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ABSTRACT
Automatic vulnerability diagnosis can help security analysts iden-
tify and, therefore, quickly patch disclosed vulnerabilities. The vul-
nerability localization problem is to automatically find a program
point at which the “root cause” of the bug can be fixed. This paper
employs a statistical localization approach to analyze a given exploit.
Our main technical contribution is a novel procedure to systemati-
cally construct a test-suite which enables high-fidelity localization.
We build our techniques in a tool called VulnLoc which automati-
cally pinpoints vulnerability locations, given just one exploit, with
high accuracy. VulnLoc does not make any assumptions about the
availability of source code, test suites, or specialized knowledge
of the type of vulnerability. It identifies actionable locations in its
Top-5 outputs, where a correct patch can be applied, for about 88%
of 43 CVEs arising in large real-world applications we study. These
include 6 different classes of security flaws. Our results highlight
the under-explored power of statistical analyses, when combined
with suitable test-generation techniques.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Security and privacy→ Software and application security.
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1 INTRODUCTION
Security vulnerabilities can remain unpatched for months after their
initial disclosure [32, 34]. To reduce the window of exposure, it is
useful to diagnose the "root cause" of the bug quickly. Automatic
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techniques which can help narrow down the vulnerability location,
i.e. the program point at which a patch should be applied, have
been a subject of a rich line of prior work [11, 14, 21, 25, 37, 41].
We call this the vulnerability localization problem. Localization
techniques often work with just one given exploit demonstrating
the vulnerability.

Prior work on vulnerability localization has used powerful bi-
nary analysis techniques, such as dependency or taint analysis and
symbolic execution, on the given exploit program trace [27, 33].
In this work, we investigate a statistical approach. Specifically,
our approach is based on statistical fault localization [38]. Statis-
tical localization is a technique which was proposed almost two
decades earlier in the context of general program debugging. How-
ever, its prime usage is in settings where extensive pre-existing
test harnesses are available and often written by developers for
functional or regression testing. This technique has received much
lesser attention in the context of software vulnerabilities, where
such test-suites are not available beforehand. Public vulnerability
reports (e.g. CVEs) often contain just one exploit or crash input.
Even in this setup, statistical localization does offer a unique and
desirable feature at the outset: It only assumes access to a test-suite
and makes almost no assumptions about the semantics of the target
program. Once an appropriate test-suite is created, statistical local-
ization can be used without any alternative sophisticated program
analysis that may not scale to large programs.

Statistical localization works by assigning each program location
a probability estimate or score, which measures how likely the
program is going to be exploited if the instruction corresponding
to the location is executed. A High score suggests that it is both
sufficient and necessary for the instruction to be executed in order
to reach the vulnerability and exploit it. Patching at the location is
likely to eliminate the vulnerability while minimizing the impact on
benign program behavior—we explain this reasoning more formally
in Section 2.2. Such analysis is easy to implement as probabilistic
scores can be calculated by profiling executed locations using off-
the-shelf program instrumentation engines.

However, a naive application of statistical localization does not
produce high-fidelity results on software vulnerabilities. The reason
is somewhat fundamental—despite extensive work on statistical
localization, one question has remained unresolved: Under which
input distributions should these probabilistic scores be estimated?
When working with one exploit, there is no test-suite to begin with,
which is unlike the setting of regression or functional program
testing. This issue is of central technical importance because the
probabilistic quantities of interest can not be robustly estimated
under arbitrary input distributions. We experimentally demonstrate
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that test inputs not designed explicitly with the objective of high-
fidelity localization will often lead to over-fitting. The estimated
scores will either be biased towards failing tests (exploits) or benign
ones, depending on which of these dominate the provided test-suite.
Ad-hoc or poorly chosen test-suites fail to distinguish between
candidate locations, essentially assigning most of them the same
score. The problem is acute in large applications in which more than
a thousand locations may be observed in single program execution.

This paper presents a new solution to the problem of synthesiz-
ing a test-suite which accurately localizes vulnerabilities in large
programs. The key insight is to avoid over-fitting and estimation
bias, by synthesizing a specific kind of test-suite which we refer
to as concentrated. A concentrated test-suite exercises a sufficient
diversity and quantity of program paths in the neighborhood of
the exploit path. The probabilistic quantities of interest can be
estimated robustly using such a test-suite.

We propose a simple procedure to construct a concentrated test-
suite from a single exploit. The procedure is a new form of directed
fuzzing, which we call as concentrated fuzzing or ConcFuzz. Di-
rected fuzzing techniques have witnessed rapid advances recently,
however, their prime application has been for crash reproduction
and patch testing [8]. Our work is the first, to the best of our knowl-
edge, to propose its application for statistical localization.ConcFuzz
is unlike other forms of directed fuzzing, which primarily aim to
reach a particular location. The goal of ConcFuzz is to estimate the
probability of each branch being executed in exploiting and benign
runs. It generates inputs that exercise paths in the neighborhood
of the path taken by the exploit to estimate these probabilities.

ConcFuzzmakesminimal assumptions. It is simple to implement
as it requires instrumentation of a small number of program points,
without the need for any complex analysis. We implement our pro-
posed techniques in a tool called VulnLoc, which can take stripped
programs binaries and a single exploit for analysis. VulnLoc also
contrasts prior statistical localization tools in this design aspect of
minimizing assumptions. Prior localization techniques make many
assumptions, such as the availability of program source code [22],
a plethora of auxiliary code metrics beyond just source code [24],
or extensive test-suites [19]. VulnLoc can be used for localizing
any kind of bugs directly in binaries, making it usable anywhere in
the software development and operational security pipeline.

Our main empirical finding is that VulnLoc scales to large ap-
plications and has high accuracy in localizing vulnerabilities. We
evaluate VulnLoc on 43 CVEs on programs ranging from 10K - 2M
LOC. We use a single exploit available from the CVE report and
the program binary for each benchmark. We use developer patches
as the ground truth for measuring the accuracy of VulnLoc. In
about 88% of these benchmarks, VulnLoc pinpoints at least one
location in its Top-5 ranked outputs, where a patch equivalent to
the developer patch exists. Our results meet a high bar for user
acceptability—in a prior user study with practitioners, over 90% of
the respondents have indicated willingness to inspect 5 locations,
and a Top-5 localization accuracy close to 90% satisfies expecta-
tions of 90% of the respondents [22]. Our techniques can be used to
localize from crashes, exploits, or any other oracle of failure—our
tested CVEs cover 6 common types of vulnerabilities, in many of
which the correct location is far from the point of crash.
Contributions.We make the following contributions:

1 static int PixarLogDecode(TIFF* tif){
2 ...
3 + /* Check that we will not fill more than what was allocated */
4 + if (sp->stream.avail_out > sp->tbuf_size){
5 + TIFFErrorExt(tif->tif_clientdata, module, "sp->stream.avail_out > sp->

tbuf_size");
6 + return (0);}
7 // write into sp->stream
8 int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
9 }
10 // Function that cleans up pixarlog state
11 static int PixarLogCleanup(TIFF* tif){
12 ...
13 _TIFFfree(ptr);
14 }

Figure 1: A simplified code snippet of CVE-2016-5314 where
the vulnerability location is not right before the crash point.

(1) We present VulnLoc, a vulnerability localization tool with
minimal assumptions. It takes a vulnerable binary and an
exploit as input and outputs Top-5 candidate locations.

(2) VulnLoc is the first work to propose directed fuzzing for
localization. We propose a novel directed fuzzing technique
called concentrated fuzzing (ConcFuzz), which explores be-
nign and exploiting paths in sufficient diversity around the
given exploit path.We demonstrate that the test-suites gener-
ated using ConcFuzz are able to avoid over-fitting to specific
test inputs and allow distinguishing effectively between dif-
ferent candidate locations.

(3) We evaluate the efficacy ofVulnLoc on 43CVEs in large real-
world applications. VulnLoc identifies the correct locations
for about 88% of the CVEs within Top-5 locations in around
4 hours per CVE.

2 MOTIVATION & PROBLEM

We focus on the vulnerability localization problem in this work.
It has been an important step in multiple applications [6, 23].

2.1 Problem
To keep the assumptions minimal, we only assume access to a
vulnerable binary 𝑃𝑟𝑜𝑔, an exploit input 𝑖𝑒 and the corresponding
security specification. The specification is violated while executing
𝑃𝑟𝑜𝑔 with 𝑖𝑒 . Given the specification, we implement a vulnerabil-
ity oracle to detect whether 𝑃𝑟𝑜𝑔 gets exploited under a specific
test case. A program crash can be an oracle for memory safety.
For numerical errors (e.g., divide-by-zero), the processor provides
hardware bits that can be checked. No source-level information is
necessary to implement the oracle.

For the rest of the paper, we use the notion of observed branch
locations. Concretely, when we execute the program binary with
an input, we observe only the branch locations executed. Based on
which branches are observed in the execution of specific inputs
(generated via fuzzing), certain branches are predicted as candidate
vulnerability locations by our technique. We deem a location as
a correct or actionable location, if the basic blocks immediately
preceding/succeeding the predicted branch can be modified to fix
the bug. Developer-generated patches serve as the ground truth
for correct fixes and we consider patches that are semantically



equivalent to the ground truth as correct. Note that our localization
granularity is basic blocks, which is one of the most developer-
preferred granularity levels highlighted by a prior user study [22].

