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According to my information current implementation of the R-modules is as 
follows: 
 

• Discuss with the lecturer that you would like to do the R-module. 
 

• The lecturer will decide whether it is appropriate for you after teaching 
you for a period (around middle of semester or end of semester). 
 

• Start work on it after the lecturer has decided (middle of the current 
semester or at the next semester). The course will be registered only in 
the following semester. 
 

Regarding CS3230R 



What we cover in the course 

Sorting/Searching/Selection 
– A lower bound for the 

sorting problem 
– Counting sort and Radix 

sort 
– Topological sort of graphs 

 
Divide and Conquer 

– A Tiling problem 
– Strassen’s Matrix Product 

Algorithm 
– Finding closest pair of 

points on the plane 
 

 
 Greedy Algorithms 

Kruskal’s algorithm for Minimum 
Spanning Tree 
Prim’s algorithm for Minimum 
Spanning Tree 
Dijkstra’s algorithm for finding 
shortest path between a pair of 
points in a graph 
Huffman codes 
The continuous Knapsack problem 

 
 
Dynamic Programming 

Computing Fibonacci numbers 
Coin changing 
The algorithm of Floyd and Warshall 

 



What we cover in the course 

• P  v/s  NP 
– Polynomial time, Non-deterministic algorithms, NP 
– Reducibility and NP-completeness, NP complete problems 

 
• How to deal with NP hard problems 

– Brute force 
– Randomness 
– Approximation 
– Parameterization 
– Heuristics 

 
Assume familiarity with : 

 
• Basic data structures like Stacks, Queues, Linked lists, Arrays, Binary Trees, Binary Heaps,  
• Basic sorting algorithms like Heap sort 
• Basic search algorithms like Depth-First search, Breadth-First search 
• Basic mathematical concepts like Sets, Mathematical Induction, Graphs, Trees, Logarithm 



What is an Algorithm ? 

Abū ʿAbdallāh Muḥammad ibn Mūsā al-Khwārizmī (c. 780 – c. 850)  
A Persian mathematician, astronomer and geographer. 
 
Properties : 
• Input 
• Output 
• Precision 
• Determinism  
 (exceptions: randomization, quantum etc.) 
• Finiteness 
• Correctness 
• Generality 

 
Pseudocode : Has precision, structure, universality. It is unambiguous, clear enough (not 

too rigorous, will not be concerned with semi-colons, uppercase, lowercase etc.) 
 

Analysis :  
•    Correctness 
•    Termination 
•    Time analysis 
•    Space analysis 
 



Pseudocode - Example 

Algorithm for finding maximum 
element in an array 

----------------------------------------- 
if (condition)  
 action 1 
else  
 action 2 
----------------------------------------- 
do  
{ 
 action 
} while (condition) 
 ---------------------------------------- 
for var = init to limit 
 action  
----------------------------------------- 
for var = init downto limit 
 action 
----------------------------------------- 



Algorithm analysis 
Worst case, Average case  

Worst case analysis :  
 t(n) = Maximum units of time 

taken by the algorithm to 
terminate for an input of size n.  

 
Average case analysis :  
 t(n) = the average units of time 

taken by the algorithm to 
terminate for an input of size n.  

 
Similar analysis can also be done for 

space required by the algorithm. 

The worst case and average case times of the algorithm on an array of size n are each  
 
constant  * (n-1)  
 
since the while loop is always executed (n-1) times, and every other operation takes 
constant time. 



Big Oh, Omega and Theta  



Recurrence Relations 



Examples 



Main Recurrence Theorem 



Proof Idea 



Proof Idea contd. 



    With today’s lecture and the material covered in pre-requisite courses we 
have covered Chapters 1, 2, 3, 4 from the book. 



Divide and Conquer 



Divide and Conquer 

1. If the problem is small solve it directly. 
 

2. If the problem is big, divide it into subproblems. Solve 
the subproblems, again using divide and conquer. 
 

3. Combine the solutions of the subproblem to get the 
solution of the original problem. 
 



A Tiling Problem 



Idea of the algorithm 

• Divide the problem of size n by n into four subproblems 
each of size n/2 by n/2. 
 

• Place one tromino at the centre to create missing cells in 
each subproblem. 
 

• Solve the subproblems using recursion. 
 

• 2 by 2 problem is solved directly. 



Time Analysis 

• Chu and Johnsonbaugh (1986) showed that if n ≠ 5, and n2  - 1 is divisible by 3 then the 
n by n deficient board can be tiled using trominoes. 
 

• Some 5 by 5 boards can be tiled and some cannot. 
 



Mergesort 



Subroutine Merge 



Idea of the algorithm 

• Divide the array of size n into two arrays of size n/2. 
 

• Sort the two subarrays using recursion. 
 

• Merge the two sorted parts using subroutine merge. 



Mergesort – Time Analysis 

Stable sort: A sorting algorithm is stable if the relative positions of items with duplicate 
values are unchanged by the algorithm.  
 

Mergesort is stable. 



