Design and Analysis of
Algorithms

Rahul Jain

Lecturer : RAHUL JAIN Grading :
Office : S15-04-01 50 marks for final exam
35 marks for midterm exam
10 marks for two quizzes (5 marks each)
5 marks for tutorial participation

Email: rahul@comp.nus.edu.sg
Phone: 65168826 (off)

Tutors :
ERICK PURWANTO (erickp@comp.nus.edu.sg)
ZHANG JIANGWEI (jiangwei@nus.edu.sg)

Tutorials ;: Start next week. Information available at
Prerequisites : (C52010 or its equivalent) and course home page

(CS1231 or MA1100)

Acknowledgment : We thank Prof. Sanjay Jain for

Book : . . . :
sharing with us his course material.

Title : Algorithms

Authors : R. Johnsonbaugh and M. Schaefer

Publication : Pearson Prentice Hall, 2004
(International Edition)

Other reference books mentioned in the course home page :
http://www.comp.nus.edu.sg/~rahul/CS3230.html

mailto:rahul@comp.nus.edu.sg�
mailto:erickp@comp.nus.edu.sg�
mailto:jiangwei@nus.edu.sg�
http://www.comp.nus.edu.sg/~rahul/CS3230.html�

Regarding CS3230R

According to my information current implementation of the R-modules is as
follows:

* Discuss with the lecturer that you would like to do the R-module.

e The lecturer will decide whether it is appropriate for you after teaching
you for a period (around middle of semester or end of semester).

e Start work on it after the lecturer has decided (middle of the current
semester or at the next semester). The course will be registered only in
the following semester.

What we cover in the course

Sorting/Searching/Selection

— A lower bound for the
sorting problem

— Counting sort and Radix
sort

— Topological sort of graphs

Divide and Conquer
— ATiling problem

— Strassen’s Matrix Product
Algorithm

— Finding closest pair of
points on the plane

Greedy Algorithms

Kruskal’s algorithm for Minimum
Spanning Tree

Prim’s algorithm for Minimum
Spanning Tree

Dijkstra’s algorithm for finding
shortest path between a pair of
points in a graph

Huffman codes

The continuous Knapsack problem

Dynamic Programming

Computing Fibonacci numbers
Coin changing
The algorithm of Floyd and Warshall

What we cover in the course

e P v/s NP
— Polynomial time, Non-deterministic algorithms, NP
— Reducibility and NP-completeness, NP complete problems

e How to deal with NP hard problems
— Brute force
— Randomness
— Approximation
— Parameterization
— Heuristics

Assume familiarity with :

* Basic data structures like Stacks, Queues, Linked lists, Arrays, Binary Trees, Binary Heaps,
* Basic sorting algorithms like Heap sort

* Basic search algorithms like Depth-First search, Breadth-First search

* Basic mathematical concepts like Sets, Mathematical Induction, Graphs, Trees, Logarithm

What is an Algorithm ?

Abu ‘Abdallah Muhammad ibn Musa al-Khwarizmi (c. 780 — c. 850)

A Persian mathematician, astronomer and geographer.

Properties : Analysis :

e Input * Correctness

e Output e Termination
o Time analysis

* Precision

Determinism

(exceptions: randomization, quantum etc.)
Finiteness

Correctness

Generality

Space analysis

Pseudocode : Has precision, structure, universality. It is unambiguous, clear enough (not
too rigorous, will not be concerned with semi-colons, uppercase, lowercase etc.)

Pseudocode - Example

Algorithm for finding maximum
element in an array

Input Parameters : s

Output Parameters: None

array — max(s)

{
large = s|[1]
=2
while(i < s.last)
{

if (s[i] > large) // larger value found
large = sli]
1=1+1
}

return large

}

if (condition)

action 1
else

action 2
do
{

action

} while (condition)

for var = init to limit
action

for var = init downto limit
action

Algorithm analysis

Worst case, Average case

Worst case analysis :

t(n) = Maximum units of time
taken by the algorithm to

terminate for an input of size n.

Average case analysis :

t(n) = the average units of time
taken by the algorithm to

terminate for an input of size n.

Similar analysis can also be done for

space required by the algorithm.

Input Parameters : s

Output Parameters: None

array — max(s)
{
large = s[1]
=2
while(i < s.last)
{
if (s[i] > large) // larger value found
large = sli]
t=1+1
}

return ZG-?‘QG

The worst case and average case times of the algorithm on an array of size n are each

constant * (n-1)

since the while loop is always executed (n-1) times, and every other operation takes

constant time.

Big Oh, Omega and Theta

1. Wesay ‘f(n) = O(g(n))’ OR ‘f(n) is order at most g(n)” OR ‘f(n) is big
oh of g(n)’, if there exists constants C; and N; such that, for all n > N;

f(n) < Cig(n)
g is an asymptotic upper bound for f, e.g. 1000n = O(n?)

2. We say ‘f(n) = Q(g(n))” OR ‘f(n) is order at least g(n)” OR ‘f(n) is
omega of g(n)’, if there exists constants Cy and N» such that, for all
n > NQ
f(n) > Cag(n)

g is an asymptotic lower bound for f, e.g. 2" = Q(50nlogn)

3. We say ‘f(n) = ©(g(n))” OR ‘f(n) is order g(n)” OR ‘f(n) is theta of
g(n)’, if
f(n) =0(g(n)) and f(n) = Q(g(n))
g is an asymptotic tight bound for f, e.g. 60n* — 100n + 50 = ©(30n? +
60n + 70)

Recurrence Relations

Fibonacci sequence :
fn:fn—1+fn—2a n >3

h=rf=1

Example : ¢,, =¢cp—-1+n, n>1;, ¢cg=0

Chp = Cp—1TN
= ¢h2t(n—1)+n
= ¢ch3t+t(n—=2)+(n—1)+n

— 04+142+43+...+(n—1)+n
n(n+1)
5

Examples

example(n){
if (n==1)
r=x++1
return
fori=1ton
r=x++1
example(n/2)

}

Let ¢,, be the number of times the
statement x = x + 1 is executed. Then,

Cp =N+ Cpj2, C1= 1
Chn=n+n/2+4+ ---4+1=2n—-1=0(n)

j=n
while (7 > 1)

{

fori=1toj
{z=2+1}
J=13/2

}

If n = 2%, the number of times the
statement z = x + 1 is executed is

n+n/24+n/d+---+1=2n—-1=0(n)

Main Recurrence Theorem

Let a>1,b> 2,k > 0.

Upper Bound: If T'(n) < aT(n/b) + f(n) and f(n) = O(n*), then T(n) =
1. O(n*) if a < b*

2. O(nFlogn) if a = b*

3. O(n'o% %) if @ > bF

Lower Bound: If T'(n) > aT'(n/b) + f(n) and f(n) = Q(n*), then T'(n) =
1. Q(n") if a < bF

2. Q(n*logn) if a = bF

3. Q(nlov @) if ¢ > b*

Exact: If T(n) = aT'(n/b) + f(n) and f(n) = O(n*), then T'(n) =
1. ©(n*) if a < b*

2. O(n”logn) if a = bF

3. O(nloer) if g > bF

Proof Idea

Suppose (for simplicity) T(n) = aT'(n/b) + cn* and n = b™. Then,
T(n)=T®™) = aT®™ ")+ ()™

ala(b"™2) + c(b)™ 1] + ()"
= @PTE") + cla(V)] + ()]

— amT(bU) 4 Czam—i(bk)i

=1

If a # bF,

T(n) = a™T(1)+c [(bk)mﬂ —amt am]

bk —a

= Clnlogb a + ank

where C7 =T(1) — [dfa] and Cy = &

bk bk—a-

Proof Idea contd.

If a = b, T(n) aT (1) + CZ a™
1=1

= a"T(1)+ cma™
= ank -+ C’4nk logb n
where C3 =T'(1) and Cy = ¢

If a #bF, T(n)=Cin'°®* 4 Cynk
Therefore T'(n) =
1. O(n*) if a < b*
2. O(nflogn) if a = bk
3. ©(n'°&r2) if ¢ > bF

Similar ideas work for other cases to get the full proof.

With today’s lecture and the material covered in pre-requisite courses we
have covered Chapters 1, 2, 3, 4 from the book.

Divide and Conquer

Divide and Conquer

If the problem is small solve it directly.

If the problem is big, divide it into subproblems. Solve
the subproblems, again using divide and conquer.

. Combine the solutions of the subproblem to get the
solution of the original problem.

