
Design and Analysis of
Algorithms

Rahul Jain

Lecturer : RAHUL JAIN
 Office : S15-04-01
 Email: rahul@comp.nus.edu.sg
 Phone: 65168826 (off)

Tutors :
 ERICK PURWANTO (erickp@comp.nus.edu.sg)
 ZHANG JIANGWEI (jiangwei@nus.edu.sg)

Prerequisites : (CS2010 or its equivalent) and
 (CS1231 or MA1100)

Book :

Title : Algorithms
Authors : R. Johnsonbaugh and M. Schaefer
Publication : Pearson Prentice Hall, 2004
 (International Edition)

Other reference books mentioned in the course home page :
http://www.comp.nus.edu.sg/~rahul/CS3230.html

Grading :
 50 marks for final exam
 35 marks for midterm exam
 10 marks for two quizzes (5 marks each)
 5 marks for tutorial participation

Tutorials : Start next week. Information available at
 course home page

Acknowledgment : We thank Prof. Sanjay Jain for
sharing with us his course material.

mailto:rahul@comp.nus.edu.sg�
mailto:erickp@comp.nus.edu.sg�
mailto:jiangwei@nus.edu.sg�
http://www.comp.nus.edu.sg/~rahul/CS3230.html�

According to my information current implementation of the R-modules is as
follows:

• Discuss with the lecturer that you would like to do the R-module.

• The lecturer will decide whether it is appropriate for you after teaching
you for a period (around middle of semester or end of semester).

• Start work on it after the lecturer has decided (middle of the current
semester or at the next semester). The course will be registered only in
the following semester.

Regarding CS3230R

What we cover in the course

Sorting/Searching/Selection
– A lower bound for the

sorting problem
– Counting sort and Radix

sort
– Topological sort of graphs

Divide and Conquer

– A Tiling problem
– Strassen’s Matrix Product

Algorithm
– Finding closest pair of

points on the plane

 Greedy Algorithms

Kruskal’s algorithm for Minimum
Spanning Tree
Prim’s algorithm for Minimum
Spanning Tree
Dijkstra’s algorithm for finding
shortest path between a pair of
points in a graph
Huffman codes
The continuous Knapsack problem

Dynamic Programming

Computing Fibonacci numbers
Coin changing
The algorithm of Floyd and Warshall

What we cover in the course

• P v/s NP
– Polynomial time, Non-deterministic algorithms, NP
– Reducibility and NP-completeness, NP complete problems

• How to deal with NP hard problems

– Brute force
– Randomness
– Approximation
– Parameterization
– Heuristics

Assume familiarity with :

• Basic data structures like Stacks, Queues, Linked lists, Arrays, Binary Trees, Binary Heaps,
• Basic sorting algorithms like Heap sort
• Basic search algorithms like Depth-First search, Breadth-First search
• Basic mathematical concepts like Sets, Mathematical Induction, Graphs, Trees, Logarithm

What is an Algorithm ?

Abū ʿAbdallāh Muḥammad ibn Mūsā al-Khwārizmī (c. 780 – c. 850)
A Persian mathematician, astronomer and geographer.

Properties :
• Input
• Output
• Precision
• Determinism
 (exceptions: randomization, quantum etc.)
• Finiteness
• Correctness
• Generality

Pseudocode : Has precision, structure, universality. It is unambiguous, clear enough (not

too rigorous, will not be concerned with semi-colons, uppercase, lowercase etc.)

Analysis :
• Correctness
• Termination
• Time analysis
• Space analysis

Pseudocode - Example

Algorithm for finding maximum
element in an array

if (condition)
 action 1
else
 action 2

do
{
 action
} while (condition)
 --
for var = init to limit
 action

for var = init downto limit
 action

Algorithm analysis
Worst case, Average case

Worst case analysis :
 t(n) = Maximum units of time

taken by the algorithm to
terminate for an input of size n.

Average case analysis :
 t(n) = the average units of time

taken by the algorithm to
terminate for an input of size n.

Similar analysis can also be done for

space required by the algorithm.

The worst case and average case times of the algorithm on an array of size n are each

constant * (n-1)

since the while loop is always executed (n-1) times, and every other operation takes
constant time.

Big Oh, Omega and Theta

Recurrence Relations

Examples

Main Recurrence Theorem

Proof Idea

Proof Idea contd.

 With today’s lecture and the material covered in pre-requisite courses we
have covered Chapters 1, 2, 3, 4 from the book.

Divide and Conquer

Divide and Conquer

1. If the problem is small solve it directly.

2. If the problem is big, divide it into subproblems. Solve
the subproblems, again using divide and conquer.

3. Combine the solutions of the subproblem to get the
solution of the original problem.

A Tiling Problem

Idea of the algorithm

• Divide the problem of size n by n into four subproblems
each of size n/2 by n/2.

• Place one tromino at the centre to create missing cells in
each subproblem.

• Solve the subproblems using recursion.

• 2 by 2 problem is solved directly.

Time Analysis

• Chu and Johnsonbaugh (1986) showed that if n ≠ 5, and n2 - 1 is divisible by 3 then the
n by n deficient board can be tiled using trominoes.