Strassen’s Matrix Product Algorithm 



Strassen’s Matrix Product Algorithm 



Idea of the algorithm 

• Divide the problem of multiplying two n by n matrices into 
the problem of multiplying 7, n/2 by n/2 matrices (you also 
do constant number of additions of n/2 by n/2 matrices). 
 

• Use recursion to solve the subproblems. 



Finding a closest pair of points on the plane 



Idea of the algorithm 

• Divide the set of n points on the plane into two halfs (using x-coordinate). 
 

• Find the shortest distance between pairs of points in the two halfs using 
recursion. Let delta be their minimum. 
 

• Consider a strip of size 2 times delta in the middle of the two halfs.  
 

• Sort the points in this strip using y-coordinate (this can be done only using 
merge since the subparts are already sorted according to y-coordinate). 
 

• Start from bottom and compare each point with the next seven points to 
identify the closest pair (this works because in each box that we 
considered there can be at most 8 points). 



Time Analysis 



What we did last time 

Divide and conquer: 
 

1. Tiling problem 
2. Mergesort 
3. Strassen’s matrix product 
4. Finding closest pair of points on a plane 



Sorting and Selection 



Insertion Sort 



Idea of the algorithm 

• Assume that the elements of the array arrive one by one. 
 

• Keep inserting them at the right place in the current subarray which is 
already sorted. 
 

• Nice property: It is an online algorithm. 
 
 



Quicksort 
      The algorithm ‘partition’ inserts val at the index h such that values less than val are 

on the left of index h and values at least val are on the right of h. 

Quicksort  Algorithm 



Quicksort : Time analysis 



Randomized Quicksort 

Randomized Quicksort 



Idea for partition algorithm 
 

1. Let the current stage of array be like : F SSSS LLLL C RRRRR 
2. F is first element, S < F, L ≥ F, C is the current element, R is rest of the 

elements. 
3. If current element C ≥ F, then don’t do anything, just let next 

element on right to be C. 
4.  If C < F, then swap C with first L, and let next element on right to be 

C. 
5. At the end swap F with the last S element. 



Idea of the algorithms 

• Take an element of the array (of value val) and place it at the right index h. 
Elements to the left of h are less than val and to the right are greater than 
or equal to val (partition algorithm). 
 

• Recursively sort a[i] … a[h-1] and a[h+1] … a[j] 
 

• In normal quicksort, the element is taken to be the first element of the 
array. 
 

• In randomized quicksort, the element is randomly chosen among all 
elements.   
 

Quicksort is quite good in practice that is why ‘quicksort’. 
No extra array is needed. 
Quicksort is not stable. 

 
 



A lower bound for comparison based algorithms 

The worst case time of a comparison based sorting algorithm is Ω(n log n). 
 
Proof done in class. Idea: Any comparison based algorithm will have a decision 
tree, with n! leaves (for n bit inputs). Height of this tree is Ω(n log n). 
 
A decision tree for the comparison based algorithm is a binary tree with the 
nodes representing comparisons (a < b?), the left subtree represents the 
continuation of the algorithm on the result of comparison being yes and the right 
subtree represents the continuation of the algorithm on the result of comparison 
being no. 
 



Counting Sort 
• Not a comparison based algorithm, uses some information about the 

inputs i.e. the elements are numbers from 0 to m. 
• Running time is linear, lower bound of Ω(n log n) does not apply. 



Time analysis 

• Since each loop runs in time θ(m) or θ(n), the running time is θ(m + n). 

Idea of algorithm 

• First make sure that c[k] = number of occurrences of value k in input array 
a.  

• Then make sure that c[k] = number of occurrences of value less than or 
equal to k in input array a.  

• Produce sorted array b using c. 
• Copy b back to a. 

Counting sort is stable (done in tutorial).  



Radix Sort 

Idea of algorithm:  Starting from the least significant digit, sort using counting-sort. 
 
Correctness of the algorithm shown in class. Running time is done in tutorial. 
 
Radix sort was originally used to sort punch cards. 



(Random) Selection 

Finding median is a special case of this. 



Idea of algorithm 
• Using random-partition, get location p (note that everything to the left of 

p will be smaller than the value at p and everything to the right will be at 
least the value at p.) 

• If k = p then stop. 
• If k < p, act recursively on the left of p. 
• Else act recursively on the right of p. 
 
Running Time : The expected running time is θ(n). Proof done in class. Idea 

similar to the analysis of random-partition. When element is selected 
randomly, p is near middle (in expectation). 

 
• The worst case time of random-select is θ(n2) (done in tutorial). 
• Any deterministic algorithm solving selection must take time at least n. 
• Deterministic algorithm due to Blum, Floyd, Pratt, Rivest and Tarjan (1973)  

runs in time θ(n).  



What we did last time 

• Selection sort 
• Quicksort 
• Lower bound for comparison based algorithms 
• Couting sort, Radix sort (not comparison based) 
• Random Selection 



Greedy Algorithms 

Greed is Good ! 