For security bugs, one could assume that a location right before
the crash point is sufficient to be a correct vulnerability location [16].
This is not a valid assumption, and in fact, developer patches of-
ten do not follow such a pattern (see our Section 6). The task of
identifying a correct vulnerability location is more subtle. There
are two objectives for patching at a correct location: 1) stopping
the failing (or exploiting) program runs and 2) preserving compati-
bility with benign runs. Consider a bug in the open-source library
LibTIFF [26] shown in Figure 1. It is a heap overflow vulnerability
involving the buffer sp->stream. It arises from out-of-bound writes
in PixarLogDecode function at Line 8 without checking the buffer
length, which causes the head of the next heap to be filled with
arbitrary data. The crash occurs when the invalid pointer is freed in
another utility function called _TIFFfree. Since it is a utility func-
tion which is used by other functions (such as PixarLogCleanup),
whether the pointer to be freed is valid or not at the crash location is
unknown. Moreover, any changes to the utility function _TIFFfree
would change other benign behavior of the program. Instead, a
better way to fix the vulnerability is to prevent the out-of-bounds
write itself since the buffer size is known during the write, as done
in the developer patch. Extending beyond this example, such local-
ization rules utilize domain-specific knowledge of the vulnerability
type and variables in scope. We seek a procedure that does not rely
on such domain- and context-specific analysis.

2.2 Background: Statistical Localization
Consider the execution of 𝑃𝑟𝑜𝑔 under 𝑖𝑒 . Let the set of program
branches encountered in the execution before violating the security
specification be𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑛} and the execution trace be𝑈 =

⟨𝑢1, 𝑢2, · · · , 𝑢𝑚⟩. Each𝑢𝑖 ∈ 𝑈 is an instance of a branch 𝐿(𝑢𝑖 ) where
𝐿(𝑢𝑖 ) ∈ 𝑉 . Now, consider the execution of 𝑃𝑟𝑜𝑔 under awide variety
of inputs 𝐼 , possibly generated by fuzzing with an exploit as the
seed. Under each input, we see a subsequence of𝑈 in the execution
trace with a subset of𝑉 observed. Each 𝑣𝑖 and𝑢 𝑗 are associated with
a Bernoulli random variable 𝑋𝑖 and 𝑌𝑗 respectively. Each random
variable takes a value 1 if it is observed in that execution trace, else 0.
Similarly, the violation of the security specification can be captured
by a Bernoulli random variable𝐶 , which is 1 iff the program violates
the security specification.

This abstraction allows us to reason about the statistical corre-
lation between the events where 𝐶 and 𝑋 take on certain values.
If an event 𝑋𝑖=1 happens in all of the exploit traces in the input
set 𝐼 , one could induce that (𝐶=1) ⇒ (𝑋𝑖=1), which indicates that
patching at 𝑣𝑖 might avoid all exploits seen. However, it is possible
that the patch might significantly change the benign behavior of
the program. Conversely, consider an event such that whenever
it occurs the program gets exploited. One can then induce that
(𝑋𝑖=1) ⇒ (𝐶=1). Since this event is not observed on any benign
test, patching at 𝑣𝑖 is likely to have the least impact on benign
behavior, with the caveat though that such a patch may not cover
all exploits seen. The best patch should prevent all exploits while
having the least impact on benign runs. Overall, an event which

is both necessary and sufficient carries a strong signal of the root
cause underlying the exploit and is an ideal location candidate.

Consider the branch 𝑣𝑖 such that the instances of 𝑣𝑖 appear as
𝑈𝑖 = {𝑢 𝑗 |𝐿(𝑢 𝑗 ) = 𝑣𝑖 }. As a result, we can compute the probability
of each branch location being witnessed as the probability that at
least one of its instances is witnessed:

𝑃 (𝑋𝑖 = 1) = 𝑃 (
⋃

𝑢 𝑗 ∈𝑈𝑖

𝑌𝑗 = 1)

We now compute two scores for each branch location 𝑣𝑖 :
• Necessity score is 𝑃 (𝑋𝑖 = 1|𝐶 = 1), the likelihood of observ-
ing at least one instance of the branch on an exploit;
• Sufficiency score is 𝑃 (𝐶 = 1|𝑋𝑖 = 1), the likelihood of getting
exploited on an input where at least one instance of the
branch is observed.

Similar to the scores for each branch location, we can also define
necessity and sufficiency scores of a single branch instance𝑢 𝑗 which
are 𝑃 (𝑌𝑗 = 1|𝐶 = 1) and 𝑃 (𝐶 = 1|𝑌𝑗 = 1) respectively. Branches
with the highest 𝐾 necessity and sufficiency scores are highlighted
to the developer. The developer can then synthesize a fix in or
around these locations.

2.3 Our Approach
The framework presented thus far is similar to the underpinning of
a long line of works on statistical fault isolation [19, 38]. However,
there is a central issue left unaddressed, which we study here: under
which input distribution should the probabilities be estimated?

Consider computing the necessity score for each instance 𝑃 (𝑌𝑗 =
1|𝐶 = 1). As the probability of observing𝑢 𝑗 deep down in the execu-
tion of an exploit may be very small, the probability estimates will
over-fit the given test-suite if the test-suite only contains a few ob-
servations over 𝑢 𝑗 . The same phenomenon arises when computing
sufficiency score, as most instances with very few (or no) observa-
tions in benign runs, leading to an artificially high score. In other
words, an arbitrary test-suite is unlikely to distinguish between 𝑢 𝑗
appearing in the exploit trace for vulnerability localization.
Need for Sufficient Observations of 𝑌𝑗 = 1/0. The crux of our
problem is to construct a test-suite which distinguish 𝑢 𝑗 with only
an exploit input. To explain it, we factorize the necessity score into:

𝑃 (𝑌𝑗 = 1 |𝐶 = 1) = 𝑃1 × 𝑃2 + 𝑃3 × 𝑃4
𝑃1 = 𝑃 (𝑌𝑗 = 1 |𝐶 = 1, 𝑌𝑗−1 = 1)
𝑃2 = 𝑃 (𝑌𝑗−1 = 1 |𝐶 = 1)
𝑃3 = 𝑃 (𝑌𝑗 = 1 |𝐶 = 1, 𝑌𝑗−1 = 0)
𝑃4 = 𝑃 (𝑌𝑗−1 = 0 |𝐶 = 1)

(1)

The terms 𝑃1 and 𝑃3 differentiate the correlation of 𝑢 𝑗 to 𝐶 and
of 𝑢 𝑗−1 to 𝐶 . A high ratio of 𝑃1 to 𝑃3 means that 𝑢 𝑗 and 𝑢 𝑗−1 are
equally correlated to 𝐶 = 1, as the exploit inputs always see the
co-occurrence of 𝑢 𝑗 and 𝑢 𝑗−1. However, a low ratio means that
𝑢 𝑗 is more likely to be observed when 𝐶 = 1 than 𝑢 𝑗−1, hence
distinguishing them. It is thus important to construct a test-suite
from which terms 𝑃1 and 𝑃3 can be estimated robustly. In particular,
we need a test-suite with a sufficiently large number of exploit
traces observing 𝑢 𝑗−1 and not observing 𝑢 𝑗−1 respectively.

This motivates the need for what we call a concentrated test-
suite—a test-suite that has sufficiently many tests, both observing



Algorithm 1Meta algorithm for concentrated fuzzing.
1: Input: Exploit input 𝑖𝑒 , Execution trace𝑈 , Instrumented binary 𝑃𝑟𝑜𝑔
2: Result: Test-suite𝑇
3: 𝑇 ← ∅
4: for each 𝑢 𝑗 ∈ 𝑈 do
5: executeTillPrefix(𝑖𝑒 , 𝑢 𝑗 , 𝑃𝑟𝑜𝑔)
6: for 𝑘 from 1 to 𝛼 do
7: 𝑖𝑚 = mutate(𝑖𝑒 , 𝑢 𝑗 );
8: 𝑡𝑚 = execute(𝑖𝑚 , 𝑃𝑟𝑜𝑔);
9: 𝑇 ← 𝑇 ∪ {𝑡𝑚 }
10: end for
11: end for

and not observing each 𝑢 𝑗 . The concentrated test-suite would ex-
plore paths in the neighborhood of the exploit trace. This is apparent
in 𝑃1 in Equation 1: It is the probability of observing𝑢 𝑗 , conditioned
on the fact that we have observed 𝑢 𝑗−1. This can be seen as follow-
ing the trace of the given exploit 𝑖𝑒 up to 𝑢 𝑗−1 but not necessarily
following the exploit trace after 𝑢 𝑗−1.