• Some 5 by 5 boards can be tiled and some cannot.

Mergesort

Subroutine Merge

Idea of the algorithm

• Divide the array of size n into two arrays of size n/2.

• Sort the two subarrays using recursion.

• Merge the two sorted parts using subroutine merge.

Mergesort – Time Analysis

Stable sort: A sorting algorithm is stable if the relative positions of items with duplicate
values are unchanged by the algorithm.

Mergesort is stable.

Strassen’s Matrix Product Algorithm

Strassen’s Matrix Product Algorithm

Idea of the algorithm

• Divide the problem of multiplying two n by n matrices into
the problem of multiplying 7, n/2 by n/2 matrices (you also
do constant number of additions of n/2 by n/2 matrices).

• Use recursion to solve the subproblems.

Finding a closest pair of points on the plane

Idea of the algorithm

• Divide the set of n points on the plane into two halfs (using x-coordinate).

• Find the shortest distance between pairs of points in the two halfs using
recursion. Let delta be their minimum.

• Consider a strip of size 2 times delta in the middle of the two halfs.

• Sort the points in this strip using y-coordinate (this can be done only using
merge since the subparts are already sorted according to y-coordinate).

• Start from bottom and compare each point with the next seven points to
identify the closest pair (this works because in each box that we
considered there can be at most 8 points).

Time Analysis

What we did last time

Divide and conquer:

1. Tiling problem
2. Mergesort
3. Strassen’s matrix product
4. Finding closest pair of points on a plane

Sorting and Selection

Insertion Sort

Idea of the algorithm

• Assume that the elements of the array arrive one by one.

• Keep inserting them at the right place in the current subarray which is
already sorted.

• Nice property: It is an online algorithm.

Quicksort
 The algorithm ‘partition’ inserts val at the index h such that values less than val are

on the left of index h and values at least val are on the right of h.

Quicksort Algorithm

Quicksort : Time analysis

Randomized Quicksort

Randomized Quicksort

Idea for partition algorithm

1. Let the current stage of array be like : F SSSS LLLL C RRRRR
2. F is first element, S < F, L ≥ F, C is the current element, R is rest of the

elements.
3. If current element C ≥ F, then don’t do anything, just let next

element on right to be C.
4. If C < F, then swap C with first L, and let next element on right to be

C.
5. At the end swap F with the last S element.

Idea of the algorithms

• Take an element of the array (of value val) and place it at the right index h.
Elements to the left of h are less than val and to the right are greater than
or equal to val (partition algorithm).

• Recursively sort a[i] … a[h-1] and a[h+1] … a[j]

• In normal quicksort, the element is taken to be the first element of the
array.

• In randomized quicksort, the element is randomly chosen among all
elements.

Quicksort is quite good in practice that is why ‘quicksort’.
No extra array is needed.
Quicksort is not stable.

A lower bound for comparison based algorithms

The worst case time of a comparison based sorting algorithm is Ω(n log n).

Proof done in class. Idea: Any comparison based algorithm will have a decision
tree, with n! leaves (for n bit inputs). Height of this tree is Ω(n log n).

A decision tree for the comparison based algorithm is a binary tree with the
nodes representing comparisons (a < b?), the left subtree represents the
continuation of the algorithm on the result of comparison being yes and the right
subtree represents the continuation of the algorithm on the result of comparison
being no.

Counting Sort
• Not a comparison based algorithm, uses some information about the

inputs i.e. the elements are numbers from 0 to m.
• Running time is linear, lower bound of Ω(n log n) does not apply.

Time analysis

• Since each loop runs in time θ(m) or θ(n), the running time is θ(m + n).

Idea of algorithm

• First make sure that c[k] = number of occurrences of value k in input array
a.

• Then make sure that c[k] = number of occurrences of value less than or
equal to k in input array a.

• Produce sorted array b using c.
• Copy b back to a.

Counting sort is stable (done in tutorial).

Radix Sort

Idea of algorithm: Starting from the least significant digit, sort using counting-sort.

Correctness of the algorithm shown in class. Running time is done in tutorial.

Radix sort was originally used to sort punch cards.

(Random) Selection

Finding median is a special case of this.

Idea of algorithm
• Using random-partition, get location p (note that everything to the left of

p will be smaller than the value at p and everything to the right will be at
least the value at p.)

• If k = p then stop.
• If k < p, act recursively on the left of p.
• Else act recursively on the right of p.

Running Time : The expected running time is θ(n). Proof done in class. Idea

similar to the analysis of random-partition. When element is selected
randomly, p is near middle (in expectation).

• The worst case time of random-select is θ(n2) (done in tutorial).
• Any deterministic algorithm solving selection must take time at least n.
• Deterministic algorithm due to Blum, Floyd, Pratt, Rivest and Tarjan (1973)

runs in time θ(n).

What we did last time

• Selection sort
• Quicksort
• Lower bound for comparison based algorithms
• Couting sort, Radix sort (not comparison based)
• Random Selection

Greedy Algorithms

Greed is Good !

Coin Changing

• The algorithm is not optimal for denominations {1,6,10}.