Coin Changing 

•  The algorithm is not optimal for denominations {1,6,10}. 



Optimality for {1,5,10} 

The algorithm is optimal for denominations {1,5,10} for every input amount A. Idea: 
use mathematical induction. 
 

• Let greedy(A) represent the number of coins used by the greedy algorithm for 
input amount A. 

• Let optimal(A) represent the optimal number of coins for amount A. 
• Can verify by direct calculation for A = 1, 2, … , 9, that greedy(A) = optimal(A). 
• Let A ≥ 10. Then by induction hypothesis: greedy(A-10) = optimal(A-10). 
• Note that greedy(A) = 1+ greedy(A-10).  
• Also note that optimal(A) = 1 + optimal(A-10) (since optimal solution must use at 

least one 10 dollar coin for A ≥ 10). 
• Hence greedy(A) = optimal(A). 

 
What goes wrong with {1,6,10} in this argument ? 



Kruskal’s Algorithm 

Kruskal’s algorithm finds a minimal spanning tree in a connected, weighted 
graph G with vertex set {1, …, n}. 

A spanning tree is a tree T such that every pair of vertices are connected via 
edges in T. A minimal spanning tree is a spanning tree such that the sum of 
the weights of all its edges is the least among all spanning trees. 

 
Note: A forest with (n-1) edges is a spanning tree. 
 
Idea (Greedy approach):  
1. Start with S having no edges. 
2. Add an edge of minimum weight not contained in S, to S, such that S 

does not contain a cycle. 
3. Keep doing this till S contains n-1 edges. 
4. At the end since S is a forest with n-1 edges, it must be a spanning tree.  



Kruskal’s Algorithm 

The input to the algorithm is edgelist, an array of edge, and n. The members 
of edge are: 

1. v and w, the vertices on which the edge is incident. 
2. weight, the weight of the edge. 

 
The algorithm uses subroutines that manipulate sets of vertices: 

1. makeset(v): makes a set containing the vertex v alone. 
2. findset(v) : returns the name (e.g. the least element in it) of the set 

containing vertex v. 
3. union(v,w): does the union of the sets containing v and w.  

 
We can assume that these subroutines run in time O(log n). 



Kruskal’s Algorithm 

Time Analysis: 
 

•  Since the graph is connected  
   m ≥ n-1. 
•  There are O(m) makeset, findset 
and union operations, time taken 
is O(m log m). 
•  Sorting takes time θ(m log m ). 
•  Hence total time is θ(m log m ).  
 



Correctness of Kruskal’s Algorithm 
Proof Idea 

• Let S be the set of edges chosen so far by the algorithm.  
• We show by induction that S is a part of a minimal spanning tree. 
• Base case is true since at the beginning, S is empty. 
• Let e be the new edge chosen by the algorithm. Let the statement be true for 

S and we show it is true for S U {e}. 
• Let T be a minimal spanning tree containing S. If T contains S U {e}  then we 

are done. Otherwise T U {e} must form a cycle C.  
• Let e1 be an edge in T not is S which is part of C. Then weight(e1) ≥ weight(e) 

(since: we could have added either e1 or e but we added e).  
• Consider T1 = T U {e} – {e1}. Then T1 is also a spanning tree and T1 contains S 

U {e}. Also weight (T) ≥ weight(T1). But T was a minimal spanning tree and 
hence T1 is also a minimal spanning tree. Hence S U {e} is part of a minimal 
spanning tree T1.  
 

At the end of the algorithm S contains n-1 edges and is a part of minimal spanning 
tree and hence it is a minimal spanning tree. 



Prim’s Algorithm 

Prim’s algorithm finds a minimal spanning tree in a connected, weighted graph G with 
vertex set {1, …, n}. 

Only difference with Kruskal’s algorithm: Intermediate graph is a tree instead of a forest. 
 
Idea (Greedy approach):  
1. Start with S having no edges. 
2. Add an edge e of minimum weight not contained in S, to S, such that S does not 

contain a cycle.  
3. Ensure that one of the endpoints of e touches S and the other does not (this is the 

only difference with Kruskal’s algorithm). 
4. Keep doing this till S contains n-1 edges. 
5. At the end since S is a tree with n-1 edges, it must be a spanning tree (proof of 

correctness done in class, similar to Kruskal Algorithm’s proof of correctness). 
 

Running time: Can be made θ(m log n ) by using binary heaps and can be made  
θ(m + log n ) by using Fibonacci heaps. 



Quiz-1  
(5 marks, 15 minutes, open book) 

Write an algorithm (pseudocode) which has: 
 
Input:  An array a (an n element array, all elements distinct) 
 
Output: A 2 dimensional array perm (which has n! rows and n 

columns; perm[i,j] represents the element in the ith row 
and the jth column). Each row of perm is a distinct 
permutation of the elements of a. 



