Lecture 3

Reducibility:

- $\text{HALT}_m = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ halts on input } w \}$ is undecidable.

 Proof: Assume for contradiction that HALT_m is decidable. Let R be a decider for HALT_m. Let S be a TM that decides HALT_m.

 1. Run TM R on input $\langle M, w \rangle$.
 2. If R rejects, reject.
 3. If R accepts, simulate M on w until it halts.
 4. If M has accepted, accept; if M has rejected, reject.

 S decides HALT_m. Contradiction. \square

- $\text{Em}_m = \{ \langle M, w \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

 Proof: For TM M and string w, let M_{new} be a TM that:

 1. On input x:
 1. If $x \neq w$ reject.
 2. Otherwise run M on input w.
 3. Accept if M accepts.

 Note that $L(M_{\text{new}}) \neq \emptyset \Leftrightarrow M$ accepts w.

 Assume for contradiction that Em_m is decidable. Let R be a decider for Em_m. Let S_o be a TM that decides Em_m.

 1. Construct description $\langle M_{\text{new}} \rangle$ of TM machine M_{new}.
 2. Run R on input $\langle M_{\text{new}} \rangle$.
 3. If R accepts, reject; if R rejects, accept.

 S_o decides Em_m. Contradiction. \square

- $\text{REGULAR}_m = \{ \langle M, L \rangle : M \text{ is a TM and } L(M) \text{ is a regular language} \}$ is undecidable.
Proof. Assume for contradiction that \(R \) decides \(\text{REWRITE}_m \). Let

\[S = \text{"On input } \langle M, w \rangle \text{:} \]

1. Run \(M \) on input \(w \).

\[M_0 = \text{"On input } x \text{:} \]

3. If \(x \) has the form \(0^n1^n \), accept.

2. Otherwise, run \(M \) on input \(w \). Accept if \(M \) accept \(w \).

1. Run \(R \) on input \(\langle M_0 \rangle \).

3. If \(R \) accept, accept; if \(R \) reject, reject.

\(\) decides \(\text{REWRITE}_m \). Contradiction.

Definition 2: Property \(P \) is a non-trivial property of languages if it is neither true nor false for all TMs.

Rice's Theorem: Every non-trivial property of languages is undecidable.

Proof. Let \(P \) be a non-trivial property. Assume for contradiction that \(R \) decides \(P \).

Let \(T_q \) be a TM that always rejects, i.e., \(L(T_q) = \emptyset \).

Assume without loss of generality \(\langle T_q \rangle \notin P \). Otherwise, \(\langle T_q \rangle \in P \).

Since \(P \) is non-trivial, assume \(\langle T_q \rangle \notin P \).

Let \(S = \text{"On input } \langle M, w \rangle \text{:} \)

1. Construct description \(\langle M_0 \rangle \) of the following TM \(M_0 \):

\[M_0 = \text{"On input } x \text{:} \]

1. Simulate \(M \) on \(w \). If it halts and rejects, reject.

2. If it accepts, go to step 2.

2. Simulate \(T_q \) on \(x \). If \(T_q \) accept \(x \), accept.

1. Run \(R \) on input \(\langle M_0 \rangle \). If \(R \) accept, accept. If \(R \) reject, reject.

Note that \(M_0 \) simulates \(T_q \) if \(M \) accept \(w \). Hence \(L(M_0) = L(T_q) \) if \(M \) accept \(w \) and \(L(w) = \emptyset \) otherwise.

Therefore \(\langle M_0 \rangle \notin P \). Hence \(S \) decides \(\text{REWRITE}_m \). Contradiction.

\(\) \(\text{EQ}_m = \{ \langle M, M' \rangle : M \text{ and } M' \text{ are TMs and } L(M) = L(M') \} \) is undecidable.

Proof. Assume for contradiction that \(R \) decides \(\text{EQ}_m \).

Let \(S = \text{"On input } \langle M, M' \rangle \text{:} \)

1. If \(M, M' \text{ are TMs such that } L(M) \neq L(M') \)
1. Let \(M \) be a TM such that \(L(M) \neq \phi \).

 Run \(R \) on input \(L(M) \).

2. If \(R \) accepts, accept; if \(R \) rejects, reject.

3. Decide \(\exists w \in L(M) \).

Reduction via Computation Histories:

Define: Let \(M \) be a Turing machine and \(w \) an input string. An accepting configuration history for \(M \) on \(w \) is a sequence of configurations \(C_0, C_1, \ldots, C_k \), where \(C_0 \) is the start configuration of \(M \) on input \(w \), \(C_k \) is an accepting configuration of \(M \), and each \(C_i \) legally follows from \(C_{i-1} \) according to the rules of \(M \). A rejecting computation history for \(M \) on \(w \) is defined similarly except that \(C_k \) is a rejecting configuration.

Define: A linear bounded automaton is a Turing machine that does not use more space than the length of the input.

Example 3) Deciders for \(\exists \text{acc} \); \(\exists w \in L(M) \).