A Tiling Problem

Input Parameters: n, a power of 2 (the board size) and the location L of the
missing square
Output Parameters: None

tile(n, L) A

if (n==2) {

// the board is a right tromino 7’

tile with T’

return

}

divide the board into four n/2 x n/2 subboards

place one tromino in the centre depending on L

// each of the 1 x 1 squares in this tromino is considered as missing
let mq, mso, mg, my denote the locations of the missing squares
tile(n/2,my)

tile(n/2,ms)

tile(n/2, ms)

tile(n/2,my)

}

ldea of the algorithm

Divide the problem of size n by n into four subproblems
each of size n/2 by n/2.

Place one tromino at the centre to create missing cells in
each subproblem.

Solve the subproblems using recursion.

2 by 2 problem is solved directly.

Time Analysis

Let T'(n) be the worst case running time of the algorithm on input of size n.
Then

T(n)=4-T(n/2)+ constant, n>2 ; T(2)= constant
Using Main Recurrence Theorem T'(n) = O(n?).

 ChuandJohnsonbaugh (1986) showed thatif n #5, and n? - 1 is divisible by 3 then the
n by n deficient board can be tiled using trominoes.

e Some 5 by 5 boards can be tiled and some cannot.

Mergesort

This algorithm sorts the array ali],...,a[j] in nondecreasing order.

Input Parameters: a (an array), i, j
Output Parameters: a

mergesort(a,i,j) {
// if only one element, just return
if (i == j)

return
// divide a into two nearly equal parts
m=(i+7)/2
// sort each half
mergesort(a,i,m)
mergesort(a,m+1,7)
// merge the two sorted halves
merge(a,i,m, j)

t

Subroutine Merge

In the input given below, assume that a[i],...,a[m] and a[m + 1], ..., a[j]
are each sorted in nondecreasing order. These two subarrays are merged into a
single nondecreasing array.

Input Parameters: a,i,m,j
Output Parameters: a

p=1i// mdex_ in a[’a_], —a) // copy remainder, if any, of the first subarray to ¢
g=m+1//index in alm +1],...,a[j while (p < m) {
r =1 // index in a local array c c[r] = alp]
while (p <m && ¢ <j) { p=p+1
// copy smaller value to ¢ r=r+1
if (alp] < alqg]) { }
clr] = alp] // copy remainder, if any, of the second subarray to ¢
\ clr] = alg
else { ¢=q+l
r=r+1
elr] = alg }
g=q+1 // copy ¢ back to a
} forr=1toj
r =r+1 a,[:r'] = C[T‘]

} }

ldea of the algorithm

e Divide the array of size n into two arrays of size n/2.
e Sort the two subarrays using recursion.

e Merge the two sorted parts using subroutine merge.

Mergesort — Time Analysis

Let T'(n) be the running time of the algorithm. Then
T(n) =2 T, + 6(n)

Using Main Recurrence Theorem 7'(n) = ©(nlogn).

Stable sort: A sorting algorithm is stable if the relative positions of items with duplicate
values are unchanged by the algorithm.

Mergesort is stable.

Strassen’s Matrix Product Algorithm

A is m X p matrix, B is p X n matrix.
Cij=>0_1AiBr;, 1<i<m, 1<j<n

Input Parameters: A, B (n X n matrices)
Output Parameters: C

matrix — product(A, B, C) {

n = A.last

fori=1ton {

forj=1ton {

Cli][5] =0

fork=1ton

}C'[i][j] = C[i]lj] + Al [k] = BIE] (7]
}

Running time is ©(n?).

A = (aj]
asy
b1

B —

(ba;

AB — ajibir +ajzbo
az1 b1 + agbo

a)o)
azo
b2)
bao

aj;bie + ajebas
as1 b2 + azebao

Cn = 8071./2 + @(HQ)
= ¢, = O(n?)

Strassen’s Matrix Product Algorithm

q; = (ai1+ag)x*(bi; + bas)
a2 (ag1 + ag2) * by
a3 ail * (b2 — bao)

Qs = ag *(byy —biq) Cn = Tcp /o + O(n?)
Cp = @(nlogQ 7) — @(n2.807)

a5 = (aj1+aje)*xbo
as = (az1 —aj1)* (b1 +bia)
q; = (aj2 —ag)* (ba; + bas)
_ Q1 +494 — Q5 +Qr qs + Qg5
q2 + q4 q: +d3 —q2 + Qs

ajibi; +ajeba; ajibie +ajsbas
as by +agzba; az; bz + azbas

Algorithm due to Coppersmith and Winograd runs in time ©(n?-376).

ldea of the algorithm

* Divide the problem of multiplying two n by n matrices into
the problem of multiplying 7, n/2 by n/2 matrices (you also
do constant number of additions of n/2 by n/2 matrices).

e Use recursion to solve the subproblems.

Finding a closest pair of points on the plane

p[l],...,p[n] is an array; p.z represents z-coordinate and p.y represents y-
coordinate of p. The function dist(p, ¢) returns the Euclidian distance between

points p and q.

Input Parameters: p
Output Parameters: None

closest — pair(p) {

n = p.last

mergesort(p,1,n) // sort by z-coordinate
return rec — ¢l — pair(p,1,n)

}

// rec — el — pair assumes that the input is sorted by z-coordinate
// At termination, the input is sorted by y-coordinate (also)

rec — cl — pair(p,i,7) {
if (j—i<3) {
mergesort(p,i,j) // sort by y-coordinate
// find the distance § between a closest pair
6 = dist(pli], pli + 1])
if (j —i==1) // two points
return ¢
// three points
if (dist(p[i + 1], p[i +2]) <)
0 = dist(pli + 1], p[i + 2])
if (dist(p[i], pli + 2]) < 9)
0 = dist(pli], p[i + 2])
return 0

}

k=(i+3)/2
| = plk].z
oy, = rec — cl — pair(p,i, k)
op =rec—cl — pair(p,k+ 1,7)
0 = min(ér,0R)
// pli],...,plk|] is now sorted by y-coordinate, and
// plk+1],...,p[j] is now sorted by y-coordinate
merge(p, i, k, j)
// pli],...,plj] is now sorted by y-coordinate
// store points in the vertical strip in v
t=0
fork=itoj {
if (plkl.x >1—6 && plkl.x <1+46) {
t=1t+1
v[t] = p[k]
}
// look for closer pairs in the strip by comparing
// each point in the stip to the next 7 points
fork=1tot—1

for s =k+ 1 to min(t,k+7)

§ = min(9, dist(v[k],v[s]))

return ¢

}

ldea of the algorithm

Divide the set of n points on the plane into two halfs (using x-coordinate).

Find the shortest distance between pairs of points in the two halfs using
recursion. Let delta be their minimum.

Consider a strip of size 2 times delta in the middle of the two halfs.

Sort the points in this strip using y-coordinate (this can be done only using
merge since the subparts are already sorted according to y-coordinate).

Start from bottom and compare each point with the next seven points to
identify the closest pair (this works because in each box that we
considered there can be at most 8 points).

Time Analysis

Let a,, be the worst case time taken by rec — ¢l — pair on input of size n.
Then
ap =2 - Qn /2 + @(n)

which means a,, = ©(nlogn). Sorting by the z-coordinate takes time
©(nlogn); thus the worst case time of closest — pair is O(nlogn).

What we did last time

Divide and conquer:

Tiling problem
Mergesort
Strassen’s matrix product

o w e

Finding closest pair of points on a plane

Sorting and Selection

Insertion Sort

Input Parameter: a
Output Parameter: a

insertion — sort(a) {

n = a.last

fori=2ton {

// save ali] so it can be inserted into the correct place
val = ali

j=1—1

// if val < a[j], move a[j] right to make room for a[i]
while (7 > 1 && val < alj]) |

alj +1] = alj]

Jg=J7—1

}

alj + 1] = val // insert val

}

}
Time: 14+2+...+(n—1)=

ldea of the algorithm

Assume that the elements of the array arrive one by one.

Keep inserting them at the right place in the current subarray which is
already sorted.

Nice property: It is an online algorithm.

Quicksort

The algorithm ‘partition’ inserts val at the index h such that values less than val are
on the left of index h and values at least val are on the right of h.