Quiz-1: One Solution 



Dijkstra’s Algorithm 
This algorithm takes as input a weighted graph and a start vertex. It outputs the shortest path from the 

start vertex to all other vertex in the in the graph. 
Input Parameters: G (graph is input in the form of adjacency list which also contains the weights of the 

edges), start (start vertex) 
Output Parameters: predecessor (array which tells for every vertex, the previous vertex in the shortest 

path from start), key (array which tells for every vertex the length of the shortest path from start) 

Running time:  
 
Can be made θ(m log n ) by using 

binary heaps and can be 
made θ(m + log n ) by using 
Fibonacci heaps. 

 



Proof of correctness 
Proof is by showing loop invariants. We maintain three loop invariants. 
Let l[w] represent the length of a shortest path from start to w. 
1. For every vertex w in G: key[w] ≥ l[w]. 
2. For every vertex w in S:  key[w] = l[w]. 
At the end S contains every vertex in G and hence key[w]=l[w] for every vertex in G. 
3. For every vertex w in S:  predecessor[w]=u  then l[w] = l[u]+ weight[u,w] 
At the end S contains every vertex in G and hence u is the predecessor of w in a shortest 

path from start to w. 
 
Base case is true. 
 
Assume the three invariants are true at the beginning of some iteration of the loop. We 

show they are true at the end of that iteration as well. Let N(v) represent the 
neighbors of v for which key was decreased in this iteration. 

 
1. For w in N(v) : 
  key[w]  = key[v] + weight(v,w)  
                ≥ l[v] + weight(v,w)  (using 1. at the beginning of the iteration)  
                                 = length of some path from start to w 
                                 ≥ l[w]. 
Hence invariant 1. is true at the end of the iteration as well. 
 
 

 



Proof of correctness 
2. Assume it is true for S. Need to show that invariant is true for S U {v}.  
        Hence need to show key[v] = l[v]. We know key[v] ≥ l[v], because of invariant 1. 

at the beginning of the iteration. If key[v]=l[v] then we are done. Hence 
assume for contradiction that key[v] > l[v]. Let  

        (start ... w’ w ... v) be a shortest path from start to v such that (start … w’) is in S 
and w is not in S. Note that (start … w’ w)  is also a shortest path from start to 
w. Hence 

 key[v] > l[v] ≥ l[w] = l[w’] + weight[w’,w]  
                                          = key[w’] + weight[w’,w] ≥ key[w] 
        This is contradiction to the fact that key[v] was the smallest among vertices not 

in S. 
 
3. Assume it is true for S. Need to show that invariant is true for S U {v}. Hence 

need to show l[v] = l[u]+ weight[u,v], where u = predecessor[v]. Note that 
predecessor[v] ≠ -1, since key[v] = l[v] ≠ ∞ (using invariant 2. for v just shown). 
Also note that u is in S.  

   l[v] = key[v] = key[u]+ weight[u,v] 
                         = l[u] + weight[u,v]             (using invariant 2. for S)  



Huffman Codes 
• A Huffman code for characters a1, a2, …, an is a prefix-free code (or just 

prefix code) of bits 0 and 1. That is each ai is represented by a string of 0 
and 1. 
 

• A Huffman code can be represented by a binary tree (Huffman tree) with 
the leaves being the characters a1, a2, …, an . 
 

• Suppose we are given characters a1, a2, …, an  with frequencies f1, f2, …, fn . 
Let there be a Huffman tree T with the path-length for character ai (from 
the root) being pi . The weighted path length of T is 

wpl(T) = p1 f1 + p2 f2 + … + pn fn  . 

 
• Optimal Huffman tree T is a tree such that wpl(T) is minimum among all 

Huffman trees. 



Huffman’s Algorithm 

Time : Since each operation in the loop can be done in O(log n) total time is O(n log n). 



Proof of correctness 
Claim-1 : Let f1 and f2 be two least frequencies in (f1, f2, … , fn). We show there 

exists an optimal Huffman tree in which f1 and f2 must be at the lowest level 
and also be siblings of each other.  

Proof: Let T be an optimal Huffman tree. Let f1 not be at the lowest level in T. 
Let f be at lowest level. Let p1 be the path length of f1 and let p be the path 
length of f in T. Then p ≥ p1 and f ≥ f1.  

Let T1 be a tree such that f and f1 are swapped in T. Then  
                       wpl(T1) = wpl(T) -  pf - p1f1 + pf1 + p1f 
                                     = wpl(T) – (p – p1)(f – f1) ≤ wpl(T) 
Hence T1 is also an optimal Huffman tree. 
 
Now if f2 is not sibling of f1 in T1, swap the sibling of f1 with f2 to get tree T2. By 

doing previous arguments we can say that T2 is also an optimal Huffman 
tree. 



Proof of Correctness 

Claim-2 :  Let TA be the tree output by Huffman’s algorithm. TA is an optimal Huffman tree.  
 
Proof: The proof is by induction on n.  
 
Base case : n = 2 : Is easily seen since there is only one Huffman tree in this case. 
 