Optimality for {1,5,10}

The algorithm is optimal for denominations {1,5,10} for every input amount A. Idea:
use mathematical induction.

• Let greedy(A) represent the number of coins used by the greedy algorithm for
input amount A.

• Let optimal(A) represent the optimal number of coins for amount A.
• Can verify by direct calculation for A = 1, 2, … , 9, that greedy(A) = optimal(A).
• Let A ≥ 10. Then by induction hypothesis: greedy(A-10) = optimal(A-10).
• Note that greedy(A) = 1+ greedy(A-10).
• Also note that optimal(A) = 1 + optimal(A-10) (since optimal solution must use at

least one 10 dollar coin for A ≥ 10).
• Hence greedy(A) = optimal(A).

What goes wrong with {1,6,10} in this argument ?

Kruskal’s Algorithm

Kruskal’s algorithm finds a minimal spanning tree in a connected, weighted
graph G with vertex set {1, …, n}.

A spanning tree is a tree T such that every pair of vertices are connected via
edges in T. A minimal spanning tree is a spanning tree such that the sum of
the weights of all its edges is the least among all spanning trees.

Note: A forest with (n-1) edges is a spanning tree.

Idea (Greedy approach):
1. Start with S having no edges.
2. Add an edge of minimum weight not contained in S, to S, such that S

does not contain a cycle.
3. Keep doing this till S contains n-1 edges.
4. At the end since S is a forest with n-1 edges, it must be a spanning tree.

Kruskal’s Algorithm

The input to the algorithm is edgelist, an array of edge, and n. The members
of edge are:

1. v and w, the vertices on which the edge is incident.
2. weight, the weight of the edge.

The algorithm uses subroutines that manipulate sets of vertices:

1. makeset(v): makes a set containing the vertex v alone.
2. findset(v) : returns the name (e.g. the least element in it) of the set

containing vertex v.
3. union(v,w): does the union of the sets containing v and w.

We can assume that these subroutines run in time O(log n).

Kruskal’s Algorithm

Time Analysis:

• Since the graph is connected
 m ≥ n-1.
• There are O(m) makeset, findset
and union operations, time taken
is O(m log m).
• Sorting takes time θ(m log m).
• Hence total time is θ(m log m).

Correctness of Kruskal’s Algorithm
Proof Idea

• Let S be the set of edges chosen so far by the algorithm.
• We show by induction that S is a part of a minimal spanning tree.
• Base case is true since at the beginning, S is empty.
• Let e be the new edge chosen by the algorithm. Let the statement be true for

S and we show it is true for S U {e}.
• Let T be a minimal spanning tree containing S. If T contains S U {e} then we

are done. Otherwise T U {e} must form a cycle C.
• Let e1 be an edge in T not is S which is part of C. Then weight(e1) ≥ weight(e)

(since: we could have added either e1 or e but we added e).
• Consider T1 = T U {e} – {e1}. Then T1 is also a spanning tree and T1 contains S

U {e}. Also weight (T) ≥ weight(T1). But T was a minimal spanning tree and
hence T1 is also a minimal spanning tree. Hence S U {e} is part of a minimal
spanning tree T1.

At the end of the algorithm S contains n-1 edges and is a part of minimal spanning
tree and hence it is a minimal spanning tree.

Prim’s Algorithm

Prim’s algorithm finds a minimal spanning tree in a connected, weighted graph G with
vertex set {1, …, n}.

Only difference with Kruskal’s algorithm: Intermediate graph is a tree instead of a forest.

Idea (Greedy approach):
1. Start with S having no edges.
2. Add an edge e of minimum weight not contained in S, to S, such that S does not

contain a cycle.
3. Ensure that one of the endpoints of e touches S and the other does not (this is the

only difference with Kruskal’s algorithm).
4. Keep doing this till S contains n-1 edges.
5. At the end since S is a tree with n-1 edges, it must be a spanning tree (proof of

correctness done in class, similar to Kruskal Algorithm’s proof of correctness).

Running time: Can be made θ(m log n) by using binary heaps and can be made
θ(m + log n) by using Fibonacci heaps.

Quiz-1
(5 marks, 15 minutes, open book)

Write an algorithm (pseudocode) which has:

Input: An array a (an n element array, all elements distinct)

Output: A 2 dimensional array perm (which has n! rows and n

columns; perm[i,j] represents the element in the ith row
and the jth column). Each row of perm is a distinct
permutation of the elements of a.

Quiz-1: One Solution

Dijkstra’s Algorithm
This algorithm takes as input a weighted graph and a start vertex. It outputs the shortest path from the

start vertex to all other vertex in the in the graph.
Input Parameters: G (graph is input in the form of adjacency list which also contains the weights of the

edges), start (start vertex)
Output Parameters: predecessor (array which tells for every vertex, the previous vertex in the shortest

path from start), key (array which tells for every vertex the length of the shortest path from start)

Running time:

Can be made θ(m log n) by using

binary heaps and can be
made θ(m + log n) by using
Fibonacci heaps.