Input Parameters: a,1,

Output Parameters: a Quicksort Algorithm
partition(a,i,j) {

val = ali] Input Parameters: a, i,
h =1 Output Parameters: a
fork=i+1toj {

if (a[k] < val) { quicksort(a,i,j7) {
h=h+1 if (1 <j) {

swap(a[h], alk]) swap(a,b) { p = partition(a,i,7)

} c—=a quicksort(a,i,p — 1)

} a—=b quicksort(a,p+ 1, 7)

swap(alt], a[h])
return h }

}

—c }

Quicksort : Time analysis

Lower Bound: If the array is already in increasing order (or decreasing
order), time taken is :

(n=1)+n—=2)+n-3)+...+1 =20 _ q(n2)

Upper bound: Let ¢, be the time taken on input of size n. We show ¢,, <
c1n? using mathematical induction. Base case n = 1 is true. We have

¢, < n-+ lrgnﬁécn Cp—1 + Cn—p
< n+1151’1§§ncl(p—1)2+01(n—p)2
< n+eci(n—1)72
< cm2

Randomized Quicksort

Below we assume that rand(i,j) executes in constant time and returns a
random integer between ¢ and j, inclusive.

Input Parameters: a,1,] Randomized Quicksort
Output Paramters: a

Input Parameters: a,zi,j

random — partition(a,i,j) { Output Parameters: a

k = rand(i, j)
swap(ali], alk])
return partition(i, j)

}

random — quicksort(a,i,j) {
if (i <j) {

p = random — partition(a,i, j)
random — quicksort(a,i,p — 1)
random — quicksort(a,p+1,7)

}

The expected run time of random quicksort is ©(nlogn). Proof done in
class. Idea: when the element is chosen randomly, it lies near the middle (in
expectation). This makes the two subarrays of size roughly half.

ldea for partition algorithm

Let the current stage of array be like : F SSSS LLLL C RRRRR
Fis first element, S<F, L 2 F, Cis the current element, R is rest of the
elements.

If current element C > F, then don’t do anything, just let next
element on right to be C.

If C < F, then swap C with first L, and let next element on right to be
C.

At the end swap F with the last S element.

ldea of the algorithms

Take an element of the array (of value val) and place it at the right index h.
Elements to the left of h are less than val and to the right are greater than
or equal to val (partition algorithm).

Recursively sort aJi] ... a[h-1] and a[h+1] ... a]j]

In normal quicksort, the element is taken to be the first element of the
array.

In randomized quicksort, the element is randomly chosen among all
elements.

Quicksort is quite good in practice that is why ‘quicksort’.
No extra array is needed.
Quicksort is not stable.

A lower bound for comparison based algorithms

The worst case time of a comparison based sorting algorithm is Q(n log n).

Proof done in class. Idea: Any comparison based algorithm will have a decision
tree, with n! leaves (for n bit inputs). Height of this tree is Q(n log n).

A decision tree for the comparison based algorithm is a binary tree with the
nodes representing comparisons (a < b?), the left subtree represents the
continuation of the algorithm on the result of comparison being yes and the right
subtree represents the continuation of the algorithm on the result of comparison
being no.

Counting Sort

 Not a comparison based algorithm, uses some information about the
inputs i.e. the elements are numbers from 0 to m.

e Running time is linear, lower bound of Q(n log n) does not apply.

Input Parameters: a, m // sort a with the result in b

Output Parameters: a for i = n downto 1 {
blclali]]] = ali]

counting — sort(a,m) { cla[i]] = clali]] — 1

// set c|k] = the number of)

// occurrences of value k in the array a // copy b back to a

?/ l;cegirg by initializing ¢ to zero for i — 1 to n

a0 il = ol

n = a.last }

fori=1ton

clali]] = cla[i]] +1
// modify ¢ so that c[k] = number of elements < k
for k=1tom

clk] = clk] + clk — 1]

Time analysis

e Since each loop runs in time 6(m) or B(n), the running time is 6(m + n).

ldea of algorithm

e First make sure that c[k] = number of occurrences of value k in input array
a.

e Then make sure that c[k] = number of occurrences of value less than or
equal to k in input array a.

 Produce sorted array b using c.
* Copy b back to a.

Counting sort is stable (done in tutorial).

Radix Sort

Again not a comparision based algorithm. Uses information about the input.
Uses counting — sort is stable.

Below each integer in the input array a has at most k£ digits.

Input Parameters: a, k
Output Parameters: a

radix — sort(a, k) A
fori=0to k—1
counting — sort(a,10) // key is digit in 10*’s place
}
Idea of algorithm: Starting from the least significant digit, sort using counting-sort.

Correctness of the algorithm shown in class. Running time is done in tutorial.

Radix sort was originally used to sort punch cards.

(Random) Selection

The algorithm below finds the k-th number, in the non-decreasing order, in
alt],...,alj]. It uses the random —partition algorithm that we discussed before.

Input Parameters: a,1, 7, k
Output Paramters: a

random — select(a,i,j,k) {
if (i <) {
p = random — partition(a,i,j)
if (k ==p)

return
if (k <p)

random — select(a,i,p — 1, k)
else

random — select(a,p+ 1,7, k)
}

}

Finding median is a special case of this.

|ldea of algorithm

e Using random-partition, get location p (note that everything to the left of
p will be smaller than the value at p and everything to the right will be at
least the value at p.)

e |If k=p then stop.
e Ifk<p,actrecursively on the left of p.
e Else act recursively on the right of p.

Running Time : The expected running time is 6(n). Proof done in class. Idea
similar to the analysis of random-partition. When element is selected
randomly, p is near middle (in expectation).

* The worst case time of random-select is 6(n?) (done in tutorial).
* Any deterministic algorithm solving selection must take time at least n.

e Deterministic algorithm due to Blum, Floyd, Pratt, Rivest and Tarjan (1973)
runs in time 6(n).

What we did last time

Selection sort

Quicksort

Lower bound for comparison based algorithms
Couting sort, Radix sort (not comparison based)
Random Selection

Greedy Algorithms

Greed is Good !

Coin Changing

The algorithm makes change for input amount A using denominations

denom|[1l] > denom[2| > ... > denom|n] =1

Input Parameters : denom, A
Output Parameters: None

greedy — coin — change(denom, A)

1 =1

while (A > 0) {

c = A/denomli]

println(“use ” + ¢ +“coins of denomination ” + denom/i])
A=A — cxdenom|i]

1 =1+1

}

}

e The algorithm is not optimal for denominations {1,6,10}.

Optimality for {1,5,10}

The algorithm is optimal for denominations {1,5,10} for every input amount A. Idea:
use mathematical induction.

 Let greedy(A) represent the number of coins used by the greedy algorithm for
input amount A.

e Let optimal(A) represent the optimal number of coins for amount A.

e Can verify by direct calculation forA=1, 2, ..., 9, that greedy(A) = optimal(A).
e Let A2 10. Then by induction hypothesis: greedy(A-10) = optimal(A-10).
 Note that greedy(A) = 1+ greedy(A-10).

e Also note that optimal(A) = 1 + optimal(A-10) (since optimal solution must use at
least one 10 dollar coin for A > 10).

 Hence greedy(A) = optimal(A).

What goes wrong with {1,6,10} in this argument ?

Kruskal’s Algorithm

Kruskal’s algorithm finds a minimal spanning tree in a connected, weighted
graph G with vertex set {1, ..., n}.

A spanning tree is a tree T such that every pair of vertices are connected via
edges in T. A minimal spanning tree is a spanning tree such that the sum of
the weights of all its edges is the least among all spanning trees.

Note: A forest with (n-1) edges is a spanning tree.

|Idea (Greedy approach):
1. Start with S having no edges.

2. Add an edge of minimum weight not contained in S, to S, such that S
does not contain a cycle.

3. Keep doing this till S contains n-1 edges.
4. Atthe endsinceSis a forest with n-1 edges, it must be a spanning tree.

Kruskal’s Algorithm

The input to the algorithm is edgelist, an array of edge, and n. The members
of edge are:

1. vandw, the vertices on which the edge is incident.
2. weight, the weight of the edge.

The algorithm uses subroutines that manipulate sets of vertices:
1. makeset(v): makes a set containing the vertex v alone.

2. findset(v) : returns the name (e.g. the least element in it) of the set
containing vertex v.

3. union(v,w): does the union of the sets containing v and w.

We can assume that these subroutines run in time O(log n).

Kruskal’s Algorithm

Input Parameters: edgelist,n
Output Parameters: None

kruskal(edgelist,n) {
// sort according to the weight of the edges
// in nondecreasing order
mergesort(edgelist)
fori=1ton
makeset(7)
count =0
1 =1
while (count <n —1) {

if (findset(edgelistlilv) ! = findset(edgelist]i].w)) {

println(edgelist[i].v + “ 7 + edgelist[i].w)
count = count + 1

union(edgelist[i].v, edgelist[i].w)

}

1=1+1

}

}

Time Analysis:

* Since the graph is connected

m > n-1.
* There are O(m) makeset, findset
and union operations, time taken
is O(m log m).
* Sorting takes time 6(m log m).
* Hence total time is 8(m log m).