Let n > 2. Let T2 be an optimal Huffman tree as in Claim-1. Consider T2’ with f1 and f2 

deleted in T2 and the parent assigned frequency f1 + f2. Note that  
wpl(T2’) = wpl(T2) – f1 – f2. Hence T2’ must be optimal for (f1+ f2, f3, … , fn).  
 
Let TA’ be with obtained from  TA with f1 and f2 deleted and the parent assigned frequency  
f1 + f2. Then we have wpl(TA’) = wpl(TA) – f1 – f2. Note that TA’ is the output of the algorithm 

for frequencies (f1+ f2, f3, … , fn).  
 
By induction hypothesis for n-1, wpl(TA’)  = wpl(T2’). Hence 
                        wpl(TA) = wpl(TA’) + f1 + f2 = wpl(T2’) + f1 + f2 = wpl(T2).  
 
Hence TA is an optimal Huffman tree. 

 



The Continuous-Knapsack problem 

Idea of the algorithm for continuous knapsack problem: 
Greedy approach 
 
1. Sort pi/wi in the non-increasing order. 

 
2. Include objects in this order till your capacity C is 

exhausted. 

The 0/1 knapsack problem The continuous knapsack problem 



The Continuous-Knapsack problem 

Time Analysis:  
 
While loop runs in time 
θ(n) and sorting takes 
time θ( n log n ), hence 
overall time is θ( n log n ). 



Correctness 



Correctness 



Applications in real life ? 

• Dijkstra shortest path algorithm for google maps. 
 

• Sorting for library, dictionary 
 

• Searching for internet websites 



Dynamic Programming 



Basic of dynamic programming 

• In order to solve the big problem solve sub-problems first. 
• The difference with Divide-and-Conquer is that in this case it is not clear 

which sub-problems should be solved. 
• Therefore in dynamic programming all sub-problems that might be 

needed are solved. 
• First the simplest sub-problems are solved and then the more complex 

ones are solved, all the way up to the original problem. 
• The results of the sub-problems are stored in a table and used later 

whenever needed. 



Computing Fibonacci Numbers 

Very inefficient. f1 , f2, f3 etc. are 
calculated exponentially many times. 
 
Time : θ(2n)  

Efficient  : Time is θ(n) 
 
This is an example of a dynamic 
program. 



Memorized recursive algorithm 

Time : θ(n) 



Coin-changing revisited 

Idea : Let ci, j represent the minimum 
number of coins of denominations 
denom[i] to denom[n] needed to get 
amount j. 
 
Start with cn, j = j for all j from 0 to A. 
Iteratively calculate by running i 
from n-1 downto 1 and j from 0 to A: 
 
ci, j = min{ci+1, j , 1 + ci, j-denom[i]} 
 
The idea is that for finding ci, j, either  
a) you use denom[i] in which case 

ci, j = 1  +ci, j-denom[i] 
b) or you do not use denom[i] in 

which case ci, j  = ci+1, j  
 

Time : θ(n A)  



Optimal substructure property 

• If S is an optimal solution to a problem, then the components of S are 
optimal solutions to subproblems. 
 

• For a dynamic-programming algorithm to solve an optimization problem 
correctly, the optimal substructure property must hold. 
 

• This property holds for coin-changing problem. 
 

• This property does not hold for longest-simple-path problem : For a 
connected weighted graph, and vertices (v,w), find the longest simple path 
from v to w. 



Midterm Answer 1 



Midterm Answer 2 



Midterm Answer 2 



Midterm Answer 3 

Time : While loop will take time O(n) and mergesort will take time θ(n log n). 
Hence total time is θ(n log n).  



Midterm Answer 3 



Midterm Answer 4 

Median(a,b) 
 
1. Set n to be the number of elements 

in a (also in b). 
 

2. If n = 1 
1. If a[1] ≥ b[1], then return b[1] 
2. Otherwise return a[1]. 

 
1. If a[n/2] ≥ b[n/2] 

1. Then note that                                     
a[n/2] ≥  Median(a U b) ≥ b[n/2+1] 
2. The problem now reduces to size n/2 

and then we can proceed similarly.  
 

5. If a[n/2] < b[n/2] 
1. Then note that                                    

a[n/2+1 ] ≤ Median(a U b) ≤ b[n/2] 
2. The problem now reduces to size n/2 

and then we can proceed similarly.  
 

Time : With each iteration of the while loop, the difference between j and i (similarly the difference 
between l and k) reduces by factor of 2. Hence while loop can run log n times. Hence overall running 
time is O(log n). 



Optimal Matrix Multiplication 

Idea : Let s[i,j] represent the minimum 
number of scalar multiplications needed 
to multiply ith matrix through jth matrix. 
 
The idea is that to find s[i,j] you check for 
groupings (i,k) and (k,j) for all k between i 
and j; one of them must be optimal, so 
take their minimum. 
 
Start with s[i,i]= 0 for all i. Iteratively 
calculate by increasing w from 0 to n-1 
and increasing i from 1 to n-w : 
 
s[i,i+w] =  
mink{s[i,k] + s[k+1,i+w] + size[i-1]size[k]size[i+w]} 

Need to multiply matrices by using least number of scalar multiplications. 