To generate a concentrated test-suite, we propose a new form
of directed fuzzing technique called concentrated fuzzing. Concen-
trated fuzzing is constructed in a principled way, and it carefully
tries to avoid artificially biased test cases towards observing the
events (i.e., 𝑌𝑗 = 1 and 𝐶 = 1) which we will estimate from. This
highlights the importance of having various kinds of test cases in-
cluding the exploits, the benign cases, the cases reaching the crash
location and the cases deviating from the crash location. From a
test-suite created by concentrated fuzzing, we identify the correct
locations for fixing the vulnerability and show the corresponding
empirical results (see Section 6).
Remark. Our work is the first to utilize directed fuzzing as a solu-
tion for vulnerability localization. While heavy-weight alternatives
such as those based on symbolic execution are possible solutions,
these face challenges in scaling on binaries [18]. However, fuzzing
is simpler to implement and scales. Other forms of fuzzing (e.g.,
AFL [39] and Honggfuzz [1]) optimize for different objectives from
concentrated fuzzing. Their goal is to cover more program paths,
whereas our goal is to explore only the neighborhood of a given
exploit trace to find likely vulnerability location. We also compare
our test-suite from concentrated fuzzing with directed fuzzing tools
like AFLGo [8] in our empirical evaluation.

3 CONCENTRATED FUZZING
Constructing a concentrated test-suite is not straight-forward

since the probability of reaching 𝑢 𝑗 which is deep inside the pro-
gram is very low under most input distributions. To achieve this
goal, we propose a new solution called concentrated fuzzing (Conc-
Fuzz).

Algorithm 1 shows the high-level algorithmic sketch of Con-
cFuzz. It creates a set of inputs fully exploring each 𝑢 𝑗 (loop at
Line 4) starting from 𝑢1. In each iteration, the basic idea is to force
the program execution to reach 𝑢 𝑗−1 (at Line 5), and then generate
sufficiently many test cases that either reach 𝑢 𝑗 (stay on exploit
path) or not (loop at Line 6). To ensure the reachability of 𝑢 𝑗−1,
many different strategies can be used—for instance, we could pick
a sample from the set of test cases generated so far on which 𝑢 𝑗−1

1 void write(int size, char *writeArr){
2 for(int i=0; i<size; i++){
3 writeArr[i] = "A"; // <---- buffer overflow
4 }}
5
6 int write_array(int wsize, int msize){
7 char *writeArray;
8 if (wsize > 20)
9 return -1;
10 else {...}
11 if (msize <= 10)
12 writeArray = (char *)malloc(msize);
13 else
14 writeArray = (char *)malloc(2*msize);
15 write(wsize, writeArray);// write wsize characters into writeArray
16 ...}
17
18 int main(int argc, char **argv){
19 int a, c, tag;
20 ...
21 FILE *fp = fopen("input.txt", "r+"); // Read inputs from a file
22 fscanf(fp, "%d, %d, %d", &a, &c, &tag);
23 ...
24 if(tag == 1){ // Read from input file
25 read_array(c, fp);
26 ...
27 write_array(c, a);
28 } else if(tag == 2){ // Write array
29 write_array(c, a);
30 } else if(tag == 3){ // split the input file
31 ...
32 char array[10];
33 write(10, array);
34 }
35 ...
36 return 0;}

Figure 2: Code snippet for illustrating our fuzzing and rank-
ing. There is a buffer overflow in function write.

was observed, and replay the execution. For simplicity, we run the
program with the given exploit 𝑖𝑒 to execute a prefix of the exploit
trace upto 𝑢 𝑗−1. Then, we mutate 𝑖𝑒 to generate test cases, some
of which will observe 𝑢 𝑗 . Notice that if these mutations are made
arbitrarily, the execution may diverge off the prefix early, failing to
observe 𝑢 𝑗−1. Section 4 describes the details of a directed fuzzing
approach where certain input bytes in 𝑖𝑒 remain unchanged, such
that the prefix up to 𝑢 𝑗−1 will be executed with high probability.
Random mutations to other bytes are created to create sufficient
many samples over the events 𝑌𝑗 = 1 and 𝑌𝑗 = 0.
An Illustrative Example. Figure 2 shows a hypothetical vulnera-
ble program which has a buffer overflow in write function at Line
3. Let us assume that the exploit input available is 𝑖𝑒=(10, 15, 2)
where the three bytes of 𝑖𝑒 are inputs to the program and are read
from an input file “input.txt” at Line 21. On execution of 𝑖𝑒 , the
function write_array is invoked with the arguments wsize=15
and msize=10. It is easy to check that an additional check msize
≥ wsize on the size of memory being allocated to the buffer
writeArray at Line 11 is an ideal patch. Note that the vulnera-
bility location is not close to the point of the buffer overflow (Line
3), where the variable msize is not even in scope. Ideal vulnerability
location can be far off from the exploit point, as in this example.

To pinpoint the correct location, ConcFuzz generates a con-
centrated test-suite to explore each on-exploit branch instance 𝑢 𝑗 .
Recall that the goal of vulnerability localization is to identify the
right location 𝑣𝑖 for fixing the vulnerability rather than the instance
𝑢 𝑗 . Thus, in Figure 3, we summarize the number of test cases gen-
erated for each 𝑣𝑖 in the concentrated test-suite. Notice that there



Figure 3: An example of concentrated test suite generated
for the the code snippet in Figure 2 and its corresponding
necessity (N) and sufficiency (S) score.

are many test cases for both observing and not observing each on-
exploit location. These tests are not generated with the objective of
causing an exploit. Biasing towards following 𝑣𝑖 , 𝑣𝑖+1, · · · , 𝑣𝑛 would
skew the samples. Over-fitting to exploits and its effects are shown
experimentally in Section 6.3. This is an important difference to
recent works which explicitly aim to follow the path suffix of the
exploit after 𝑣𝑖 [18, 31]. Our tests seek to follow the given exploit
path prefix up to 𝑣𝑖 and then diverge.

Under the exploit 𝑖𝑒 , the vulnerable program executes the branch
at line 24 (𝑣78), 28 (𝑣79), 8 (𝑣80), 11 (𝑣81) and 2 (𝑣82) which are on-
exploit locations. Taking 𝑣80 as an example, ConcFuzz forces the
execution of the program to observe branches {𝑣1, · · · , 𝑣79} and
gets 48 cases observing 𝑣80 and 89 cases that do not observe𝑉80 (but
instead observes 𝑣165). Among these 48, 23 cases trigger the buffer
overflow while the remaining 25 cases do not. ConcFuzz generates
sufficient test cases for each 𝑣𝑖 in this way and finally computes
the necessity and sufficiency score. As shown in Figure 3, 𝑣81 has
the highest scores compared with the other on-exploit locations,
which is the correct location for fixing the vulnerability.

Careful readers may notice that our procedure executes 𝑖𝑒 to
force the prefix up to 𝑢 𝑗−1, when generating the concentrated
test cases for 𝑢 𝑗 . This corresponds to the conditional probability
𝑃 (𝑌𝑗 = 1|𝐶 = 1, 𝑌1 = 1, · · · , 𝑌𝑗−1 = 1), as opposed to 𝑃 (𝑌𝑗 = 1|𝐶 =

1, 𝑌𝑗−1 = 1) desired in Section 2. Note that the latter is a marginal

Figure 4: VulnLoc’s Architecture.

probability which is a summation over exponentially many condi-
tional probabilities: ∑︁

𝑞1∈{0,1}
· · ·

∑︁
𝑞 𝑗−2∈{0,1}

𝑃 (𝑌𝑗 = 1|𝑇1 = 𝑞1, · · · ,𝑇𝑗−2 = 𝑞 𝑗−2,𝐶 = 1,𝑇𝑗−1 = 1)
×𝑃 (𝑇1 = 𝑞1, · · · ,𝑇𝑗−2 = 𝑞 𝑗−2 |𝐶 = 1,𝑇𝑗−1 = 1)

Since measuring the marginal would require sampling across
all paths leading up to 𝑢 𝑗 , estimating it may require intractably
many test cases. However, as our experiments demonstrate, the
𝑃 (𝑌𝑗 = 1|𝐶 = 1, 𝑌1 = 1, · · · , 𝑌𝑗−1 = 1) serves as a good proxy for
the marginal we desire. To understand why such a proxy works well
in practice, let us consider the situation where there is conditional
independence: the probability of observing an event, conditioned
on having reached the point which observes 𝑢 𝑗−1, is independent
of the probability of reaching 𝑢 𝑗−1 in the first place. In such a case,
𝑃 (𝑌𝑗 = 1|𝐶 = 1, 𝑌1 = 1, · · · , 𝑌𝑗−1 = 1)=𝑃 (𝑌𝑗 = 1|𝐶 = 1, 𝑌𝑗−1 = 1).
In our example, the probability of reaching Line 11 is indeed almost
independent of the probability of causing exploits—for any given
value of msize, there are many values of wsize that would lead
to exploits. Intuitively, when the vulnerability is dependent on
a small number of branches, such “locality” creates conditional
independence of the form that our technique works well with.

4 TECHNICAL DETAILS
The overall architecture of our tool called VulnLoc is shown in Fig-
ure 4. VulnLoc includes two main components: the concentrated
fuzzer ConcFuzz and the ranker. ConcFuzz takes in an instru-
mented vulnerable program and an exploit input. It runs in a cycle
until a pre-defined timeout is reached or sufficient test cases for
each 𝑢 𝑗 have been generated. Given the concentrated test-suite,
the ranker then computes the sufficiency and necessity score and
reports the Top-K location with the highest combined score.