Correctness of Kruskal’s Algorithm
Proof Idea

 Let Sbe the set of edges chosen so far by the algorithm.
e We show by induction that S is a part of a minimal spanning tree.
e Base case is true since at the beginning, S is empty.

e Let e bethe new edge chosen by the algorithm. Let the statement be true for
S and we show it is true for S U {e}.

e Let T be a minimal spanning tree containing S. If T contains S U {e} then we
are done. Otherwise T U {e} must form a cycle C.

e LetelbeanedgeinTnotisS which is part of C. Then weight(el) > weight(e)
(since: we could have added either el or e but we added e).

e ConsiderT1=TU{e}—{el}. Then Tl is also a spanning tree and T1 contains S
U {e}. Also weight (T) > weight(T1). But T was a minimal spanning tree and
hence T1 is also a minimal spanning tree. Hence S U {e} is part of a minimal
spanning tree T1.

At the end of the algorithm S contains n-1 edges and is a part of minimal spanning
tree and hence it is a minimal spanning tree.

Prim’s Algorithm

Prim’s algorithm finds a minimal spanning tree in a connected, weighted graph G with
vertex set {1, ..., n}.

Only difference with Kruskal’s algorithm: Intermediate graph is a tree instead of a forest.

Idea (Greedy approach):
1. Start with S having no edges.

2. Add an edge e of minimum weight not contained in S, to S, such that S does not
contain a cycle.

3. Ensure that one of the endpoints of e touches S and the other does not (this is the
only difference with Kruskal’s algorithm).

4. Keep doing this till S contains n-1 edges.

5. Atthe endsince S is a tree with n-1 edges, it must be a spanning tree (proof of
correctness done in class, similar to Kruskal Algorithm’s proof of correctness).

Running time: Can be made 6(m log n) by using binary heaps and can be made
B(m + log n) by using Fibonacci heaps.

Quiz-1
(5 marks, 15 minutes, open book)

Write an algorithm (pseudocode) which has:

Input: An array a (an n element array, all elements distinct)

Output: A 2 dimensional array perm (which has n! rows and n
columns; permli,j] represents the element in the ith row
and the jth column). Each row of perm is a distinct
permutation of the elements of a.

Quiz-1: One Solution

Input parameter : a
Output parameter : None

creat — perm(a) {
n = a.last
if (n==1){
perm|1, 1] = al[l]
return perm }
fori=1ton {
// create array b with all elements
// in a except ali]
forj=1to1—1

bj] = alj
forj=1+1ton

blj — 1] = al[j]
p = create — perm(b)

startrow = (¢t — 1)(n — 1)!
for k=1to (n—1)!{
perm|[startrow + k, 1] = ali]
for j =2ton
perm|startrow + k, j| = plk,j — 1]
o

return perm

}

Dijkstra’s Algorithm

This algorithm takes as input a weighted graph and a start vertex. It outputs the shortest path from the

start vertex to all other vertex in the in the graph.

Input Parameters: G (graph is input in the form of adjacency list which also contains the weights of the

edges), start (start vertex)

Output Parameters: predecessor (array which tells for every vertex, the previous vertex in the shortest
path from start), key (array which tells for every vertex the length of the shortest path from start)

dijkstra(G, start, predecessor, key) {
n = number of vertex in G
fori=1ton {

keyli] = oo

predecessor[i| = -1}

key[start] =0

S ={} // empty set

while S does not contain all vertex {
v = vertex not in S with minimum key value
S =SuU{v}

for every neighbour w of v not in S {
if (key[v] + weight(v,w) < key[w]) {
keylw] = key|v] + weight(v, w)
predecessorfw]|=v } } } }

Running time:

Can be made 6(m log n) by using
binary heaps and can be
made 6(m + log n) by using
Fibonacci heaps.

Proof of correctness

Proof is by showing loop invariants. We maintain three loop invariants.

Let I[w] represent the length of a shortest path from start to w.

1. Foreveryvertexwin G: key[w] > [[w].

2. ForeveryvertexwinS: key[w] = I[w].

At the end S contains every vertex in G and hence key[w]=I[w] for every vertex in G.
3. Foreveryvertex winS: predecessor[w]=u then I[w] = [[u]+ weight[u,w]

At the end S contains every vertex in G and hence u is the predecessor of w in a shortest
path from start to w.

Base case is true.

Assume the three invariants are true at the beginning of some iteration of the loop. We
show they are true at the end of that iteration as well. Let N(v) represent the
neighbors of v for which key was decreased in this iteration.

1. Forwin N(v):
key[w] = key[v] + weight(v,w)
> [[v] + weight(v,w) (using 1. at the beginning of the iteration)
= length of some path from start tow
> I[w].
Hence invariant 1. is true at the end of the iteration as well.

Proof of correctness

Assume it is true for S. Need to show that invariant is true for S U {v}.

Hence need to show key[v] = l[v]. We know key|[v] = |[v], because of invariant 1.
at the beginning of the iteration. If key[v]=I[v] then we are done. Hence
assume for contradiction that key[v] > |[v]. Let

(start...w’ w ... v) be a shortest path from start to v such that (start ... w’) isin S
and w is not in S. Note that (start ... w” w) is also a shortest path from start to
w. Hence

key[v] > l[v] =2 l[w] = l[w’] + weight[w’,w]
= key[w’] + weight[w’,w] > key[w]

This is contradiction to the fact that key[v] was the smallest among vertices not
inS.

Assume it is true for S. Need to show that invariant is true for S U {v}. Hence
need to show I[v] = l[u]+ weight[u,v], where u = predecessor[v]. Note that
predecessor[v] # -1, since key[v] = l[v] # o= (using invariant 2. for v just shown).
Also note that uisin S.
I[v] = key[v] = key[u]+ weight[u,V]
= [[u] + weight[u,V] (using invariant 2. for S)

Huffman Codes

A Huffman code for characters a,, a, ..., a, is a prefix-free code (or just
prefix code) of bits 0 and 1. That is each a, is represented by a string of O
and 1.

A Huffman code can be represented by a binary tree (Huffman tree) with
the leaves being the charactersa,, a, ..., a, .

Suppose we are given characters a,, a, ..., a,, with frequencies f, f, ..., f .
Let there be a Huffman tree T with the path-length for character a, (from
the root) being p, . The weighted path length of T is

wpl(T)=p, f, +p,f,+..+p,f, .

Optimal Huffman tree T is a tree such that wpl(T) is minimum among all
Huffman trees.

Huffman’s Algorithm

Input Parameter : a : each element in the array is (character, frequency)
Output Parameter: None (the algorithm returns the root of an optimal
Huffman tree)

huffman(a) {

n = a.last

copy a into h

fori=1ton—1{

let [be a character with least frequency among all characters in h
delete [and its frequency from h

let r be a character with least frequency among all characters in h
delete r and its frequency from A

create node v; in the tree T'

set [and r to be the left and right child of v;

set frequency of v; to be frequency of [plus the frequency of r
insert v; and its frequency in h

}

return v,,_1

}

Time : Since each operation in the loop can be done in O(log n) total time is O(n log n).

Proof of correctness

Claim-1: Let f, and f, be two least frequencies in (f,, f,, ..., f,). We show there
exists an optimal Huffman tree in which f; and f, must be at the lowest level
and also be siblings of each other.

Proof: Let T be an optimal Huffman tree. Let f, not be at the lowest level in T.
Let f be at lowest level. Let p, be the path length of f, and let p be the path
length of fin T. Thenp > p, and f > f,.

Let T, be a tree such that f and f, are swapped in T. Then
wpl(T;) = wpl(T) - pf-p,f; +pf; + p,f
= wpl(T) = (p — py)(f — ;) < wpl(T)
Hence T, is also an optimal Huffman tree.

Now if f, is not sibling of f, in T, swap the sibling of f; with f, to get tree T,. By
doing previous arguments we can say that T, is also an optimal Huffman
tree.

Proof of Correctness

Claim-2 : Let T, be the tree output by Huffman’s algorithm. T, is an optimal Huffman tree.
Proof: The proof is by induction on n.
Base case : n =2 : Is easily seen since there is only one Huffman tree in this case.

Let n > 2. Let T, be an optimal Huffman tree as in Claim-1. Consider T,” with f, and f,
deleted in T, and the parent assigned frequency f, + f,. Note that

wpl(T,’) = wpl(T,) = f, —f,. Hence T,” must be optimal for (f;+ f,, f5, ..., f.).