Time : θ(n3) 



The longest common subsequence problem 

Given two sequences  a[1], …, a[m]  and b[1], ….b[n] 
 
find a subsequence a[i1], …, a[ik] of a[1], …, a[m]     
  
and find a subsequence b[j1], …, b[jk] of b[1], …, b[n]     
 
such that  a[i1] = b[j1] , …, a[ik] = b[jk]. 
 
The task is to maximize k. 
 
Example :    For   
 
a , b , c, d, e, f        and      a, e, c, f, d, g, p 
 
A longest common subsequence is  (a, c, d). Another is (a,c,f).    



The longest common subsequence problem 

Idea : Let c[i][j] be the length of a longest common 
subsequence of  
a[1], …, a[i]    and     b[1], …, b[j] 
for i = 0, …, m and j=0, …, n.  
 
The idea is that if a[i]=b[j] then a[i] appears in a longest 
common subsequence, otherwise a longest common 
subsequence needs to be found in  
a[1] … a[i-1] and b[1] … b[j]  
Or 
a[1] … a[i] and b[1] … b[j-1]  
 
Start with c[i][0] = 0 for all i and c[0][j]=0 for all j. 
Iteratively calculate by increasing i from 1 to m and 
increasing j from 1 to n: 
 
If a[i] != b[j] then 
 c[i][j] = max{c[i-1][j] , c[i][j-1]} 
 
else  
 c[i][j] = 1+ c[i-1][j-1] . Time : θ(mn) 



Floyd’s algorithm for All Pairs Shortest Paths 
We want to find shortest paths between all pairs of vertices in a simple, 
undirected, weighted graph G. We are given matrix A (as a two dimensional 
array), such that A[i][j] is the weight of the edge (i,j), if there is edge (i,j). 
Otherwise A[i][j] is ∞ .  

Idea: Let Ak represent the matrix such that Ak[i][j] is the length of a shortest 
path from i to j, where the intermediate vertices allowed is {1,2, …, k}.  
 
Initially A0 = A, when no intermediate vertex is allowed. 
 
Assume we have computed A(k-1). Then to compute Ak[i][j] : 
 
a) If k appears in a shortest path between i and j with intermediate 

allowed vertices being {1, …, k}, then 
 Ak[i][j] = A(k-1)[i][k] + A(k-1)[k][j] 
 

b) If k does not appear in a shortest path between i and j with 
intermediate allowed vertices being {1, …, k}, then 

  Ak[i][j] = A(k-1)[i][j] 



Floyd’s algorithm for All Pairs Shortest Paths 
In the algorithm below, at the end A[i][j] is the length of a shortest path 
between i and j. Also next[i][j] is the vertex after i, in a shortest path from 
i to j. 

Time : θ(n3) 



Warshall’s Algorithm 
We are given a simple, undirected, weighted graph G. We want to find for all 
pairs of vertices, if they are connected or not? We are given adjacency matrix A 
(as a two dimensional array), such that A[i][j] is 1 if there is an edge (i,j); 
otherwise A[i][j] is 0 .  

Idea: Let Ak represent the matrix such that Ak[i][j] =1 if there is a path from i 
to j, where the intermediate vertices allowed is {1,2, …, k} (otherwise Ak[i][j] 
=0).  
 
Initially A0 = A, when no intermediate vertex is allowed. 
 
Assume we have computed A(k-1). Then to compute Ak[i][j] : 
 
a) If k appears in a path between i and j with intermediate allowed vertices 

being {1, …, k}, then 
 Ak[i][j] = A(k-1)[i][k]  AND A(k-1)[k][j] 
 

b) If k does not appear in a path between i and j with intermediate 
allowed vertices being {1, …, k}, then 

  Ak[i][j] = A(k-1)[i][j] 



Warshall’s Algorithm 
In the algorithm below, at the end A[i][j] =1 if there is a path between i 
and j.  

Time : θ(n3) 



P and NP  
 

(warning: NP is NOT ‘not P’) 



Decision problems and Function problems 
A decision problem L is a set of binary strings.  

 
An algorithm A is said to accept an input string x, if A(x) = 1 . 
(A(x) represents the output of the algorithm A on input x).  
 
An algorithm A is said to reject an input string x, if A(x) = 0.  
 
Algorithm A is said to decide L if A(x) =1 for all x in L and A(x) = 0 for all x not in  

L.  
 
e.g. Graph connectivity problem : L is the binary encodings of graphs that are 

connected.  
 
Function problems: Algorithm needs to compute a function f(x), given input x. 
 
e.g. Factoring problem: Given a natural number, output smallest divisor greater 

than 1. 



P (for polynomial time) 
We say that algorithm A is a polynomial time algorithm if there exists constants k, 

c, such that on all inputs x, A outputs A(x) within time c |x|k (and uses at most 
c |x|k binary cells of memory). 