4.1 ConcFuzz Internals
Concentrated fuzzing, the high-level design of which is outlined
in Algorithm 1, generates a concentrated test-suite by executing
the prefix of each 𝑢 𝑗 . The key challenge is to generate multiple
inputs which follow the prefix of 𝑢 𝑗 , since a random mutation of
the exploit input 𝑖𝑒 is unlikely to execute a long prefix. To tackle
this problem, the main observation we make is that usually a small



Algorithm 2 The implementation of concentrated fuzzing.
1: Input: Exploit input 𝑖𝑒 , Instrumented Binary 𝑃𝑟𝑜𝑔

2: Result: Test-suite𝑇
3: Seed Pool 𝑆𝑃 ← {𝑖𝑒 };𝑇 ← ∅
4: repeat
5: 𝑖𝑠 ←chooseSeed(𝑆𝑃 )
6: 𝑡𝑠 ←execute(𝑖𝑠 , 𝑃𝑟𝑜𝑔)
7: Sensitivity Map 𝑆𝑀 ← 𝑖𝑛𝑖𝑡𝑆𝑀 (𝑖𝑠 , 𝑡𝑠 )
8: Number of Mutated Bytes #𝐵 ← 0
9: repeat
10: #𝐵 ← #𝐵 + 1
11: repeat
12: Bytes 𝐵 ←selectMutateBytes(𝑆𝑀, 𝑡𝑠 , #𝐵)
13: if 𝐵 is empty then
14: Break;
15: end if
16: for 𝑗 from 1 to 𝛾 do
17: 𝑖𝑚 ←mutate(𝑖𝑠 , 𝐵)
18: 𝑡𝑚 ←trace(𝑖𝑚, 𝑝𝑟𝑜𝑔)
19: 𝑇 ← 𝑇 + {𝑡𝑚 }
20: if 𝑖𝑚 is an exploit with a new trace then
21: 𝑆𝑃 ← 𝑆𝑃 + {𝑖𝑚 }
22: end if
23: 𝑆𝑀 ←updateSM(𝑆𝑀, 𝑡𝑠 , 𝐼𝑘 , 𝑡𝑚 )
24: end for
25: until Timeout reaches or all the branch instances have sufficient

test cases
26: if #𝐵 ≥ 𝛽 then
27: Break;
28: end if
29: until Timeout reaches or all the branch instances have sufficient

test cases
30: until Timeout reaches or all the seeds are checked

set of input bytes are responsible for observing each 𝑢 𝑗 . Thus, if we
can fix the values of the bytes influencing all of {𝑢1, · · · , 𝑢 𝑗−1} to
their corresponding values in the exploit trace, then any mutation
made on the remaining bytes will result in a new test case that most
likely executes the prefix of 𝑢 𝑗 .

Precisely, let each input 𝑖 ∈ 𝐼 contain 𝑞 bytes of which each is
represented as 𝑏𝑘 (𝑘 ∈ {1, 2, · · · , 𝑞}). ConcFuzz keeps track of the
influence of different inputs bytes on each𝑢 𝑗 . If we can observe that
a change in the value of an input byte 𝑏𝑘 results in a change on the
state of𝑢 𝑗 , we say that 𝑏𝑘 influences𝑢 𝑗 , or𝑢 𝑗 is sensitive to 𝑏𝑘 . The
sensitivity relation is thus a binary relation 𝑆𝑀 : (𝑈 , 𝐼 ) → {0, 1}.
𝑆𝑀 (𝑢 𝑗 , 𝑏𝑘 ) = 1 if we have observed in concrete runs that 𝑢 𝑗 is
sensitive to input byte 𝑏𝑘 , and 0 otherwise. The relation is stored
explicitly in a data structure called “sensitivity map”. Note that
the sensitivity map captures both control and data dependencies
between branches and the input. This notion of influence or sensi-
tivity is as same as that described in recent fuzzing works [10, 13],
however, the way it is used in concentrated fuzzing is quite differ-
ent. Algorithm 2 explains how ConcFuzz generates a concentrated
test-suite with the help of the sensitivity map.
Sensitivity Map Inference. The sensitivity map is constructed
directly from the observations during the execution of test inputs.
We mutate each byte 𝑏𝑘 of the input a constant number of times
(see 𝛾 at Line 16) and observe whether the state of 𝑢 𝑗 changes due
to each mutation. If we cannot observe 𝑢 𝑗 on the trace after the

1 // arr holds the fuzzer input
2 int buggy(char *arr){
3 b = arr[0]; c = arr[1]; d = arr[2]; e = arr[3]; g = arr[4]; ans = 0;
4 ...
5 if (b==1 && c==4){
6 ...
7 }
8 if (d==2 || e==3){
9 ...
10 if (g<5){
11 ... //Bug here
12 }
13 }
14 ...
15 return ans;}

Figure 5: The && condition on Line 5 requires single-bytemu-
tation to infer that both 𝑎𝑟𝑟 [0] and 𝑎𝑟𝑟 [1] influence the con-
dition. However, the condition on Line 8 requires the muta-
tion on both bytes 𝑎𝑟𝑟 [2] and 𝑎𝑟𝑟 [3] simultaneously to infer
that those bytes influence that condition.

mutation over an input byte 𝑏𝑘 in 𝑖𝑒 , we infer that 𝑏𝑘 implicitly or
explicitly influences the state of 𝑢 𝑗 i.e., 𝑆𝑀 (𝑢 𝑗 , 𝑏𝑘 ) = 1 as well.

In more detail, for each round of fuzzing, ConcFuzz first com-
pares the trace 𝑡𝑠 under a selected exploit input 𝑖𝑠 with the trace
𝑡𝑚 under each mutated input 𝑖𝑚 . If 𝑡𝑚 diverges from 𝑡𝑠 at 𝑢 𝑗 , Con-
cFuzz marks 𝑢 𝑗 as being sensitive to the input byte in 𝑖𝑠 mutated
to create 𝑖𝑚 in the sensitivity map. To exemplify, let us revisit the
running example from Figure 2. Given the selected exploit input
𝑖𝑠 = (10, 15, 2) and the mutated input 𝑖𝑚 = (10, 25, 2)—where the
first byte 𝑏1 has value 10, the second byte 𝑏2 is mutated and the
third byte 𝑏3 has value 2—ConcFuzz infers that the branch at Line
11 is sensitive to 𝑏2 of the input. This is because branch at line 11
is not observed when 𝑏2 > 20 in the trace of the exploit input 𝑖𝑠 ,
and gets observed in the trace of the mutated input 𝑖𝑚 .

ConcFuzz incrementally computes a sensitivity map over each
mutation for each 𝑢 𝑗 . It starts with an empty sensitivity map (at
Line 7) where each 𝑢 𝑗 is not influenced by any input byte. Then,
ConcFuzz keeps updating it given a new test case generated for
each round of fuzzing (at Line 23) until the timeout reaches or all
the branch instances are fully explored.

Note that there could be scenarios where multiple bytes of the in-
put may influence the same branch and the sensitivity map inferred
by single byte mutations, as described above, may not be useful for
generating concentrated test-suite. For instance, consider the code
in Figure 5. The exploit input constitutes of 𝑎𝑟𝑟 = [1, 4, 2, 3, 0] which
satisfies the conditionals on Lines 5, 8 and 10. The first conditional
statement (on Line 5) is a conjunction of conditionals on the values
of two input bytes 𝑎𝑟𝑟 [0] and 𝑎𝑟𝑟 [1]. Here, mutating one input
byte at a time is sufficient to infer that the branch is sensitive to
both bytes. However, this is not the case for the disjunction on Line
8. In this case, single byte mutation will lead to a conclusion that
bytes 𝑎𝑟𝑟 [2] and 𝑎𝑟𝑟 [3] do not influence the branch as one of them
is always 𝑇𝑟𝑢𝑒 while the other is being mutated. Therefore, while
exploring the branch on Line 10, our sensitivity map will show that
only 𝑎𝑟𝑟 [0], 𝑎𝑟𝑟 [1] as important to execute the prefix till Line 8.
Hence, VulnLoc would fix only the values of 𝑎𝑟𝑟 [0], 𝑎𝑟𝑟 [1] and
mutate other bytes including 𝑎𝑟𝑟 [2], 𝑎𝑟𝑟 [3], 𝑎𝑟𝑟 [4]. Consequently,
the generated concentrated test-suite will have very few traces that