Let T,” be with obtained from T, with f, and f, deleted and the parent assigned frequency

f, +f,. Then we have wpl(T,’) = wpl(T,) — f, = f,. Note that T,” is the output of the algorithm
for frequencies (f;+f,, f;, ..., f,).

By induction hypothesis for n-1, wpl(T,’) = wpl(T,’). Hence
wpl(T,) = wpl(T,) + f, + f, = wpl(T,’) + f, + f, = wpl(T,).

Hence T, is an optimal Huffman tree.

The Continuous-Knapsack problem

n
max y ._; Tipi max) ;_q TP

subject to the constraints: subject to the constraints:

S jrw; <C, oz ={0,1} S jrzw; <C; 0<z;<1
The 0/1 knapsack problem The continuous knapsack problem

Idea of the algorithm for continuous knapsack problem:
Greedy approach

1. Sort p,/w, in the non-increasing order.

2. Include objects in this order till your capacity C is
exhausted.

The Continuous-Knapsack problem

Input Parameters: a,C "
(each element a[i] has two parts a[i].p and a[i].w) max) iy Lipi
Ouput Parameters: z
subject to the constraints:

continuous — knapsack(a, C) {

n = a.last S jriw, <C; 0<z;<1
fori=1ton{
. 11 alil.p
ratioli] = ORT
z[il =0 }
mergesort(a, ratio)
W =0 Time Analysis:
J=1
while (7<n _&& W <0){ While loop runs in time
if EBI/[I{}tal[g].w <O B(n) and sorting takes
V[/j:_W taljlw) time 8(n log n), hence
else { overall time is 6(nlog n).
z[j] = S
w=C }
j=j+1 }

Correctness

Let {z;} be the solution produced by the algorithm for input {C,w;, p;}.
Let {y;} be any other solution which satisfies the contraints.
Let k£ be the smallest index with x;, < 1. We will show,

Vi: (zi—) (p—) > (z; — u1) (p—‘“), and

This will imply:

n n
D
Z(ﬁ% yi)pi = Z(ﬂﬁz ’y?;)’w?:ji
=1 =1
n p
k
= Z(ﬁfa yi)wéw_k
i=1
- p—k n |
_ Wi ;(xb yﬂ)wb
> 0.

= D e Tili 2)i YiDi -

Correctness
max y ., Tipi
subject to the constraints:
S riw; <C; 0<z; <1
Recall that k is the smallest index with z; < 1.

For i < k, since x; = 1, we have x; > y;. Also £ > ﬁ—’; (because the ratio

of profit to weight is sorted in non-increasing order). Hence

(x; — i) (5—1) > (z; — y;) (i_:) .

For i = k we have (x; — y;) (%) = (x; — Y;) (%)

For i > k since 2; = 0, we have x; < y;. Also £t < g—’; (because the ratio of

T

profit to weight is sorted in non-increasing order). Hence

(x;i — i) (?%) > (2 — y;) (i—i) .

Applications in real life ?

* Dijkstra shortest path algorithm for google maps.
e Sorting for library, dictionary

e Searching for internet websites

Dynamic Programming

Basic of dynamic programming

In order to solve the big problem solve sub-problems first.

The difference with Divide-and-Conquer is that in this case it is not clear
which sub-problems should be solved.

Therefore in dynamic programming all sub-problems that might be
needed are solved.

First the simplest sub-problems are solved and then the more complex
ones are solved, all the way up to the original problem.

The results of the sub-problems are stored in a table and used later
whenever needed.

Computing Fibonacci Numbers

fn - fn—l + fn—2

Input Parameter: n
Output Parameter: None

fibonacci — recurs(n) {

if (n==1)
return 1

if (n == 2)
return 1

return(fibonacci — recurs(n — 2)
+ fibonacci — recurs(n — 1))

}

Very inefficient. f, , f,, f; etc. are

calculated exponentially many times.

Time : 6(2")

h=fh=1

Input Parameter: n
Output Parameter: None

fibonacci — iterative(n) {
// f is a local array

if (n==1)
1) =1
if (n == 2)
=1

fori =3 ton {
flil = fli =1+ fli = 2]

return f[n|

}

Efficient : Time is B(n)

This is an example of a dynamic
program.

Memorized recursive algorithm

mem — fibonacci(n) {
fori =1ton

results[i] = —1 // —1 means undefined
return mem — fibonacci — recurs(results,n)

}

mem — fibonacci — recurs(results,n) {

if (results[n]!= —1)
return results[n|

if (n==1) Time : 8(n)
val =1

else if (n == 2)
val =1

else {

val = mem — fibonacci — recurs(results,n — 2)

val = val + mem — fibonacci — recurs(results,n — 1)
}
results|n] = val
return val

}

Coin-changing revisited

denom|[1] > denom|[2] > ... > denom[n] =1

Input Parameters: denom, A
Output Parameters: C, used

dynamic — coin — change(denom, A, C, used) {
n = denom.last
for j =0to A {

Clnllj] = j

used[n][j] = true

}

for : =n — 1 downto 1
for j=0to A

if (denoml[i] > j || C[i +1][§] < 1+ C[i][j — denom][i]]) {
Clills] = Cli + 1][7]
used|i][j] = false

}

else {
Cli|[7] = 1 + C[i][j — denomli]]
used|[i|[j] = true

}

Idea: Let ¢; ; represent the minimum
number of coins of denominations
denom[i] to denom[n] needed to get
amount j.

Start with ¢, ;=] forall j from O to A.
Iteratively calculate by running i
from n-1 downto 1 and j from O to A:

C,j = Min{Ci1,j, 1+ € j.genompi}

The idea is that for finding c; ;, either

a) you use denomli] in which case
C,; =1 *+C i genomii

b) oryou do not use denomli] in

which case Cij = Cisp,j

Time : B(n A)

Optimal substructure property

If S is an optimal solution to a problem, then the components of S are
optimal solutions to subproblems.

For a dynamic-programming algorithm to solve an optimization problem
correctly, the optimal substructure property must hold.

This property holds for coin-changing problem.

This property does not hold for longest-simple-path problem : For a
connected weighted graph, and vertices (v,w), find the longest simple path
fromv to w.

Midterm Answer 1

Tn)=Tn—-1)+n*> ; n>1

Tn)=n*+n—-1)°+n—-2)2%*+...+12+T(0).

Therefore T'(n) < n-n*+T(0) = O(n?).
Also T(n) >n*+(n—12+(n—2)+...+ (%)*

Hence overall T'(n) = ©(n?).

Midterm Answer 2

14
fi=2,f2=4,f3=28, fy = 16. "

2 4 8 16
weighted path length = 2%x3+4%x3+ 82+ 16 % 1 = 50.
For general n: weighted path length =

2" 142" 242" 234+ . 4+4-(n—1)+2-(n—1)

n

= Zz‘-zf‘*”l—z = 2-§:@-2”i—2 = 2(2?1:@-2”’5—1
i=1 i

=1

= 2(n2"—=1)—((n—-2)2"+2)—-1) = 2""2_2n—6

Midterm Answer 2

For general n: weighted path length =
(2714277124272 34 ... 44-(n—1)+2-n) -2
=2"t2 _2.n—6

2n 4 2nl 4 484442 =272

+ o=l 484442 =2"-2

+ 8+4+ 2
+ 442 =23-2
| 2 :22_2

=(2"? —-4)-2-n

Midterm Answer 3

Idea:

1.

Sort S in increasing order.

Set n to be the size of S.

. Set 7 =0, last = 1.

. While last <n

Choose k to be maximum index

such that S[k] — S[last] < D.
Set 7 =754 1,last =k + 1.

Output j.

Input Parameters : a, D
Ouput Parameters: None

set — partition(a, D) {

n = a.last

// sort a in increasing order

mergesort(a)

=0

last =1

while (last < n) {
k=last+1
while (k < n && alk] — a[last] < D)

{k=k+1}

j=J+1
last =k

}

return 7

}

Time : While loop will take time O(n) and mergesort will take time 6(n log n).
Hence total time is 8(n log n).

Midterm Answer 3

The proof of correctness will be via induction on n which is the size of S.

Base case n = 1 is easily seen since then there is just one partition.

Let n > 1. Let 51,55,...,5, be the partition of S that is produced by the
algorithm on input (S, D).

Let T1,T5,...,T,, be an optimal partition of S for input (.S, D).

Let a[j] be the minimum element in a. Then a[j] € S;. Let a[j] € T;, then
T; C 5.

Now move the elements in S; — 7; (if any) from other subsets in optimal
partition into 7;.

Let the new sets obtained be T, T3, ..., T .
of S. Also now T} = 5.