Proof of correctness
Proof is by showing loop invariants. We maintain three loop invariants.
Let l[w] represent the length of a shortest path from start to w.
1. For every vertex w in G: key[w] ≥ l[w].
2. For every vertex w in S: key[w] = l[w].
At the end S contains every vertex in G and hence key[w]=l[w] for every vertex in G.
3. For every vertex w in S: predecessor[w]=u then l[w] = l[u]+ weight[u,w]
At the end S contains every vertex in G and hence u is the predecessor of w in a shortest

path from start to w.

Base case is true.

Assume the three invariants are true at the beginning of some iteration of the loop. We

show they are true at the end of that iteration as well. Let N(v) represent the
neighbors of v for which key was decreased in this iteration.

1. For w in N(v) :
 key[w] = key[v] + weight(v,w)
 ≥ l[v] + weight(v,w) (using 1. at the beginning of the iteration)
 = length of some path from start to w
 ≥ l[w].
Hence invariant 1. is true at the end of the iteration as well.

Proof of correctness
2. Assume it is true for S. Need to show that invariant is true for S U {v}.
 Hence need to show key[v] = l[v]. We know key[v] ≥ l[v], because of invariant 1.

at the beginning of the iteration. If key[v]=l[v] then we are done. Hence
assume for contradiction that key[v] > l[v]. Let

 (start ... w’ w ... v) be a shortest path from start to v such that (start … w’) is in S
and w is not in S. Note that (start … w’ w) is also a shortest path from start to
w. Hence

 key[v] > l[v] ≥ l[w] = l[w’] + weight[w’,w]
 = key[w’] + weight[w’,w] ≥ key[w]
 This is contradiction to the fact that key[v] was the smallest among vertices not

in S.

3. Assume it is true for S. Need to show that invariant is true for S U {v}. Hence

need to show l[v] = l[u]+ weight[u,v], where u = predecessor[v]. Note that
predecessor[v] ≠ -1, since key[v] = l[v] ≠ ∞ (using invariant 2. for v just shown).
Also note that u is in S.

 l[v] = key[v] = key[u]+ weight[u,v]
 = l[u] + weight[u,v] (using invariant 2. for S)

Huffman Codes
• A Huffman code for characters a1, a2, …, an is a prefix-free code (or just

prefix code) of bits 0 and 1. That is each ai is represented by a string of 0
and 1.

• A Huffman code can be represented by a binary tree (Huffman tree) with
the leaves being the characters a1, a2, …, an .

• Suppose we are given characters a1, a2, …, an with frequencies f1, f2, …, fn .
Let there be a Huffman tree T with the path-length for character ai (from
the root) being pi . The weighted path length of T is

wpl(T) = p1 f1 + p2 f2 + … + pn fn .

• Optimal Huffman tree T is a tree such that wpl(T) is minimum among all

Huffman trees.

Huffman’s Algorithm

Time : Since each operation in the loop can be done in O(log n) total time is O(n log n).

Proof of correctness
Claim-1 : Let f1 and f2 be two least frequencies in (f1, f2, … , fn). We show there

exists an optimal Huffman tree in which f1 and f2 must be at the lowest level
and also be siblings of each other.

Proof: Let T be an optimal Huffman tree. Let f1 not be at the lowest level in T.
Let f be at lowest level. Let p1 be the path length of f1 and let p be the path
length of f in T. Then p ≥ p1 and f ≥ f1.

Let T1 be a tree such that f and f1 are swapped in T. Then
 wpl(T1) = wpl(T) - pf - p1f1 + pf1 + p1f
 = wpl(T) – (p – p1)(f – f1) ≤ wpl(T)
Hence T1 is also an optimal Huffman tree.

Now if f2 is not sibling of f1 in T1, swap the sibling of f1 with f2 to get tree T2. By

doing previous arguments we can say that T2 is also an optimal Huffman
tree.

Proof of Correctness

Claim-2 : Let TA be the tree output by Huffman’s algorithm. TA is an optimal Huffman tree.

Proof: The proof is by induction on n.

Base case : n = 2 : Is easily seen since there is only one Huffman tree in this case.

Let n > 2. Let T2 be an optimal Huffman tree as in Claim-1. Consider T2’ with f1 and f2

deleted in T2 and the parent assigned frequency f1 + f2. Note that
wpl(T2’) = wpl(T2) – f1 – f2. Hence T2’ must be optimal for (f1+ f2, f3, … , fn).

Let TA’ be with obtained from TA with f1 and f2 deleted and the parent assigned frequency
f1 + f2. Then we have wpl(TA’) = wpl(TA) – f1 – f2. Note that TA’ is the output of the algorithm

for frequencies (f1+ f2, f3, … , fn).

By induction hypothesis for n-1, wpl(TA’) = wpl(T2’). Hence
 wpl(TA) = wpl(TA’) + f1 + f2 = wpl(T2’) + f1 + f2 = wpl(T2).

Hence TA is an optimal Huffman tree.

The Continuous-Knapsack problem

Idea of the algorithm for continuous knapsack problem:
Greedy approach

1. Sort pi/wi in the non-increasing order.

2. Include objects in this order till your capacity C is

exhausted.