reach Line 10 attributing to a small random chance that the traces
have passed condition on the prefix branch (Line 8). Therefore,
we need to mutate both the corresponding bytes (𝑎𝑟𝑟 [2], 𝑎𝑟𝑟 [3])
simultaneously to infer that the branch is sensitive to those bytes.
Remark: Approximation vs. Completeness. In general, sensi-
tivity map inference is intractable since the number of combinations
of such multi-wise mutations can be exponential in the size of input.
Our sampling-based technique does not aim to capture all possible
dependencies. To remain tractable, ConcFuzz performs multi-wise
mutations iteratively (at Line 12 in Algorithm 2). It mutates one
byte at a time in the first iteration and two bytes at a time in the
second, until a user-configured number of iterations (default value
=2). Our inferred sensitivity map, though necessarily approximated,
is sufficient for achieving the accuracy reported in our evaluation.
Concentrated Test-suite Generation. The sensitivity map helps
to generate sufficiently many samples for both events 𝑌𝑗 = 1 and
𝑌𝑗 = 0, having observed 𝑢 𝑗−1. ConcFuzz first extracts all the in-
put bytes from the sensitivity map to which {𝑢1, · · · , 𝑢 𝑗−1} are
sensitive. It forces these input bytes to take the same value as the
selected exploit input 𝑖𝑠 . Then, to obtain enough samples for 𝑌𝑗 = 1,
ConcFuzz mutates the input bytes to which 𝑢 𝑗 is non-sensitive
in 𝑖𝑠 as the mutation over the non-sensitive bytes likely does not
change the state of 𝑢 𝑗 . In contrast, for generating enough samples
for 𝑌𝑗 = 0, ConcFuzz mutates bytes to which 𝑢 𝑗 is sensitive and
keeps the non-sensitive bytes the same. For each round of fuzzing,
ConcFuzz selects an instance 𝑢 𝑗 which is the earliest observed on
the exploit trace but does not have sufficient test cases. Then, it
follows the above approach to generate sufficiently many test cases
with a limited number of mutations (from Line 9 to 29).

For example, let us revisit the case of Line 11 in Figure 2. Assume
the sensitivity map knows that the branches at Line 28 and 8 are
only sensitive to 𝑏3. To force the observation of the branch at Line
28, ConcFuzz ensures the value of 𝑏3 to be 2 (which is as same as
the exploit input). Then, it mutates over 𝑏2 and keeps the remaining
bytes as same as the exploit input to get many samples that miss
the branch at Line 11.

4.2 Location Ranking
Given the concentrated test-suite, the ranker first removes the du-
plicate traces from the test-suite to avoid biasing towards any single
trace. Then, it computes the necessity and sufficiency scores of each
on-exploit location 𝑣𝑖 . It first computes these three values: 1) the
number of test cases observing 𝑣𝑖 and triggering the vulnerabil-
ity (#(𝑋𝑖 = 1 ∧ 𝐶 = 1)), 2) the number of test cases triggering
the vulnerability (#(𝐶 = 1)), and 3) the number of test cases ob-
serving 𝑣𝑖 (#(𝑋𝑖 = 1)). Finally, it computes the necessity score
𝑁 =

#(𝑋𝑖=1∧𝐶=1)
#(𝐶=1) and the sufficiency score 𝑆 =

#(𝑋𝑖=1∧𝐶=1)
#(𝑋𝑖=1) .

For concreteness, we revisit our running example shown in Fig-
ure 2 and the concentrated test suite generated shown in Figure 3.
For 𝑣81, the sufficiency score 𝑃 (𝐶 = 1|𝑋81 = 1) = 23

37 while the ne-
cessity score 𝑃 (𝑋81 = 1|𝐶 = 1) = 1. Then, it normalizes both scores
by min-max scaling and ranks locations according to L2-norm of
the normalized necessity and sufficiency scores. The normalization
function 𝑁𝑀 and L2-norm score are defined as follows:

𝑁𝑀 (𝑁 ) = 𝑁 −𝑚𝑖𝑛(𝑁 )
𝑚𝑎𝑥 (𝑁 ) −𝑚𝑖𝑛(𝑁 ) , 𝑁𝑀 (𝑆) =

𝑆 −𝑚𝑖𝑛(𝑆)
𝑚𝑎𝑥 (𝑆) −𝑚𝑖𝑛(𝑆)

L2-norm score =
√︁
𝑁𝑀 (𝑁 )2 + 𝑁𝑀 (𝑆)2

where 𝑚𝑖𝑛(𝑁 ) (𝑚𝑖𝑛(𝑆)) is the minimum of the necessity (suffi-
ciency) score across all branch locations (similarly 𝑚𝑎𝑥 (𝑁 ) and
𝑚𝑎𝑥 (𝑆) are defined). We use L2-norm as the ranking metric mainly
because it treats the necessity and sufficiency score equally impor-
tant. Note that L2-norm is just one of many reasonable scoring
metrics that could be used. As the other metrics (e.g., Ochiai) use
the same counts as L2-norm for computing the scores [29], we
expect them to perform comparably on our concentrated test-suite.

The ranker reports the Top-𝐾 locations as localized candidates.
If there are multiple locations with the same score, the ranker sorts
them according to the proximity to the crash point. The closer the
location to the crash location, the higher the rank.

5 IMPLEMENTATION
We implement VulnLoc on top of a binary instrumentation frame-
work called DynamoRIO [2]. Our DynamoRIO client is written in
C++ and subsequent statistical analysis is implemented offline in
Python. VulnLoc consists of about 1.4 KLOC in total.
Dynamic Instrumentation. We build a DynamoRIO client to
record the outcome of each branch instance. The client instru-
ments opcodes (e.g., jle, jmp, je) which are related to conditional
statements to record the address and value of each conditional state-
ment executed in a file. We experimented with both instruction and
branch level instrumentation. We selected the latter because the
former could take a few minutes to hours to terminate, while the
latter takes less than several seconds for our traces on average.
Input Mutation - Values. VulnLoc allows users to define their
input mutation strategy. The default mutation strategy is performed
on byte level which includes both single-bytemutation and pairwise
mutation. Users can configure the maximum number of bytes to
mutate simultaneously. VulnLoc also allows the users to optionally
specify their strategies via a configuration file if they have any prior
knowledge about the input format. Specifying the input format
speeds up ConcFuzz by avoiding unnecessary mutations.
Input Mutation - Size. VulnLoc does not change the size of the
original exploit input explicitly during fuzzing. However, Conc-
Fuzzmutates all values including numeric length values and NULL-
termination characters, implicitly changing lengths of inputs. For
example, in the image processing library LibTIFF, our approach
would change the image length attribute in the input, hence chang-
ing the image data size.
Vulnerability Oracle. VulnLoc allows users to define their own
oracle for detecting whether an execution of a buggy program trig-
gers a vulnerability. In our evaluation, we utilize the program crash
or other detecting tools (e.g., Valgrind) as our oracle for memory
safety. For numerical errors and null dereference, we dynamically
instrument the binary with the additional checks.
Binary to Source mapping. Our entire analysis is independent of
source code but we compare our Top-K vulnerability locations with
the developer patch for validating the correctness of our results.
We implement a wrapper that maps binary instructions to the
corresponding source code statements for the convenience. The
wrapper is built on top of objdump utility in Linux [3].



Table 1: Vulnerable applications for evaluating VulnLoc.

App. Description LOC

LibTIFF A library for reading and manipulating TIFF
files. 66K

Binutils A collection of tools capable of creating the
managing binary programs. 2.7M

Libxml2 A library for parsing XML documents. 0.2M
Libjpeg A library for handling JPEG image format. 42K

Coreutils A collection of basic tools used on UNIX-like
systems. 63K

JasPer A collection of tools for coding and
manipulating images. 28K

FFmpeg A collection of libraries and programs for
handling video, audio and other files. 0.9M

ZZIPlib A library for extracting data from files
archived in a single zip file. 8K

Potrace A tool for tracing bitmap images. 9K

Libming A library for manipulating Macromedian
Flash files. 66K

Libarchive A library which manipulates streaming
archives in a variety of formats. 0.1M

Optimization: Parallelization. VulnLoc uses parallelization to
speed up certain tasks. In the fuzzing phase, the relationship infer-
ence is strictly sequential, however, the input mutation and execu-
tion are independent. Thus, instead of updating the sensitivity map
for each test case, we dedicate each core to the fuzzing procedure
of each mutation target and collect the test cases. Then, we utilize
the collected test cases to update the sensitivity map once for each
round of fuzzing. In the ranking phase, the sufficiency and neces-
sity scores for multiple locations can be computed simultaneously
before the ordering of L2-norm score.
Optimization: Caching. VulnLoc stores the generated inputs
and their corresponding traces for each round of fuzzing. In the
fuzzing phase, if ConcFuzz checks all the values of an input byte,
it will avoid the mutation over the specific input byte. This signifi-
cantly increases the efficiency of ConcFuzz as each execution of
the vulnerable program requires a certain amount of time.

6 EVALUATION
We aim to answer the following research questions:
• [RQ1] How effective is VulnLoc on real-world CVEs?
• [RQ2] Does ConcFuzz help to prevent test-suite bias and
hence over-fitting?

We select a set of real-world CVEs and runVulnLoc to generate pos-
sible vulnerability locations. We validate the efficacy of VulnLoc
by comparing our results to developer patches for the CVEs as
the ground truth. We extract the developer patches from the bug
reports or the commits provided by the developers.

6.1 Subjects and Setup
Our subjects are chosen to satisfy three requirements:

(1) The vulnerable applications can be executed with our instru-
mentation platform;

(2) A working exploit is available; and,
(3) A valid developer patch is available.