 
We say a decision problem L can be decided in polynomial time if there is a 

polynomial time algorithm A that decides L. We define:  
  P = {L | L can be decided in polynomial time}. 
 
Theorem: Let A and B be polynomial time algorithms. Let C be an algorithm that is 

composition of A and B, that is C(x) = A(B(x)); C first run B on input x and then 
runs A on input B(x). Then C is also polynomial time algorithm. 

Proof:  
When B runs on input x, it takes time at most d1 |x|k1

 (where d1 , k1 are some 
constants).  

When A runs on input y, it takes time at most d2 |y|k2
 (where d2 , k2 are some 

constants). 
Therefore when C runs on input x, it takes time at most d1 |x|k1

  to produce B(x) 
and then takes time at most  d2 (d1 |x|k1)k2 (since |B(x)| ≤ d1 |x|k1 ) to produce 
A(B(x)). Hence total time taken by C is at most d3|x|k3

 (where d3 , k3 are some 
constants).  

 
 
 



P 
The issue related to encodings:  
 
Let L1 = {1p  (unary encoding): p is a prime}; L1 can be decided in polynomial 

time. Just check for all number n, between 1 and p, if n divides p. 
 
Let L2 = {p  (binary encoding): p is a prime}; we do not know if L2 can be 

decided in polynomial time. The algorithm above takes exponential time. 
 
Theorem: Let L, a set of binary strings, be decided in polynomial time.  
Let Lt = {t-ary encoding of x | x in L}. Then Lt can be decided in polynomial 

time, for any t > 2.  
Proof: Let A be a polynomial time algorithm for deciding L. Let B be a 

polynomial time algorithm which converts any t-ary string to equivalent 
binary string.  

      Then define C(x) = A(B(x)). By a previous theorem C is also polynomial 
time. Also C decides Lt .  



Nondeterministic Algorithms 
A nondeterministic polynomial time algorithm M. 
 
M(x) { 
\\ guess a witness string wx of length polynomial in |x| 
 guess wx 
\\ V is a polynomial (in |x|) time algorithm 
 Output V(x,wx) 
} 
 
We say that a problem L is decided by M if the following two conditions hold: 

1. If x is in L, then there exists a wx such that V(x,wx) = true . 
2. If x is not in L, then for every string wx, V(x,wx) = false. 
 

We say that L can be decided in nondeterministic polynomial time if L can be 
decided by a nondeterministic polynomial time algorithm M. We define: 

  NP = { L | L can be decided in nondeterministic polynomial time } . 

Since every deterministic polynomial time algorithm is also a nondeterministic 
polynomial time algorithm (where there are no guesses), it implies P is subset of 
NP. 



Some problems in NP 
Graph-Corolaribity = { <G,k> | G can be colored using k colors such that no two adjacent vertices get the same 

color} 
 
Graph-Coloroability (x) { 
if x is not a valid encoding of a graph and a number 
 return false 
else 
  let x = <G=(V,E),k> 
// guess a color for each vertex 
for each v in V 
 guess the color c[v]  
// check that the coloring is valid 
for each v in V  
 if (c[v] not in {1,2,…k}) 
  return false 
for each v in V  
// N(v) is the neighbors of v 
 for each w in N(v)   
  if (c[w] == c[v]) 
   return false 
return true 
} 
 
Time :  O(|V| + |E|), hence nondeterminitic polynomial time. 
 



Some problems in NP 
Hamiltonian-Cycle = { < G > | G has a cycle which touches all vertices exactly once} 
 
Hamiltonian-Cycle (<G>) { 
// G = (V,E), V= {1,2,…n} 
n= |V| 
// guess the sequences of vertices that will appear in a Hamiltonian Cycle 
guess v1, v2, …, vn 
// check only edges in G are used 
// check that all vertices are visited 
for i = 1 to n 
 visited[i] = false 
for i = 1 to n  
 visited[vi] = true 
 if (vi, vi+1) is a not an edge in G 
  return false 
for i = 1 to n 
 if (visited[i] = false) 
  return false 
return true 
} 
 
Time :  O(|V|), hence nondeterminitic polynomial time. 
 



Some problems in NP 
Traveling Salesperson (TSP)  = { < G,w > | G is a weighted graph with Hamiltonian cycle of weight 

at most w} 
 
TSP(<G,w>) { 
// G=(V,E), V = {1,2,…n} 
n= |V| 
// guess the sequences of vertices that will appear in a Hamiltonian Cycle 
guess v1, v2, …, vn 
if v1, v2, …, vn is a not Hamiltonian cycle 
 return false 
// check that the total weight of the cycle is at most w 
t = 0  
for i = 1 to n-1 
 t = t + weight(vi , vi+1) 
if (t > w) 
 return false 
return true 
} 
 
Time :  O(|V|), hence nondeterminitic polynomial time. 
 

 



Exponential time 
We say that algorithm A is an exponential time algorithm if there exists constants k, c, such that  
on all inputs x, A outputs A(x) within time  c 2|x|k . 
 