The 0/1 knapsack problem The continuous knapsack problem

The Continuous-Knapsack problem

Time Analysis:

While loop runs in time
θ(n) and sorting takes
time θ(n log n), hence
overall time is θ(n log n).

Correctness

Correctness

Applications in real life ?

• Dijkstra shortest path algorithm for google maps.

• Sorting for library, dictionary

• Searching for internet websites

Dynamic Programming

Basic of dynamic programming

• In order to solve the big problem solve sub-problems first.
• The difference with Divide-and-Conquer is that in this case it is not clear

which sub-problems should be solved.
• Therefore in dynamic programming all sub-problems that might be

needed are solved.
• First the simplest sub-problems are solved and then the more complex

ones are solved, all the way up to the original problem.
• The results of the sub-problems are stored in a table and used later

whenever needed.

Computing Fibonacci Numbers

Very inefficient. f1 , f2, f3 etc. are
calculated exponentially many times.

Time : θ(2n)

Efficient : Time is θ(n)

This is an example of a dynamic
program.

Memorized recursive algorithm

Time : θ(n)

Coin-changing revisited

Idea : Let ci, j represent the minimum
number of coins of denominations
denom[i] to denom[n] needed to get
amount j.

Start with cn, j = j for all j from 0 to A.
Iteratively calculate by running i
from n-1 downto 1 and j from 0 to A:

ci, j = min{ci+1, j , 1 + ci, j-denom[i]}

The idea is that for finding ci, j, either
a) you use denom[i] in which case

ci, j = 1 +ci, j-denom[i]
b) or you do not use denom[i] in

which case ci, j = ci+1, j

Time : θ(n A)

Optimal substructure property

• If S is an optimal solution to a problem, then the components of S are
optimal solutions to subproblems.

• For a dynamic-programming algorithm to solve an optimization problem
correctly, the optimal substructure property must hold.

• This property holds for coin-changing problem.

• This property does not hold for longest-simple-path problem : For a
connected weighted graph, and vertices (v,w), find the longest simple path
from v to w.

Midterm Answer 1

Midterm Answer 2

Midterm Answer 2

Midterm Answer 3

Time : While loop will take time O(n) and mergesort will take time θ(n log n).
Hence total time is θ(n log n).

Midterm Answer 3

Midterm Answer 4

Median(a,b)

1. Set n to be the number of elements

in a (also in b).

2. If n = 1
1. If a[1] ≥ b[1], then return b[1]
2. Otherwise return a[1].

1. If a[n/2] ≥ b[n/2]

1. Then note that
a[n/2] ≥ Median(a U b) ≥ b[n/2+1]
2. The problem now reduces to size n/2

and then we can proceed similarly.

5. If a[n/2] < b[n/2]
1. Then note that

a[n/2+1] ≤ Median(a U b) ≤ b[n/2]
2. The problem now reduces to size n/2

and then we can proceed similarly.

Time : With each iteration of the while loop, the difference between j and i (similarly the difference
between l and k) reduces by factor of 2. Hence while loop can run log n times. Hence overall running
time is O(log n).

Optimal Matrix Multiplication

Idea : Let s[i,j] represent the minimum
number of scalar multiplications needed
to multiply ith matrix through jth matrix.

The idea is that to find s[i,j] you check for
groupings (i,k) and (k,j) for all k between i
and j; one of them must be optimal, so
take their minimum.

Start with s[i,i]= 0 for all i. Iteratively
calculate by increasing w from 0 to n-1
and increasing i from 1 to n-w :

s[i,i+w] =
mink{s[i,k] + s[k+1,i+w] + size[i-1]size[k]size[i+w]}

Need to multiply matrices by using least number of scalar multiplications.

Time : θ(n3)

The longest common subsequence problem

Given two sequences a[1], …, a[m] and b[1], ….b[n]

find a subsequence a[i1], …, a[ik] of a[1], …, a[m]

and find a subsequence b[j1], …, b[jk] of b[1], …, b[n]

such that a[i1] = b[j1] , …, a[ik] = b[jk].

The task is to maximize k.

Example : For

a , b , c, d, e, f and a, e, c, f, d, g, p

A longest common subsequence is (a, c, d). Another is (a,c,f).

The longest common subsequence problem

Idea : Let c[i][j] be the length of a longest common
subsequence of
a[1], …, a[i] and b[1], …, b[j]
for i = 0, …, m and j=0, …, n.

The idea is that if a[i]=b[j] then a[i] appears in a longest
common subsequence, otherwise a longest common
subsequence needs to be found in
a[1] … a[i-1] and b[1] … b[j]
Or
a[1] … a[i] and b[1] … b[j-1]

Start with c[i][0] = 0 for all i and c[0][j]=0 for all j.
Iteratively calculate by increasing i from 1 to m and
increasing j from 1 to n:

If a[i] != b[j] then
 c[i][j] = max{c[i-1][j] , c[i][j-1]}

else
 c[i][j] = 1+ c[i-1][j-1] . Time : θ(mn)

Floyd’s algorithm for All Pairs Shortest Paths
We want to find shortest paths between all pairs of vertices in a simple,
undirected, weighted graph G. We are given matrix A (as a two dimensional
array), such that A[i][j] is the weight of the edge (i,j), if there is edge (i,j).
Otherwise A[i][j] is ∞ .