Let S’ =S — S;. Note that |S’| < |S5|.

Note that Ss,...,S, will be the partition of S’ produced by the algorithm
on input (S, D).

Also note that T7,...,7;_,,T],,...,T,, will be an optimal partition of S’
on input (S5, D).

Therefore from induction hypothesis » — 1 = m — 1. Hence r = m.

This is also an optimal partition

Midterm Answer 4

Input Parameters: a,b

Median(a,b) Output Parameters: None
1. Setn to be the number of elements T:dffgft)4
ina (alsoin b). i— k=1
j=l=n
2. Ifn=1 while (7 > i && 1| > k) {
1. Ifa[1] 2 b[1], then return b[1] if (9[(i(_+£ - 1)1/)2/]22 bl(k +1-1)/2]) {
. j=0+7-
2. Otherwise return a[1]. k= (k+1+1)/2
}
1. Ifa[n/2] = b[n/2] else {
1. Then note that i=(@+j+1)/2
a[n/2] 2 Median(a U b) 2 b[n/2+1] l=(0+k—-1)/2
2. The problem now reduces to size n/2 }
and then we can proceed similarly. }
if (ali] > b[1])
5. Ifa[n/2] <b[n/2] return bl
1. Then note that — .
a[n/2+1] < Median(a U b) < b[n/2] return af]
2. The problem now reduces to size n/2 }

and then we can proceed similarly.

Time : With each iteration of the while loop, the difference between j and i (similarly the difference
between | and k) reduces by factor of 2. Hence while loop can run log n times. Hence overall running
time is O(log n).

Optimal Matrix Multiplication

]\/fsize[{)],size[l] X Msize[l],size[Q] Xoeee X]\’fsize[n—l],size[n]

Need to multiply matrices by using least number of scalar multiplications.

Input Parameters : size

(First matrix is size[0] x size[l], second matrix Idea : Let sJi,j] represent the minimum
is size[l] x size[2], nth matrix is size[n — 1] x size[n]) number of scalar multiplications needed
Output Parameters: s to multiply ith matrix through jth matrix.
opt — m{ltrilﬁf — mult(size, s) { The idea is that to find s]i,j] you check for
fornz.;sfzti fLSt groupings (i,k) and (k,j) for all k between i
s[i][i] = 0 and j; one of them must be optimal, so
for w=1ton—1 take their minimum.
fori=1ton—w {
J=wt . . : :
s[i][j] = oo Start with s[i,i]= 0 for all i. Iteratively
fork=itoj—1{ _ | calculate by increasing w from 0 to n-1
q = slil[k] + slk + 1lj] + sizeli = 1] - sizelk] - sizelj] | 314 increasing i from 1 to n-w :
if (g < s[t][5])
slilli] = q
s[i,i+w] =
| } min,{s[i,k] + s[k+1,i+w] + size[i-1]size[k]size[i+W]}

Time : 6(n3)

The longest common subsequence problem

Given two sequences a[l], ..., a[m] and b[1],b[n]
find a subsequence ali,], ..., ali,] of a[1], ..., a[m]
and find a subsequence b[j,], ..., b[j,] of b[1], ..., b[n]
such that ali,] = blj,], ..., ali,] = blj,].

The task is to maximize k.

Example: For

a,b,cdef and a,e, cf,dgp

A longest common subsequence is (a, ¢, d). Another is (a,c,f).

The longest common subsequence problem

The task is to find the longest common subsequence of a[l], ..., a[m] and b[1],...,b[n].

Input Parameters: a, b
Output Parameters: ¢

LCS(a,b,c) {
m = a.last
n = b.last
fort: =0tom

c[i][0] =0
for j=0ton

c[0][j] =0
fori=1tom

forj=1ton

if (ali] ! = blj])
<] = max(cl - 0l - 1)
cli]lj] =1+ cli = 1][j — 1]

Time : B(mn)

Idea : Let c[i][j] be the length of a longest common
subsequence of

a[l], ..., ali] and b[1], ..., b[j]

fori=0, .., mandj=0, .., n.

The idea is that if a[i]=b[j] then a[i] appears in a longest
common subsequence, otherwise a longest common
subsequence needs to be found in

a[1] ... ali-1] and b[1] ... b[j]

Or

a[1] ... afil and b[1] ... b[j-1]

Start with c[i][0] = 0 for all i and c[0][j]=0 for all j.
Iteratively calculate by increasing i from 1 to m and
increasing j from 1 to n:

If a[i] !=b[j] then
c[i]j] = max{cli-1][j] , c[i][j-1]}

else
c[i][jl = 1+ c[i-1][j-1] .

Floyd’s algorithm for All Pairs Shortest Paths

We want to find shortest paths between all pairs of vertices in a simple,
undirected, weighted graph G. We are given matrix A (as a two dimensional
array), such that A[i][j] is the weight of the edge (i,j), if there is edge (i,j).
Otherwise A[i][j] is o= .

|dea: Let A¥ represent the matrix such that AX[i][j] is the length of a shortest
path from i to j, where the intermediate vertices allowed is {1,2, ..., k}.

Initially A° = A, when no intermediate vertex is allowed.

Assume we have computed A1, Then to compute AX[i][j] :

a) If k appears in a shortest path between i and j with intermediate
allowed vertices being {1, ..., k}, then

AMi][j] = A% [K] + AtDK](j]

b) If k does not appear in a shortest path between i and j with
intermediate allowed vertices being {1, ..., k}, then

A [j] = A%

Floyd’s algorithm for All Pairs Shortest Paths

In the algorithm below, at the end A[i][j] is the length of a shortest path
between i and j. Also next[i][j] is the vertex after i, in a shortest path from
i to .

Input Parameter : A
Output Parameters: A,next

all — paths(A,next) {
n = A.last
// initialize next: if no intemediate
// vertices are allowed next[i][j] = j
fori=1ton
forj=1ton
next|i][j] = j
fork=1ton
fori=1ton
forj=1ton
if (Al2][k] + A[K][5] < A[z][5]) {
ALi)j) = A][F] + A[KIL]
next[i][j] = next[i][k]

}

Time : 6(n3)

Warshall’s Algorithm

We are given a simple, undirected, weighted graph G. We want to find for all
pairs of vertices, if they are connected or not? We are given adjacency matrix A
(as a two dimensional array), such that A[i][j] is 1 if there is an edge (i,j);
otherwise AJi][j] is 0.

Idea: Let Ak represent the matrix such that AX[i][j] =1 if there is a path from i
to j, where the intermediate vertices allowed is {1,2, ..., k} (otherwise AX[i][j]
=0).

Initially A° = A, when no intermediate vertex is allowed.
Assume we have computed A1, Then to compute AX[i][j] :
a) If k appearsin a path between i and j with intermediate allowed vertices
being {1, ..., k}, then
AX[i][j] = Al-D[i][k] AND Al<b[k](j]

b) If k does not appear in a path between i and j with intermediate

allowed vertices being {1, ..., k}, then
AX[i[j] = Al

Warshall’s Algorithm

In the algorithm below, at the end A[i][j] =1 if there is a path between i

and j.

Input Parameter : A

Output

Parameters: A

warshall(A) { Time : 6(n?)
n = A.last

for k =

1ton

forer=1ton

for

j=1ton

if (Als][k] + A[K][5] = 2) {

}

Ali][j] =1

Let R be a relation on a set X (that is R C X x X). The transitive closure
of R is the set

R’ = {(x1,x}) such that (z1,29) € R, (x2,23) € R, ..., (zr_1,7%) € R}.

Warshall’s algorithm can also be used to find the transitive closure of R. R
is input in the form of a matrix A such that A(i,j) = 1 if (4,7) € R, otherwise
A(i,j) = 0. Finding transitive closure is exactly like finding if (7, j) is connected
in the graph with its adjacency matrix being A.

P and NP

(warning: NP is NOT ‘not P’)

Decision problems and Function problems

A decision problem L is a set of binary strings.

An algorithm A is said to accept an input string x, if A(x) = 1.
(A(x) represents the output of the algorithm A on input x).

An algorithm A is said to reject an input string x, if A(x) = 0.

Algorithm A is said to decide L if A(x) =1 for all xin L and A(x) = 0 for all x not in
L.

e.g. Graph connectivity problem : Lis the binary encodings of graphs that are
connected.

Function problems: Algorithm needs to compute a function f(x), given input x.

e.g. Factoring problem: Given a natural number, output smallest divisor greater
than 1.

P (for polynomial time)

We say that algorithm A is a polynomial time algorithm if there exists constants k,
¢, such that on all inputs x, A outputs A(x) within time ¢ |x|* (and uses at most
c |x|* binary cells of memory).