We say a decision problem L can be decided in exponential time if there is an exponential time algorithm A that 

decides L. We define:  
  EXP = {L | L can be decided in exponential time} 
 
Theorem :  NP is a subset of EXP . 
Proof : Any L be in NP. Consider a nondeterministic polynomial time algorithm for L. It is of the form: 
 
NPalgoforL(x) { 
guess wx of length c1|x|k1 

// V is a polynomial time algorithm running in time c2|x|k2 
return V(x,wx) 
} 
 
EXPalgoforL(x) { 
for all wx of length at most c1|x|k1 

 if (V(x,wx) = true) 
  return true 
return false 
} 
 
EXPalgoforL(x) runs in time O(c2|x|k2  2c1|x|k1 ) = c3 2|x|k3. Hence L is in EXP. 

 



Reducibility 



NP Completeness 



Boolean formula 



Cook-Levin Theorem – First NP-complete problem 

3-SAT is NP-complete 



Reduce SAT to 3-SAT 



Independent set is NP-complete 



Clique is NP-complete 



Graph 3-colorability is NP-complete 



A few other NP-complete problems 

Hamiltonian-Cycle = { < G > | G has a cycle which touches all vertices exactly once} 
 
Traveling Salesperson (TSP)  = { < G,w > | G is a weighted graph with Hamiltonian 
cycle of weight at most w} 
 
Many other real world problems arising from Networks, Packing, Scheduling, 
Graphs, Cryptography, Games, Computational Biology etc. are NP-complete.  Very 
little hope for finding polynomial time algorithms for these! 
 



Algorithms for NP-complete problems 



Approximation Algorithms 
Bin Packing  
 
Input : Sizes s[1], s[2], …, s[n] ϵ (0,1]. 
Output: Minimum number of bins (each of capacity 1) in which these objects can be packed.  
 
next-fit(s) { 
n = s.last 
k = 1 // current bin 
c[k] = 0 // capacity filled till now in current bin 
for i = 1 to n  
 if (c[k] + s[i] ≤ 1 ) { 
  b[i] = k  
  c[k] = c[k]+ s[i] 
 } 
 else { 
 k = k + 1  
 b[i] = k  
 c[k] = s[i] 
 } 
return k 
} 
 
 



Wigderson Coloring 
Theorem : A 3-colorable graph can be colored in polynomial time using at most O(√n) colors. 
 
Input : A 3-colrable graph G = (V,E) 
Ouput : A valid coloring using O(√n)  colors. 
 
Wigderson-coloring(G) { 
n = |V| 
c= 0  // c is color count 
while (V contains a vertex of degree at least √n) { 
 pick v of degree at least √n 
 G’ = (N(v), E) 
 two-color(G’, c) // this colors G’ using two colors c +1 and c +2  
 c= c +2 // move to the next set of colors 
 G = G – N(v) 
 } 
S = {c, c+1, …. , n} 
for each v in V 
 color v with smallest color in S not used by any vertex in N(v) 
} 
 



Brute Force 
Largest Independent Set 
 
Input : Graph G=(V,E) 
Output: None 
 
Largest-independent-set(G) { 
if (E is empty)  
 return |V| 
else { 
 pick first v in V such that N(v) is not empty 
 G1 = G – {v} 
 G2 = G – {v} – N(v)  
 k1 = largest-independent-set(G1) // assume v is not in independent set  
 k2 = largest-independent-set(G2) // assume v is in independent set  
 return max(k1, k2 +1) 
 } 
} 

Let an be the running time. Then  
 
an = an-1 + an-2 + cn2 

 
Solving this recursion gives 
an = O(1.62n) 



Brute Force 

3-SAT 
 
Input Parameter : 3-CNF formula φ 
Ouput : None 
 
3-satisfiability(φ) { 
 if (φ does not contain any clauses) 
  return φ // φ has to be logical 

constant either true of false 
 if (φ contains a clause with one literal a) { 
   φ1 = φ[a->true] // a has to be true 
  return 3-satisfaibility(φ1)   
 } 
 if (φ contains a clause with two literals a and 

b) { 
   φ1 = φ[a->true]  
   φ2 = φ[a->false][b->true] 
  return 3-satisfaibility(φ1) ) || 3-

satisfaibility(φ2) 
 }   
  

if (φ contains a clause with three literals a, b and c){  
 φ1 = φ[a->true] 
  φ2 = φ[a->false][b->true] 
  φ3 = φ[a->false][b->false][c->true] 
 return 3-satisfaibility(φ1)  
 || 3-satisfaibility(φ2)   
 || 3-satisfaibility(φ3) 
 } 
}  

Let an be the  number of recursive calls made 
by the algorithm on input formula with n 
variables. Then  
 
an = an-1 + an-2 + an-3 
 
Solving this recursion gives 
an = O(1.84n). In each recursion the time 
taken is O(|φ|) and hence total time taken is  
O(|φ| 1.84n) . 
 
The best time known till now is O(|φ| 1.77n)  
due to Dantsin, Goerdt, Hirsch and Schoning. 
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