Idea: Let Ak represent the matrix such that Ak[i][j] is the length of a shortest
path from i to j, where the intermediate vertices allowed is {1,2, …, k}.

Initially A0 = A, when no intermediate vertex is allowed.

Assume we have computed A(k-1). Then to compute Ak[i][j] :

a) If k appears in a shortest path between i and j with intermediate

allowed vertices being {1, …, k}, then
 Ak[i][j] = A(k-1)[i][k] + A(k-1)[k][j]

b) If k does not appear in a shortest path between i and j with
intermediate allowed vertices being {1, …, k}, then

 Ak[i][j] = A(k-1)[i][j]

Floyd’s algorithm for All Pairs Shortest Paths
In the algorithm below, at the end A[i][j] is the length of a shortest path
between i and j. Also next[i][j] is the vertex after i, in a shortest path from
i to j.

Time : θ(n3)

Warshall’s Algorithm
We are given a simple, undirected, weighted graph G. We want to find for all
pairs of vertices, if they are connected or not? We are given adjacency matrix A
(as a two dimensional array), such that A[i][j] is 1 if there is an edge (i,j);
otherwise A[i][j] is 0 .

Idea: Let Ak represent the matrix such that Ak[i][j] =1 if there is a path from i
to j, where the intermediate vertices allowed is {1,2, …, k} (otherwise Ak[i][j]
=0).

Initially A0 = A, when no intermediate vertex is allowed.

Assume we have computed A(k-1). Then to compute Ak[i][j] :

a) If k appears in a path between i and j with intermediate allowed vertices

being {1, …, k}, then
 Ak[i][j] = A(k-1)[i][k] AND A(k-1)[k][j]

b) If k does not appear in a path between i and j with intermediate
allowed vertices being {1, …, k}, then

 Ak[i][j] = A(k-1)[i][j]

Warshall’s Algorithm
In the algorithm below, at the end A[i][j] =1 if there is a path between i
and j.

Time : θ(n3)

P and NP

(warning: NP is NOT ‘not P’)

Decision problems and Function problems
A decision problem L is a set of binary strings.

An algorithm A is said to accept an input string x, if A(x) = 1 .
(A(x) represents the output of the algorithm A on input x).

An algorithm A is said to reject an input string x, if A(x) = 0.

Algorithm A is said to decide L if A(x) =1 for all x in L and A(x) = 0 for all x not in

L.

e.g. Graph connectivity problem : L is the binary encodings of graphs that are

connected.

Function problems: Algorithm needs to compute a function f(x), given input x.

e.g. Factoring problem: Given a natural number, output smallest divisor greater

than 1.

P (for polynomial time)
We say that algorithm A is a polynomial time algorithm if there exists constants k,

c, such that on all inputs x, A outputs A(x) within time c |x|k (and uses at most
c |x|k binary cells of memory).

We say a decision problem L can be decided in polynomial time if there is a

polynomial time algorithm A that decides L. We define:
 P = {L | L can be decided in polynomial time}.

Theorem: Let A and B be polynomial time algorithms. Let C be an algorithm that is

composition of A and B, that is C(x) = A(B(x)); C first run B on input x and then
runs A on input B(x). Then C is also polynomial time algorithm.

Proof:
When B runs on input x, it takes time at most d1 |x|k1

 (where d1 , k1 are some
constants).

When A runs on input y, it takes time at most d2 |y|k2
 (where d2 , k2 are some

constants).
Therefore when C runs on input x, it takes time at most d1 |x|k1

 to produce B(x)
and then takes time at most d2 (d1 |x|k1)k2 (since |B(x)| ≤ d1 |x|k1) to produce
A(B(x)). Hence total time taken by C is at most d3|x|k3

 (where d3 , k3 are some
constants).

P
The issue related to encodings:

Let L1 = {1p (unary encoding): p is a prime}; L1 can be decided in polynomial

time. Just check for all number n, between 1 and p, if n divides p.

Let L2 = {p (binary encoding): p is a prime}; we do not know if L2 can be

decided in polynomial time. The algorithm above takes exponential time.

Theorem: Let L, a set of binary strings, be decided in polynomial time.
Let Lt = {t-ary encoding of x | x in L}. Then Lt can be decided in polynomial

time, for any t > 2.
Proof: Let A be a polynomial time algorithm for deciding L. Let B be a

polynomial time algorithm which converts any t-ary string to equivalent
binary string.

 Then define C(x) = A(B(x)). By a previous theorem C is also polynomial
time. Also C decides Lt .

Nondeterministic Algorithms
A nondeterministic polynomial time algorithm M.

M(x) {
\\ guess a witness string wx of length polynomial in |x|
 guess wx
\\ V is a polynomial (in |x|) time algorithm
 Output V(x,wx)
}

We say that a problem L is decided by M if the following two conditions hold:

1. If x is in L, then there exists a wx such that V(x,wx) = true .
2. If x is not in L, then for every string wx, V(x,wx) = false.

