtering with
various packet sizes show no performance degradation, except
with small packet size.

Figure 14 shows our experiment on the performance over-
head of the use of hash-based filtering for varying fraction of
incoming packets. Particularly, when the ratio of hashed pack-
ets is low (e.g., less than 10%), we observe no performance
degradation in all packet sizes, except the smallest size (i.e.,
64-byte) where up to 25% throughput degradation is measured.
We argue that this performance degradation is easily acceptable
because in general, the fraction of newly observed flows within
a short period (e.g., 5 seconds) would be small. Moreover, the
64-byte performance degradation in Figure 14 must be the
lower-bound result since it assumes that all the packets are 64
bytes.

Table II shows the benchmark on the time taken to insert
the batched new exact-match rules to a multi-bit tri-based

10The rule update period can be synchronized with that of the rule re-
configuration for scalable, multiple enclave operations; see Section IV-B.

lookup table. Our test shows that the batch insertion of
filter rules is quite efficient and incurs minimal performance
overhead even for large batch size; e.g., only 75 milliseconds
compared to the 5-second rule update period.

APPENDIX G
REMOTE ATTESTATION PERFORMANCE

VIF performs remote attestation for each new enclave that
the VIF IXP launches on its infrastructure. Since VIF is ex-
pected to operate under DDoS attacks, we want to ensure that
the launching of multiple-enclaves on demand does not become
the bottleneck for our deployment model. Here, we measure
the total amount of time to complete an end-to-end remote
attestation process for one enclave. In our micro-benchmark
for remote attestation for the conservative performance tests,
we set up the filter enclave and the destination on a cloud
machine hosted in South Asia, and the IAS service hosted in
Ashburn, Virginia, United States. For an enclave binary of size
1 MB, the platform takes 28.8 milliseconds and the total end-
to-end latency of 3.04 seconds with a standard deviation of
9.2 milliseconds.

APPENDIX H
TOP REGIONAL IXPS

We use the IXP peering membership from CAIDA [11] to
count the number of AS members of each IXP and summarize
the top five IXPs in each of five regions (Europe, North
America, South America, Asia Pacific and Africa) in Table III.

14