Diversity in Benchmarks.We select 43 CVEs that correspond to
11 applications, shown in Table 1. Our dataset includes all 15 CVEs

Table 2: Efficacy of VulnLoc for vulnerability localization
in details [RQ1]. Column “#B” shows the number of branch
conditions in total. “#UB” indicates the unique on-exploit lo-
cations. “Is developer patch right before crash loc?” shows
whether the developer patch is right before the crash loca-
tion or not. “Size(TS)” means number of unique traces gen-
erated by VulnLoc for each CVE in 4 hours. “In Top-5?” de-
scribes whether there is a correct location hitting one of the
Top-5 candidates outputted byVulnLoc. “SM”means that the
location of the developer patch hits one of the Top-5 can-
didates. “EQ” indicates the existence of an equivalent vul-
nerability location in Top-5 candidates. The last column de-
scribes the rank of VulnLoc’s output where the developer
patch or a semantically equivalent patch appears.

App. CVE ID Bug
Type #B #UB

Is developer
patch

right before
crash loc?

Size(TS) In
Top-5? Rank

LibTIFF

CVE-2016-3186 BO 0.3K 30 ✓ 14 ✓(SM) 2
CVE-2016-5314 BO 0.1M 0.7K ✗ 0.4K ✓(SM) 5
CVE-2016-5321 BO 6.6K 0.6K ✓ 4.3K ✗ 18
CVE-2016-9273 BO 8.2K 0.5K ✗ 1.7K ✓(EQ) 1
CVE-2016-9532 BO 21.1K 0.7K ✗ 0.4K ✓(EQ) 1
CVE-2016-10092 BO 15.4K 0.9K ✗ 5.4K ✓(EQ) 3
CVE-2016-10094 BO 41.1K 1.0K ✓ 4.0K ✓(SM) 1
CVE-2016-10272 BO 1.2M 0.9K ✗ 19 ✗ 39
CVE-2017-5225 BO 12.8M 0.7K ✗ 3.1K ✓(EQ) 1
CVE-2017-7595 DZ 13.1K 0.8K ✗ 2.7K ✓(EQ) 1
CVE-2017-7599 DT 10.2K 0.8K ✓ 4.5K ✓(EQ) 1
CVE-2017-7600 DT 10.3K 0.7K ✓ 30 ✓(SM) 1
CVE-2017-7601 IO 13.5K 0.9K ✓ 2.4K ✓(SM) 4
Bugzilla-2611 DZ 0.1M 0.6K ✗ 1.4K ✓(SM) 1
Bugzilla-2633 BO 6.1K 0.7K ✗ 5.8K ✓(EQ) 1

Binutils

CVE-2017-6965 BO 2.3K 0.5K ✓ 0.4K ✓(SM) 4
CVE-2017-14745 IO 9.5K 0.6K ✓ 1.5K ✓(SM) 1
CVE-2017-15020 BO 16.0K 1.1K ✓ 1.4K ✓(SM) 1
CVE-2017-15025 DZ 28.1K 1.0K ✓ 1.4K ✓(SM) 1

Libxml2

CVE-2012-5134 BO 7.7K 1.5K ✓ 20.9K ✓(SM) 1
CVE-2016-1838 BO 0.4M 1.0K ✓ 4.7K ✓(SM) 1
CVE-2016-1839 BO 1.5M 1.4K ✗ 0.9K ✓(SM) 1
CVE-2017-5969 ND 22.5K 1.4K ✓ 10.0K ✗ 24

Libjpeg

CVE-2012-2806 BO 1.5K 0.2K ✓ 46 ✓(SM) 1
CVE-2017-15232 ND 0.1M 0.6K ✓ 8.0K ✓(SM) 1
CVE-2018-14498 BO 1.2K 0.1K ✓ 0.1K ✓(SM) 1
CVE-2018-19664 BO 21.3M 0.1K ✗ 5 ✓(EQ) 3

Coreutils

GNUbug-19784 BO 0.2K 34 ✓ 0.5K ✓(SM) 1
GNUbug-25003 IO 0.1K 0.1K ✓ 7 ✓(SM) 1
GNUbug-25023 BO 1.3K 0.3K ✗ 0.1K ✗ > 200
GNUbug-26545 IO 0.5K 0.2K ✗ 1.9K ✓(SM) 2

JasPer
CVE-2016-8691 DZ 38.9K 0.3K ✗ 0.1K ✓(EQ) 1
CVE-2016-9557 IO 44.0K 0.5K ✓ 2.7K ✓(SM) 4

FFmpeg CVE-2017-9992 BO 11.7K 0.6K ✓ 0.6K ✓(EQ) 1
Bugchrom-1404 IO 7.6M 0.9K ✗ 0.4K ✗ 187

ZZIPlib
CVE-2017-5974 BO 0.1K 0.1K ✗ 0.2K ✓(SM) 2
CVE-2017-5975 BO 0.1K 0.1K ✗ 0.2K ✓(EQ) 2
CVE-2017-5976 BO 0.1K 0.1K ✓ 0.3K ✓(SM) 1

Potrace CVE-2013-7437 BO 0.3M 0.1K ✗ 2 ✓(EQ) 1

Libming
CVE-2016-9264 BO 38 26 ✗ 29 ✓(EQ) 4
CVE-2018-8806 UF 1.1K 0.1K ✓ 2.3K ✓(EQ) 2
CVE-2018-8964 UF 1.1K 0.1K ✓ 4.6K ✓(EQ) 5

Libarchive CVE-2016-5844 IO 6.1K 0.7K ✓ 46 ✓(SM) 1

studied in a recent work called SENX [16] that satisfy the above
three criteria1. We added 28 more CVEs to increase the diversity
of the benchmarks, as SENX benchmarks have only 2 kinds of
security vulnerabilities. Our final benchmarks have 6 categories of
vulnerabilities including 26 buffer overflows (BO), 4 divide-by-zero

1SENX has 42 benchmark programs. We eliminated the following: 18 programs that do
not have any developer patches (missing ground truth to evaluate against); 2 that do not
have reproducible exploits, 2 that are on x86 CPUs while our present implementation
supports only x64; 5 that do not work on vanilla DynamoRio without instrumentation
(either crashing DynamoRio or taking hours and utilizing excessive memory for a
single trace).



(DZ), 7 integer overflows (IO), 2 null pointer dereferences (ND), 2
heap use-after-free (UF) and 2 data-type overflows (DT).

The final benchmark programs have sizes ranging from 10 thou-
sand to 2 million LOC. Most of them have very few (less than 30)
or no manually written tests for the vulnerable program and its
configuration. We obtained one exploit for each vulnerability from
public CVE repositories or GitHub issue lists. The exploit input sizes
vary from 1B to 75KB with an average of 8KB. Table 2 shows that
the exploit traces have a few tens to millions of observed on-exploit
branch instances. Recall that VulnLoc works by recording only
branch conditionals, i.e., one per basic block. On average, there
are 1 million on-exploit branch instances, with a minimum of 38
and a maximum of 7.6 million. Due to loops and recursion, many
observed locations repeat—we also report the unique number of
locations considered by VulnLoc for computing scores in Table 2.
Experiment Setup. All our experiments are performed on a 56-
core 2.0GHz 64GB RAM Intel Xeon machine. Each round of fuzzing
phase allows to mutate upto 2 bytes at a time (𝛽=2 in Algorithm 2)
and mutates 𝛾 times over each mutation target. We set 𝛾=200 (see
Algorithm 2) for the default mutation strategy. We set a timeout
of 4 hours per benchmark to generate a test-suite and allow the
fuzzing phase to fork 10 processes maximally.
Correctness criteria. To evaluate the correctness of identified
patch locations, we use developer-provided fixes or patches in
public source-code repositories of these applications as ground
truth. These patches are small—most of them have between 1 − 3
locations modified. We say that VulnLoc is able to pinpoint a
correct or actionable location, if:
• The Top-5 locations outputted by VulnLoc coincides with
(at least one) location of the developer patch; or
• A patch semantically equivalent to the developer patch can
be applied at one of the Top-5 locations from VulnLoc.

We create semantically equivalent patches, where needed, using the
available live variables at the highlighted location. If the predicted
location is in the same function as the developer patch and all the
variables used in the developer patch are live at that point, a simple
displacement of developer patch usually suffices. Otherwise, we use
domain-specific knowledge to create the equivalent patch using
other live variables which are tightly dependent on the variables
patched in the developer patch. In order to validate our patches, we
run the patched application on the entire concentrated test-suite,
which consists of thousands of tests, as well as the developer test
suite if available. An example of an equivalent patch is described
in Section 7. Our criterion of choosing Top-5 recommendations
follows from empirical studies on expectations from automated fault
localization tools reported by practitioners [22]. We also report the
best rank of a correct location highlighted by VulnLoc in Table 2.