We say that L can be decided in nondeterministic polynomial time if L can be
decided by a nondeterministic polynomial time algorithm M. We define:

 NP = { L | L can be decided in nondeterministic polynomial time } .

Since every deterministic polynomial time algorithm is also a nondeterministic
polynomial time algorithm (where there are no guesses), it implies P is subset of
NP.

Some problems in NP
Graph-Corolaribity = { <G,k> | G can be colored using k colors such that no two adjacent vertices get the same

color}

Graph-Coloroability (x) {
if x is not a valid encoding of a graph and a number
 return false
else
 let x = <G=(V,E),k>
// guess a color for each vertex
for each v in V
 guess the color c[v]
// check that the coloring is valid
for each v in V
 if (c[v] not in {1,2,…k})
 return false
for each v in V
// N(v) is the neighbors of v
 for each w in N(v)
 if (c[w] == c[v])
 return false
return true
}

Time : O(|V| + |E|), hence nondeterminitic polynomial time.

Some problems in NP
Hamiltonian-Cycle = { < G > | G has a cycle which touches all vertices exactly once}

Hamiltonian-Cycle (<G>) {
// G = (V,E), V= {1,2,…n}
n= |V|
// guess the sequences of vertices that will appear in a Hamiltonian Cycle
guess v1, v2, …, vn
// check only edges in G are used
// check that all vertices are visited
for i = 1 to n
 visited[i] = false
for i = 1 to n
 visited[vi] = true
 if (vi, vi+1) is a not an edge in G
 return false
for i = 1 to n
 if (visited[i] = false)
 return false
return true
}

Time : O(|V|), hence nondeterminitic polynomial time.

Some problems in NP
Traveling Salesperson (TSP) = { < G,w > | G is a weighted graph with Hamiltonian cycle of weight

at most w}

TSP(<G,w>) {
// G=(V,E), V = {1,2,…n}
n= |V|
// guess the sequences of vertices that will appear in a Hamiltonian Cycle
guess v1, v2, …, vn
if v1, v2, …, vn is a not Hamiltonian cycle
 return false
// check that the total weight of the cycle is at most w
t = 0
for i = 1 to n-1
 t = t + weight(vi , vi+1)
if (t > w)
 return false
return true
}

Time : O(|V|), hence nondeterminitic polynomial time.

Exponential time
We say that algorithm A is an exponential time algorithm if there exists constants k, c, such that
on all inputs x, A outputs A(x) within time c 2|x|k .

We say a decision problem L can be decided in exponential time if there is an exponential time algorithm A that

decides L. We define:
 EXP = {L | L can be decided in exponential time}

Theorem : NP is a subset of EXP .
Proof : Any L be in NP. Consider a nondeterministic polynomial time algorithm for L. It is of the form:

NPalgoforL(x) {
guess wx of length c1|x|k1

// V is a polynomial time algorithm running in time c2|x|k2
return V(x,wx)
}

EXPalgoforL(x) {
for all wx of length at most c1|x|k1

 if (V(x,wx) = true)
 return true
return false
}

EXPalgoforL(x) runs in time O(c2|x|k2 2c1|x|k1) = c3 2|x|k3. Hence L is in EXP.

Reducibility

NP Completeness

Boolean formula

Cook-Levin Theorem – First NP-complete problem

3-SAT is NP-complete

Reduce SAT to 3-SAT

Independent set is NP-complete

Clique is NP-complete

Graph 3-colorability is NP-complete

A few other NP-complete problems

Hamiltonian-Cycle = { < G > | G has a cycle which touches all vertices exactly once}

Traveling Salesperson (TSP) = { < G,w > | G is a weighted graph with Hamiltonian
cycle of weight at most w}

Many other real world problems arising from Networks, Packing, Scheduling,
Graphs, Cryptography, Games, Computational Biology etc. are NP-complete. Very
little hope for finding polynomial time algorithms for these!

Algorithms for NP-complete problems

Approximation Algorithms
Bin Packing

Input : Sizes s[1], s[2], …, s[n] ϵ (0,1].
Output: Minimum number of bins (each of capacity 1) in which these objects can be packed.

next-fit(s) {
n = s.last
k = 1 // current bin
c[k] = 0 // capacity filled till now in current bin
for i = 1 to n
 if (c[k] + s[i] ≤ 1) {
 b[i] = k
 c[k] = c[k]+ s[i]
 }
 else {
 k = k + 1
 b[i] = k
 c[k] = s[i]
 }
return k
}

Wigderson Coloring
Theorem : A 3-colorable graph can be colored in polynomial time using at most O(√n) colors.

Input : A 3-colrable graph G = (V,E)
Ouput : A valid coloring using O(√n) colors.