We say a decision problem L can be decided in polynomial time if there is a
polynomial time algorithm A that decides L. We define:

P={L | Lcan be decided in polynomial time}.

Theorem: Let A and B be polynomial time algorithms. Let C be an algorithm that is
composition of A and B, that is C(x) = A(B(x)); C first run B on input x and then
runs A on input B(x). Then Cis also polynomial time algorithm.

Proof:

When B runs on input x, it takes time at most d, |x|* (where d, , k1 are some
constants).

When A runs on input vy, it takes time at most d, |y|*?(where d, , k2 are some
constants).

Therefore when C runs on input x, it takes time at most d, |x|*! to produce B(x)
and then takes time at most d 2 (dy [x|¥1)¥ (since |B(x)| <d,; |x|¥) to produce
A(B(x)). Hence total time taken by Cis at most d; | x|*3 (where d; , k3 are some
constants).

The issue related to encodings:

Let L, = {1 (unary encoding): p is a prime}; L, can be decided in polynomial
time. Just check for all number n, between 1 and p, if n divides p.

Let L, = {p (binary encoding): p is a prime}; we do not know if L, can be
decided in polynomial time. The algorithm above takes exponential time.

Theorem: Let L, a set of binary strings, be decided in polynomial time.

Let L, = {t-ary encoding of x | x in L}. Then L, can be decided in polynomial
time, forany t > 2.

Proof: Let A be a polynomial time algorithm for deciding L. Let B be a
polynomial time algorithm which converts any t-ary string to equivalent
binary string.

Then define C(x) = A(B(x)). By a previous theorem C is also polynomial
time. Also C decides L, .

Nondeterministic Algorithms

A nondeterministic polynomial time algorithm M.

M(x) {

\\ guess a witness string w, of length polynomial in |x|
guess w,

\\ Vis a polynomial (in |x|) time algorithm
Output V(x,w,)

}

We say that a problem L is decided by M if the following two conditions hold:
1. Ifxisin L, then there exists a w, such that V(x,w,) = true .
2. Ifxisnotin L, then for every string w,, V(x,w,) = false.

We say that L can be decided in nondeterministic polynomial time if L can be
decided by a nondeterministic polynomial time algorithm M. We define:
NP ={L | L can be decided in nondeterministic polynomial time }.

Since every deterministic polynomial time algorithm is also a nondeterministic
polynomial time algorithm (where there are no guesses), it implies P is subset of
NP.

Some problems in NP

Graph-Corolaribity = { <G,k> | G can be colored using k colors such that no two adjacent vertices get the same
color}

Graph-Coloroability (x) {
if x is not a valid encoding of a graph and a number
return false
else
let x = <G=(V,E),k>
// guess a color for each vertex
foreachvinV
guess the color c[v]
// check that the coloring is valid
foreachvinV
if (c[v] notin {1,2,..k})
return false
foreachvinV
// N(v) is the neighbors of v
for each win N(v)
if (c[w] == c[v])
return false
return true

}

Time: O(|V]| + |E|), hence nondeterminitic polynomial time.

Some problems in NP

Hamiltonian-Cycle = {< G > | G has a cycle which touches all vertices exactly once}

Hamiltonian-Cycle (<G>) {

// G=(V,E), V={1,2,...n}

n=[V|

// guess the sequences of vertices that will appear in a Hamiltonian Cycle
guess vy, V,, ..., V,,

// check only edges in G are used

// check that all vertices are visited

fori=1ton
visited[i] = false
fori=1ton

visited[v,] = true
if (v, v,,;) isanotanedgeinG
return false
fori=1ton
if (visited[i] = false)
return false
return true

}

Time : O(|V]), hence nondeterminitic polynomial time.

Some problems in NP

Traveling Salesperson (TSP) ={< G,w > | G is a weighted graph with Hamiltonian cycle of weight
at most w}

TSP(<G,w>) {
// G=(V,E), V={1,2,..n}
n=|V|
// guess the sequences of vertices that will appear in a Hamiltonian Cycle
gUess Vy, Vy, ..., V,,
if vy, vy, ..., v, is @ not Hamiltonian cycle
return false
// check that the total weight of the cycle is at most w
t=0
fori=1ton-1
t =t + weight(v,, v,,)
if (t>w)
return false
return true

}

Time : O(|V]), hence nondeterminitic polynomial time.

Exponential time

We say that algorithm A is an exponential time ?(Igorithm if there exists constants k, c, such that
on all inputs x, A outputs A(x) within time ¢ 2IXI".

We say a decision problem L can be decided in exponential time if there is an exponential time algorithm A that
decides L. We define:

EXP ={L | L can be decided in exponential time}

Theorem : NP is a subset of EXP .
Proof : Any L be in NP. Consider a nondeterministic polynomial time algorithm for L. It is of the form:

NPalgoforL(x) {

guess w, of length ¢, | x|

// V is a polynomial time algorithm running in time c, | x|
return V(x,w,)

}

EXPalgoforL(x) {
for all w, of length at most ¢, | x|**
if (V(x,w,) = true)
return true
return false

}

EXPalgoforL(x) runs in time O(c, | x| <2 2c1IxI) =5 214 Hence Lis in EXP.

Reducibility

We say that a problem A reduces, in polynomial time, to problem B, and
we write A <, B, if there is a function f that can be computed by an algorithm
in polynomial time such that for all strings =,

reAs f(x) € B.

We also say that f is a polynomial time reduction from A to B. We also say
that A reduces to B in polynomial time via function f.

Theorem : If A <, B and B € P, then A € P.

Proof: Let f be a polynomial time reduction from A to B computed by
algorithm R. Let M be a polynomial time algorithm for B. Consider following
polynomial time algorithm for A.

N(z) {
y = R(z)
retrun M (y)

}

Hence A € P.

NP Completeness

Theorem : If A <, B and B <, C, then A <, C.

Proof: Let A <,, B via polynomial time reduction f and B <, C' via poly-
nomial time reduction g. Then

re€As f(z)e B& g(f(x)) e C.

Define h(z) = g(f(x)). Then from a previous theorem, h can be computed in
polynomial time. Hence A <, C' via h.

Definition: We say that a problem B in NP is N P-complete if for all NP
problems A, we have A <, B.

Theorem : If A and B are problem in NP, A is NP-complete and A <, B,
then B is N P-complete.

Proof: Let C be any problem in NP. Then C' <, A (since A is N P-complete)
and we are given A <, B. Hence from previous theorem C' <,, B. Therefore B
is N P-complete.

Theorem : If any NP complete problem is in P, then NP = P.

Proof: Let B be an N P-complete problem that is in P. Let A be any problem
in NP. Then A <, B. By a previous Theorem, A € P. Hence NP C P. We
know P C NP. Hence P = NP.

Boolean formula

A boolean formula is an expression involving boolean variables z1, 2, ... and
boolean operators: conjunction (AND) (A), disjunction (OR) (V) and negation

(NOT) ().

A formula that is true for some truth assignment (true/false) to its variables
is called ‘satisfiable’. A formula that is false for all assignments of truth values
to its variable is called ‘unsatisfiable’.

Example : (z1 V Z;) is satisfiable.

Example : (z1 A Z1) is unsatisfiable.

A boolen formula in CNF (conjuntive normal form) is ‘AND of ORs’.

Example : (x1 VZ5) A (x4 V Zg V Z1)

(1 V T5) and (x4 V Tg V Z1) are called clauses of this CNF formula.

r1,Ts,Ts, T4 are called literals. x1,xz4 are positive literals and s, zg are
negative literals.

We say a formula is k-CNF if every clause contains exactly £ literals.

A boolen formula in DNF (disjunctive normal form) is ‘OR of ANDs’.
Exa,mple : (1133 N Tg N 568) V ($4 AN WA $3)

Cook-Levin Theorem — First NP-complete problem

Cook-Levin Theorem:

SAT = {< ¢ > | <¢ > is satisfiable CNF formula }
is N P-complete.

We will not get into the proof of this (beyond the scope of this course) but
use this as a starting point to show several other problems as /N P-complete.

3-SAT is NP-complete

Theorem : 3SAT = {< ¢ > | ¢ is a satisfiable 3-CNF formula} is N P-
complete.

Proof: Reduce SAT to 3-SAT. We are given CNF formula ¢. We will convert

¢ to 3-CNF formula ¢’ such that : ¢ is satisfiable if and only if ¢’ is satisfiable.
In other words

<¢p> € SAT & < ¢' > € 3SAT.