6.2 [RQ1] Efficacy for Vulnerability
Localization

Main Results. Figure 6 summarizes the efficacy of VulnLoc for
vulnerability localization and the distribution of the type of the
outputted vulnerability locations. Out of 43 CVEs, VulnLoc suc-
cessfully pinpoints the correct locations for 38 CVEs within the
Top-5 candidates, Among these 38 CVEs, the vulnerability location
for 25 CVEs hits the topmost candidate (see Figure 6). Recall that

All vulnerabilities in 
our dataset (43)

Top-1
(25)

Top 2-5
(13)

Outside Top-5
(5)

Exact loc.
(16)

Exact loc.
(7)

Equivalent
(9)

Equivalent
(6)

Figure 6: Efficacy of VulnLoc for vulnerability localization
[RQ1].

there may exist multiple locations which are equivalent for fixing
the vulnerability. We observe that, for 23 out of 38 successful CVEs,
one of the top-5 candidate locations corresponds exactly to one
of the locations of the developer patch. For 15 out of 38 CVEs, we
can create an equivalent patch. To further investigate these results,
Table 2 presents the detailed result of vulnerability localization for
each CVE. VulnLoc generates a rich test-suite for each vulnerabil-
ity. Unlike the manually written test-suite where no test triggers
the bug, VulnLoc generates 2𝐾 test cases on average, around 40%
of which trigger the vulnerability for half of the benchmarks. In
addition, VulnLoc performs well on all categories of security bugs:
It successfully identifies the correct locations in Top-5 candidates
for 23 buffer overflows, 6 integer overflows, all 4 divide-by-zero, 1
null dereference, 2 heap use-after-free and 2 data-type overflows.
In addition, VulnLoc performs equally on different applications.
For example, it successfully identifies the correct locations for 13
out of 15 CVEs in LibTiff, all 4 CVEs in Binutils, and 3 out of
4 CVEs in Libxml2. This indicates that the success of VulnLoc is
not correlated with the size and the type of applications.
Ruling Out Spurious Correlation. Given the statistical nature
of VulnLoc, one may ask whether the results observed are an
artifact of pure chance or spurious correlations, as the correla-
tion does not imply causation. We additionally investigated why
VulnLoc works in the cases where it reports the right candidate
in the Top-5. First, we observed that the odds of pinpointing the
correct branch location in the Top-5 by random chance is extremely
low, as each benchmark executes thousands of basic blocks in one
exploit. VulnLoc is doing significantly better than randomly guess-
ing locations. Second, we manually investigated why VulnLoc
assigns the highest score to the correct location whenever it does.
To carry out this investigation, we extended VulnLoc to compute
the sensitivity map for the variables around that location. We found
that certain variables have the highest L2 scores—they are most
sensitive to the transformation of a benign input into an exploit.
We find these highly sensitive variables often correspond to the
variables that are sanitized or bounded in the developer patch. For
example, the variable 𝑐𝑜𝑢𝑛𝑡 has been correctly identified as the
most sensitive variable for CVE-2016-3186. Our manual investiga-
tion confirms that a simple extension to VulnLoc can identify a
handful of candidate variables for fixing the vulnerability, beyond
just identifying the correct location. This shows that the results
outputted by VulnLoc is explainable and not an artifact of spurious
correlations.



Performance. The total time taken for vulnerability localization
on each CVE has two components: Fuzzing time and analysis time.
We set the fuzzing time to 4 hours for all the CVEs. The analysis
time varies with each CVE and the number of candidates to report
(e.g., Top-100). The maximum analysis time taken by VulnLoc is
within 10 minutes with Top-200 candidates to report.
Distance to Crash Locations. One way of vulnerability localiza-
tion is to consider the location right before the crash point as the
vulnerability location. In 19 out of 43 of the CVEs we study, the de-
veloper patches do not coincide with the crash location, as detailed
in Table 2. Our correct locations identified by VulnLoc are on a
location different from the crash location for 10 out of 38 CVEs.
For these 10 CVEs, the authors could not identify a feasible patch
equivalent to the developer patch at the crash location manually.
An example where the localized vulnerability is far from the crash
location is CVE-2016-5314, which is presented in Section 2.
Need for Probabilistic Approaches. In many CVEs (33 out of
43) the vulnerability locations do not have both necessity and suffi-
ciency scores equal to 1, even for developer patches. Such vulner-
ability locations do not cleanly separate all exploits from benign
ones. The lack of any program points, at which a clean separa-
tion between passing and failing test is possible, highlights the
inherent uncertainty in choosing between candidate locations. This
motivates the need for probabilistic approaches such as ours.

6.3 [RQ2] Over-fitting Reduced by
Concentrated Test-suites

We examine the impact of the test-suite bias on vulnerability lo-
calization. Poor test-suites make it difficult to distinguish between
different program points as vulnerability locations. This is exhibited
by many locations obtaining the same score from localization. On
the other hand, a concentrated test-suite segregates locations bet-
ter, giving different scores to different locations. We can therefore
measure how much a test-suite contributes towards segregating
vulnerability locations by analyzing the final scores of the locations.

To show that a concentrated test-suite segregates locations effec-
tively, we evaluate the effect of the following 3 kinds of test-suites,
keeping our statistical analysis (Section 4.2) unchanged:

• T1: a biased test-suite which only contains exploits,
• T2: a biased test-suite which only contains tests reaching
the crash location, and
• T3: a concentrated test-suite produced by VulnLoc.

Wemeasure the efficacy ofVulnLoc under these three test-suites by
counting the number of branch locations which have the same score.
We call a set of locations with the same score as a cluster. Note that
if the test-suite is effective in vulnerability localization, the number
of clusters will be very large. To measure the distinguishability of a
given test-suite, we set T3 as the baseline and compute the ratio of
the number of clusters generated by using T1 or T2 to the number
of clusters using T3, which is called distinguishability ratio.

Figure 7 summarizes the distinguishability ratio of the biased
test-suites T1 and T2 on vulnerability localization for 43 CVEs. For
36 out of 43 CVEs (84%), the number of clusters generated by T1 is
50% fewer than the one generated by the concentrated test-suite
T3. Similar results (50% fewer clusters for 36 CVEs) are also shown
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Figure 7: Effects of test-suite bias [RQ2].
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Figure 8: Effects of the size of a concentrated test-suite: As
the fraction of tests utilized increases, the candidate loca-
tions become better separated (i.e. more clusters appear).

for T2. This clearly demonstrates that a concentrated test-suite (T3)
improves significantly over other test-suites.

As another way of measuring the quality of a concentrated test-
suite, we show how locations get better separated as we use more
and more of the test-suite. Consider the number of clusters ob-
tained after using some tests—the higher the number of clusters,
the greater we can distinguish between locations. Figure 8 sum-
marizes the average and median number of clusters generated by
taking a fraction of the concentrated test-suite for 43 CVEs. For
most of the CVEs, the number of clusters increases significantly
with increase in the fraction of the concentrated test-suite. This
directly demonstrates that utilizing more of the concentrated test-
suite results in increasing segregation of locations by score.

Existing directed test-case generation tools like AFLGo [8] and
F3 [18] can be used for our purpose. However, they are not designed
to produce concentrated test-suites, which is the key conceptual
advance in our proposed technique (see Section 2.3). We experi-
mentally show both F3 and AFLGo generate test-suites which are
biased towards the crash location, thus, their test-suites belong to
the category 𝑇2. Furthermore, these tools rely on external source-
based analysis engines such as dynamic symbolic analysis (for F3)
and intra-procedural control flow graph construction (for AFLGo).
Comparison with AFLGo.We compared our work quantitatively
with the directed fuzzer AFLGo [8]. We collect all the inputs gen-
erated by AFLGo as our test-suite, with the crash location as the
target. Executing the vulnerable problem with these inputs may
reach or deviate from the crash location, because we consider all
the tests generated by AFLGo in the process of reaching the target.
Although this test-suite is balanced to some extent (and hence helps
AFLGo), AFLGo can only successfully locate the vulnerability loca-
tion in Top-5 for 18 out of 43 CVEs; this is also somewhat because of
the complexity of partial control flow graph construction in AFLGo.



1 int readextension(void){
2 ...
3 char buf[255];
4 ...
5 - while ((count = getc(infile)) && count <= 255)
6 + while ((count = getc(infile)) && count >= 0 && count <= 255)
7 if (fread(buf, 1, count, infile) != (size_t) count) {...}
8 }

Figure 9: VulnLoc highlights the same location where the
developer patch is applied for CVE-2016-3186.

In comparison, our approach indicates the vulnerability location
among Top-5 candidates in 38 out of 43 CVEs in total. These results
show that while our concentrated fuzzing is a form of directed
fuzzing, directed fuzzing tools cannot be straightforwardly used
for our problem.
Comparison with F3.We also compare with the fault localization
tool F3 [18]. We keep the same ranking algorithm used in VulnLoc
and only change the test-suite for a fair comparison over the quality
of the test-suite. The implementation of F3 uses an out-of-date
LLVM version, 2.9. Due to insufficient support of external functions
and the inline assembly functions, F3 fails to generate test-suite
for 19 CVEs. We do not know how F3 would have performed in
localization accuracy for these 19 CVEs if the tool implementation
was able to handle them. For the remaining 43−19 = 24 CVEs, the
size of the test-suite generated by F3 is around 4 times smaller
than the test-suite generated by VulnLoc. In our experiments,
F3 always recommends vulnerability locations at or next to the
crash locations. The reason is overfitting: The test-suite obtained
from F3 has a high density of tests that reach the crash point. If
the vulnerability location of a given CVE (e.g., CVE-2016-5314 in
Section 2) is not right before the crash location, F3 fails to pinpoint
the correct location within Top-5 candidates. Among the 24 CVEs
that F3 handles, it localizes correctly in Top-5 for 19 out of them. In
contrast, VulnLoc successfully localizes among Top-5 for all the
CVEs which F3 works correctly and 3 for more (total 22).