Wigderson-coloring(G) {
n = |V|
c= 0 // c is color count
while (V contains a vertex of degree at least √n) {
 pick v of degree at least √n
 G’ = (N(v), E)
 two-color(G’, c) // this colors G’ using two colors c +1 and c +2
 c= c +2 // move to the next set of colors
 G = G – N(v)
 }
S = {c, c+1, …. , n}
for each v in V
 color v with smallest color in S not used by any vertex in N(v)
}

Brute Force
Largest Independent Set

Input : Graph G=(V,E)
Output: None

Largest-independent-set(G) {
if (E is empty)
 return |V|
else {
 pick first v in V such that N(v) is not empty
 G1 = G – {v}
 G2 = G – {v} – N(v)
 k1 = largest-independent-set(G1) // assume v is not in independent set
 k2 = largest-independent-set(G2) // assume v is in independent set
 return max(k1, k2 +1)
 }
}

Let an be the running time. Then

an = an-1 + an-2 + cn2

Solving this recursion gives
an = O(1.62n)

Brute Force

3-SAT

Input Parameter : 3-CNF formula φ
Ouput : None

3-satisfiability(φ) {
 if (φ does not contain any clauses)
 return φ // φ has to be logical

constant either true of false
 if (φ contains a clause with one literal a) {
 φ1 = φ[a->true] // a has to be true
 return 3-satisfaibility(φ1)
 }
 if (φ contains a clause with two literals a and

b) {
 φ1 = φ[a->true]
 φ2 = φ[a->false][b->true]
 return 3-satisfaibility(φ1)) || 3-

satisfaibility(φ2)
 }

if (φ contains a clause with three literals a, b and c){
 φ1 = φ[a->true]
 φ2 = φ[a->false][b->true]
 φ3 = φ[a->false][b->false][c->true]
 return 3-satisfaibility(φ1)
 || 3-satisfaibility(φ2)
 || 3-satisfaibility(φ3)
 }
}

Let an be the number of recursive calls made
by the algorithm on input formula with n
variables. Then

an = an-1 + an-2 + an-3

Solving this recursion gives
an = O(1.84n). In each recursion the time
taken is O(|φ|) and hence total time taken is
O(|φ| 1.84n) .

The best time known till now is O(|φ| 1.77n)
due to Dantsin, Goerdt, Hirsch and Schoning.

	Design and Analysis of Algorithms
	Slide Number 2
	Slide Number 3
	What we cover in the course
	What we cover in the course
	What is an Algorithm ?
	Pseudocode - Example
	Algorithm analysis�Worst case, Average case
	Big Oh, Omega and Theta
	Recurrence Relations
	Examples
	Main Recurrence Theorem
	Proof Idea
	Proof Idea contd.
	Slide Number 15
	Divide and Conquer
	Divide and Conquer
	A Tiling Problem
	Idea of the algorithm
	Time Analysis
	Mergesort
	Subroutine Merge
	Idea of the algorithm
	Mergesort – Time Analysis
	Strassen’s Matrix Product Algorithm
	Strassen’s Matrix Product Algorithm
	Idea of the algorithm
	Finding a closest pair of points on the plane
	Idea of the algorithm
	Time Analysis
	What we did last time
	Sorting and Selection
	Insertion Sort
	Idea of the algorithm
	Quicksort
	Quicksort : Time analysis
	Randomized Quicksort
	Idea for partition algorithm�
	Idea of the algorithms
	A lower bound for comparison based algorithms
	Counting Sort
	Time analysis
	Radix Sort
	(Random) Selection
	Slide Number 45
	What we did last time
	Greedy Algorithms
	Coin Changing
	Optimality for {1,5,10}
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	Correctness of Kruskal’s Algorithm�Proof Idea
	Prim’s Algorithm
	Quiz-1 �(5 marks, 15 minutes, open book)
	Quiz-1: One Solution
	Dijkstra’s Algorithm
	Proof of correctness
	Proof of correctness
	Huffman Codes
	Huffman’s Algorithm
	Proof of correctness
	Proof of Correctness
	The Continuous-Knapsack problem
	The Continuous-Knapsack problem
	Correctness
	Correctness
	Applications in real life ?
	Dynamic Programming
	Basic of dynamic programming
	Computing Fibonacci Numbers
	Memorized recursive algorithm
	Coin-changing revisited
	Optimal substructure property
	Midterm Answer 1
	Midterm Answer 2
	Midterm Answer 2
	Midterm Answer 3
	Midterm Answer 3
	Midterm Answer 4
	Optimal Matrix Multiplication
	Slide Number 82
	The longest common subsequence problem
	Floyd’s algorithm for All Pairs Shortest Paths
	Floyd’s algorithm for All Pairs Shortest Paths
	Warshall’s Algorithm
	Warshall’s Algorithm
	P and NP ��(warning: NP is NOT ‘not P’)
	Decision problems and Function problems
	P (for polynomial time)
	P
	Nondeterministic Algorithms
	Some problems in NP
	Some problems in NP
	Some problems in NP
	Exponential time
	Reducibility
	NP Completeness
	Boolean formula
	Cook-Levin Theorem – First NP-complete problem
	Reduce SAT to 3-SAT
	Independent set is NP-complete
	Clique is NP-complete
	Graph 3-colorability is NP-complete
	A few other NP-complete problems
	Algorithms for NP-complete problems
	Approximation Algorithms
	Wigderson Coloring
	Brute Force
	Brute Force