Reduce SAT to 3-SAT

Replace clause with single literal (1) by

UVyr Vy) AUV Vy) NIV yr Vi) ALV 51V i)

Replace clause with two literals ({1 V l2) by

(11\/22\/1}1)/\01\/32\/@1)

Replace clause with & literals (I3 Vis V...V) by

(l 1 ViV 3]1) A\
_ Arguments for correctness of
(y1 VI3V g2) A reduction done in class.
This reduction can be done
in polynomial time
(Yi—a V1 V Gi1) A (in the length of the original formula ¢)
to get new 3-CNF formula ¢'.

(Yk—a Vilk—2 V Jr—3) A
(Yr—3 V lg—1 V li)

Independent set is NP-complete

An independent set in a graph is a set of vertices such that there is no edge
between any two of them.

Theorem : Independent-Set = {< G,k > | G contains an independent set of size k}
is N P-complete.

Proof: Reduce 3-SAT to Independent-Set. Given a 3-CNF formula ¢ with m
clauses, we will produce a graph G with 3m vertices. G will have independent
set of size m if and only if ¢ is satisfiable. In other words

<¢p> € 3SAT & < G,m > € Independent-Set.

Proof done in class.

Cligue is NP-complete

A clique in a graph is a set of vertices such that there is an edge between
every two of them.

Theorem : Clique = {< G,k > | G contains a clique of size k} is N P-
complete.

Proof: Reduce Independent-Set to Clique. Easy to see that (G is complement
of G):)
< G,k > € Independent-Set & < G,k > € Clique.

Graph 3-colorability is NP-complete

Theorem :
Graph-3-colorability = {< G > | G can be colored using 3-colors }
is N P-complete.

Proof: Reduce 3-SAT to Graph-3-colorability. Proof done in class.

A few other NP-complete problems

Partition = {< (s1,s2,...,8,) > | There exists I C {1,2,...,n} such that >, ., si => .4/ 8; }-

Subset-sum = {< (s1,82,...,8n,k) > | There exists I C {1,2,...,n} such that >, ., s; =k }.

Hamiltonian-Cycle = { < G > | G has a cycle which touches all vertices exactly once}

Traveling Salesperson (TSP) ={< G,w > | G is a weighted graph with Hamiltonian
cycle of weight at most w}

Many other real world problems arising from Networks, Packing, Scheduling,
Graphs, Cryptography, Games, Computational Biology etc. are NP-complete. Very
little hope for finding polynomial time algorithms for these!

Algorithms for NP-complete problems

Approximation Algorithms

Bin Packing

Input : Sizes s[1], s[2], ..., s[n] € (0,1].
Output: Minimum number of bins (each of capacity 1) in which these objects can be packed.

next-fit(s) {
n = s.last
k=1// current bin

c[k] = 0 // capacity filled till now in current bin Theorem: newt — fz't(s) < QOpt(s)

fori=1ton
if (c[k] +s[i]<1){
b[i] = k "
c[k] = c[k]+ s[i] opt(s) > > sli]
} i=1
else { next— fit(s)
k=k+1 > c[k;]
bli] = k ;
c[k] = sJi] >
} > next — fit(s)
2
return k

}

Wigderson Coloring

Theorem : A 3-colorable graph can be colored in polynomial time using at most O(Vvn) colors.

Input : A 3-colrable graph G = (V,E)
Ouput : A valid coloring using O(Vn) colors.

Wigderson-coloring(G) {
n=|V|
c=0 // cis color count
while (V contains a vertex of degree at least vn) {
pick v of degree at least Vn
G" = (N(v), E)
two-color(G’, c) // this colors G’ using two colors c +1 and c +2
c=c +2 // move to the next set of colors
G =G —N(v)
}
S={c, c+], ..., n}
for eachvinV
color v with smallest color in S not used by any vertex in N(v)

Brute Force

Largest Independent Set Let a, be the running time. Then

Input : Graph G=(V,E) a
Output: None

- 2
n- an-1 + an-2 +Cn

Solving this recursion gives
Largest-independent-set(G) { a, =0(1.62")
if (E is empty)
return | V|
else {
pick first vin V such that N(v) is not empty
G, =G —{v}
G, =G —{v}—N(v)
k, = largest-independent-set(G,) // assume v is not in independent set
k, = largest-independent-set(G,) // assume v is in independent set
return max(k,, k, +1)

}

Brute Force

3-SAT

Input Parameter : 3-CNF formula ¢
Ouput : None

3-satisfiability(¢) {
if (¢ does not contain any clauses)

return ¢ // ¢ has to be logical
constant either true of false

if (p contains a clause with one literal a) {
¢, = d[a->true] // a has to be true
return 3-satisfaibility(d,)

}

if (p contains a clause with two literals a and
b) {

b, = d[a->true]

b, = dp[a->false][b->true]

return 3-satisfaibility(d,)) || 3-
satisfaibility(¢,)

}

if (¢ contains a clause with three literals a, b and c){
b, = dp[a->true]
b, = d[a->false][b->true]
b5 = dpla->false][b->false][c->true]
return 3-satisfaibility(d,)
| | 3-satisfaibility(¢,)
| | 3-satisfaibility(¢,)
}

Let a,, be the number of recursive calls made
by the algorithm on input formula with n
variables. Then

a, = an-1 + an-2 + an-3

n
Solving this recursion gives

a, = 0(1.84"). In each recursion the time
taken is O(| ¢ |) and hence total time taken is
O(|d| 1.84").

The best time known till now is O(| ¢ | 1.77")
due to Dantsin, Goerdt, Hirsch and Schoning.

	Design and Analysis of Algorithms
	Slide Number 2
	Slide Number 3
	What we cover in the course
	What we cover in the course
	What is an Algorithm ?
	Pseudocode - Example
	Algorithm analysis�Worst case, Average case
	Big Oh, Omega and Theta
	Recurrence Relations
	Examples
	Main Recurrence Theorem
	Proof Idea
	Proof Idea contd.
	Slide Number 15
	Divide and Conquer
	Divide and Conquer
	A Tiling Problem
	Idea of the algorithm
	Time Analysis
	Mergesort
	Subroutine Merge
	Idea of the algorithm
	Mergesort – Time Analysis
	Strassen’s Matrix Product Algorithm
	Strassen’s Matrix Product Algorithm
	Idea of the algorithm
	Finding a closest pair of points on the plane
	Idea of the algorithm
	Time Analysis
	What we did last time
	Sorting and Selection
	Insertion Sort
	Idea of the algorithm
	Quicksort
	Quicksort : Time analysis
	Randomized Quicksort
	Idea for partition algorithm�
	Idea of the algorithms
	A lower bound for comparison based algorithms
	Counting Sort
	Time analysis
	Radix Sort
	(Random) Selection
	Slide Number 45
	What we did last time
	Greedy Algorithms
	Coin Changing
	Optimality for {1,5,10}
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	Correctness of Kruskal’s Algorithm�Proof Idea
	Prim’s Algorithm
	Quiz-1 �(5 marks, 15 minutes, open book)
	Quiz-1: One Solution
	Dijkstra’s Algorithm
	Proof of correctness
	Proof of correctness
	Huffman Codes
	Huffman’s Algorithm
	Proof of correctness
	Proof of Correctness
	The Continuous-Knapsack problem
	The Continuous-Knapsack problem
	Correctness
	Correctness
	Applications in real life ?
	Dynamic Programming
	Basic of dynamic programming
	Computing Fibonacci Numbers
	Memorized recursive algorithm
	Coin-changing revisited
	Optimal substructure property
	Midterm Answer 1
	Midterm Answer 2
	Midterm Answer 2
	Midterm Answer 3
	Midterm Answer 3
	Midterm Answer 4
	Optimal Matrix Multiplication
	Slide Number 82
	The longest common subsequence problem
	Floyd’s algorithm for All Pairs Shortest Paths
	Floyd’s algorithm for All Pairs Shortest Paths
	Warshall’s Algorithm
	Warshall’s Algorithm
	P and NP ��(warning: NP is NOT ‘not P’)
	Decision problems and Function problems
	P (for polynomial time)
	P
	Nondeterministic Algorithms
	Some problems in NP
	Some problems in NP
	Some problems in NP
	Exponential time
	Reducibility
	NP Completeness
	Boolean formula
	Cook-Levin Theorem – First NP-complete problem
	Reduce SAT to 3-SAT
	Independent set is NP-complete
	Clique is NP-complete
	Graph 3-colorability is NP-complete
	A few other NP-complete problems
	Algorithms for NP-complete problems
	Approximation Algorithms
	Wigderson Coloring
	Brute Force
	Brute Force