7 CASE STUDIES
In order to understand the quality of vulnerability localization, we
present two examples: a) CVE-2016-3186 for which the developer
patch coincides with one of the Top-5 candidates and b) CVE-2016-
8691 for which the developer patch does not coincide with any of
the Top-5 candidates but there is an equivalent manually generated
patch at one of the Top-5 candidates.
Finding developer patch location (CVE-2016-3186) This is a
buffer overflow in LibTIFF which causes a denial of service via
a crafted GIF image. Consider Figure 9, the overflow happens in
function readextension when it reads a GIF extension block at
Line 7. When getc detects the end of file, it returns 𝐸𝑂𝐹 which
is negative number. However, the loop condition only checks if
count ≤ 255. If count is negative, the loop condition is satisfied
and count is casted to size_t, which leads to the buffer overflow.
VulnLoc analyzes this CVE and outputs the branch condition in
Line 5 as one among the Top-5 candidates. This coincides exactly
with the developer patch which adds an additional check at Line 5
to prevent overflow.

1 ...
2 samplerate_idx = (flags & MP3_SAMPLERATE) >> MP3_SAMPLERATE_SHIFT;
3 + if (samplerate_idx < 0 || samplerate_idx > MP3_SAMPLERATE_IDX_MAX){
4 + error("invalid samplerate index");}
5 ... // <-- code with no relation to samplerate_idx
6 samplerate = mp1_samplerate_table[samplerate_idx];

Figure 10: Developer patch for CVE-2016-9264.

1 ...
2 samplerate_idx = (flags & MP3_SAMPLERATE) >> MP3_SAMPLERATE_SHIFT;
3 ... // <-- code with no relation to samplerate_idx
4 + if (samplerate_idx < 0 || samplerate_idx > MP3_SAMPLERATE_IDX_MAX){
5 + error("invalid samplerate index");}
6 samplerate = mp1_samplerate_table[samplerate_idx];

Figure 11: Semantically equivalent developer patch at the lo-
cation highlighted by VulnLoc for CVE-2016-9264.

Finding equivalent patch location (CVE-2016-9264) This is an
example of an out-of-bounds read in Libming library which can
crash any web application that uses this library to process untrusted
mp3 files. Consider Figure 10, the variable samplerate_idx in Line
2, is read from an input mp3 file and is used to set the samplerate
in Line 6. Executing the exploit mp3 file results in an out-of-bounds
access at Line 6 which sets samplerate to 0 and later results in a
crash due to floating-point exception. So, the developer patch is
applied at Line 3 just after reading samplerate_idx from input.
However, VulnLoc suggests to add a check just before the out-
of-bounds access at Line 6, shown in Figure 11. The original code
between Line 2 and Line 6 does not use samplerate_idx and it is
not affected by the input file.

8 RELATEDWORK
One of the earliest efforts in fault localization is via dynamic slicing
[5] or data dependency analyses [11, 27]. It takes in a program input
and a slicing criterion in the form of ⟨𝑙, 𝑣⟩ where 𝑙 is a location and
𝑣 is a variable. It uses data and control dependencies to explain
the value of 𝑣 in 𝑙 in the execution trace of the given input. Such
analyses often reason about explicit dependencies only, which are
dependencies that manifest in the executed trace. Further, since
dynamic slicing involves high computational overheads and dy-
namic slices are large, more accurate methods to localize observable
errors in programs have been studied. One of the notable works in
this regard is the principle of delta debugging [40] which localizes
observable errors by computing the differential of a failing artifact
and a “similar" benign artifact. The artifact could be in the form
of test inputs or execution traces. Such analysis can reason about
dependencies that may not be visible in the original exploit trace.
One of the major difficulties in employing this line of work is that
its accuracy crucially depends on the choice of the benign artifact.

Progress in localization via trace comparison has led to other
works involving a more systematic generation of the benign trace,
and a natural extension to probabilistic reasoning. These include the
use of a systematic off-line search to generate the passing trace via
branch direction mutation [36], as well as online predicate switch-
ing by forcibly switching a branch predicate’s outcome at run-time
[42]. Instead of forcibly changing a branch predicate at run-time,



directed fuzzing generates inputs with the goal of flipping branch
predicate(s). So, our statistical analysis reasons about the original
program without modified logic, unlike predicate switching.

Our work follows the statistical fault localization framework [38],
where a score is assigned to each statement of the program based
on its occurrence in passing and failing execution traces. One of the
first works in this regard is Tarantula [19], which has subsequently
been followed by many works proposing many scoring metrics,
including the Ochiai metric [4]. The main hypothesis in these works
is that the control flow of the execution traces of tests can be used
to determine likely causes of failure of a test. Thus, if a statement
occurs frequently in failing test executions and rather infrequently
in passing test executions, it is likely to be scored highly and brought
to the attention of the developer. It is well-known that the accuracy
of these methods is highly sensitive to the choice of tests [28, 35].
Most works in this regime use externally provided or arbitrarily
chosen test suites.

Very few works have attempted to address the central challenge
of choosing the right test suite. F3 is the most closely related work
to ours as it targets synthesizing test-suites for statistical localiza-
tion [18]. It builds on the techniques proposed in BugRedux [17].
The goal of BugRedux is different from ours, it is to re-produce
a field failure trace by following through "breadcrumbs" given as
locations visited. F3 [18] relaxes the execution synthesis compo-
nent of BugRedux by generating many tests via symbolic execution.
We experimentally compared concentrated fuzzing with F3 in this
paper, demonstrating that concentrated fuzzing has better perfor-
mance. Another difference is that our work makes fewer assump-
tions and avoids complex symbolic analysis. Symbolic analyses
have well-known challenges in scaling to large programs, especially
on binaries [33]. Experimentally, we find that F3 failed to handle
19/43 benchmarks we tested. We are aware of an independent and
concurrent work called AURORA, which also proposes statistical
localization under similar assumptions [7]. However, it reuses an
off-the-shelf fuzzing strategy, namely AFL’s crash explorationmode.
AURORA proposes additional mechanisms for synthesizing and
ranking particular kinds of logical predicates during its statistical
analysis. In contrast, VulnLoc only devises a new systematic test-
suite generation technique, while retaining the rest of the structure
of statistical fault localization entirely. Our techniques are thus
complementary as one could combine our concentrated test-suite
generation with the predicate synthesis and ranking mechanism
proposed in AURORA.

A different line of work employs symbolic analysis methods for
localizing the root cause of an observable error [9, 12, 20, 30]. The
central observation in these works is that localization can benefit
from specification inference. Even in the absence of formal speci-
fications of intended program behavior, these works seek to infer
properties of intended program behavior by symbolically analyz-
ing various program artifacts such as failing execution traces, past
program versions as so on. These approaches proceed via source
code analysis, and incur the overheads of symbolic execution.

Our specific proposal for concentrated fuzzing is perhaps most
closely related to GREYONE, a faster taint-based fuzzing for bug-
finding [13] which extends notions of taint or influence from recent
work [10]. Concentrated fuzzing has completely different objectives
to this work, as it does not aim to maximize coverage or exploits.

SENX is an automatic patch synthesis tool for certain vulnera-
bilities based on information from source code and an exploit [16].
SENX uses a simplistic strategy for localization: It uses the program
point where the safety property is violated as the vulnerability point,
most of which are right before the crash location. Such localization
is typically only sufficient for if-guard fixes at the crash location,
which may not fix the fault in a general way, but workaround to pre-
vent an error from being observable. In our experiments, we have
reported 10 (out of 38) correct vulnerability locations which are
different from the crash location. We show an example in Section 2.

Other works that aim to localize by identifying workarounds
that make errors unobservable have also been proposed, such as
Talos [15]. Talos extensively uses source code and specializes for
specific software coding practices or idioms. A number of prior
works use source code for vulnerability localization, including a
recent work that employs deep learning over code features [24].
Our work minimizes assumptions about the availability of such
features and yet achieves high accuracy in real-world programs.

9 CONCLUSION
In this paper, we propose a novel approach of combining directed
test-generation techniques with statistical localization. Our ap-
proach takes a principled view of the problem, namely, synthe-
sizing input distributions that have a balanced proportion of sam-
ples observing (as well as avoiding) candidate locations. Our work
is the first to propose the use of directed fuzzing for statistical
localization. Our specific procedure for directed fuzzing, called
ConcFuzz, can be of independent interest in different applications.
Our tool VulnLoc works directly on binaries given an exploit.
VulnLoc exhibits promising localization accuracy in large real-
world applications for several types of vulnerabilities. More in-
formation about VulnLoc can be found on the project page at
https://github.com/VulnLoc/VulnLoc.
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