2) Every LBA can be decided by an LBA.

\(\exists \text{acc} = \{ \langle M, w \rangle : M \text{ is an LBA and } M \text{ accepts } w \} \) is decidable.

Lemma: Let \(M \) be a LBA with \(q \) states and \(q \) symbols in the tape alphabet. Then there are exactly \(q^q \) distinct configurations of \(M \) for a tape of length \(n \).

Proof: Easy to verify. \(\square \)

Then: \(\exists \text{acc} \) is decidable.

Proof: Decider for \(\exists \text{acc} \)

1. \(\langle M, w \rangle \) as input:

2. Simulate \(M \) on \(w \) for \(q^q \) steps or until it halts. (\(< w \), \(< w \)).

3. If \(M \) accepts, accept. If \(M \) rejects, reject. If \(M \) has not halted reject.

\(\exists \text{enc} = \{ \langle M \rangle : \langle M \rangle \text{ is an LBA and } L(M) \neq \phi \} \) is undecidable.

Proof: For \(\exists \text{acc} \) and string \(w \) consider language:

\(L(w, \alpha) = \{ \langle M \rangle \text{ s.t. } C_\alpha \text{ is an accepting configuration history of } M \text{ on input } w \} \).

Observe that for any \(\langle M \rangle \), \(\exists \text{acc} \langle M \rangle \) is decidable language and can be decided by an LBA. Hence:

Note that \((L(w, \alpha) \neq \emptyset) \iff (M \text{ accepts } \langle M \rangle \iff (M) \in \text{ acc}) \)

Assume for contradiction that \(\exists \text{enc} \) is decidable. Construct TM \(S \) deciding \(\exists \text{enc} \) as follows:
Assume for contradiction that E_{dec} is decidable. Construct TM S deciding A_{dec} as follows:

1. On input $<w>$:
 1. Construct PDA $B(w)$.
 2. Run T (decider for E_{dec}) on input $B(w)$.
 3. If T accepts, reject; if T rejects, accept.

S decides A_{dec}. Contradiction.

- $A_{\text{dec}} = \{ : \text{ } b \in \{0,1\}^* \text{ and } L(b) = \emptyset \text{ is undecidable.}\}

Proof: For TM T and string w, let

$L(w) = \{ : \text{ } b \in \{0,1\}^* \text{ and } \text{ } L(b) = \emptyset \text{ in } \text{Nat} \text{ an accepting configuration of } M \text{ on input } w\}$

Note that $(L(w) = \emptyset) \iff (M \text{ does not accept } w) \iff (\langle w \rangle \notin A_{\text{dec}})$

Note also that for any $(\langle w \rangle, L(w))$, $L(w)$ is decidable, hence and input can be decided by a PDA $B(w)$.

Assume for contradiction that A_{dec} is decidable. Let T be a decider for A_{dec}.

Construct S deciding A_{dec} as follows:

1. On input $\langle w \rangle$:
 1. Construct PDA $B(w)$ deciding $L(w)$.
 2. Construct grammar G of $B(w)$.
 3. Run T on input $\langle b \rangle$.
 4. If T accepts, reject; if T rejects, accept.

S decides A_{dec}. Contradiction.

Mapping Reducibility

Definition (Computable Function): A function $f : \mathbb{Z}^n \rightarrow \mathbb{Z}^m$ is a computable function if

- some Turing machine M_f on every input w, halts with just $f(w)$ on its tape.

 - e.g. Add: $\langle w \rangle \rightarrow \langle w + v \rangle$
 - Multiply: $\langle w \rangle \rightarrow \langle w \times v \rangle$
 - Dec: $\langle w \rangle \rightarrow <w> \rightarrow \langle w \rangle$

Definition (Mapping reducible): Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f : \mathbb{Z}^n \rightarrow \mathbb{Z}^m$, such that for every w:

\[
\text{Let } A \iff f(w) \in B
\]

The function f is called the reduction of A to B.

Mapping reducibility is also called as "many-to-one reducibility."
Then If $A \subseteq B$ then $(B \in \mathsf{decidable}) \Rightarrow (A \in \mathsf{decidable})$

Proof. Let M be a decider for B and let f be a reduction from A to B.

Decide M for A:

1. $N =$ "An input u:
 1. Compress $(u, f(u))$.
 2. Run M on input and output whatever M outputs."

Contrary: If $A \subseteq B$ and A is undecidable, then B is undecidable.

Example: 8) $A_{TM} \in \mathsf{NLOG}$

$F =$ "An input (w):
1. If input is not in some form of repeat the input.
2. Construct the following machine M:

$M =$ "An input x:
1. Run M on x.
2. If M accepts accept.
3. If M rejects, go to a loop."

1. Output (x, y).

b) $E_{TM} \in \mathsf{log}$.

\[f(x) \rightarrow (x, y) \text{ when M rejects all inputs.} \]

g) $A_{TM} \in \overline{E_{TM}}$.

\[f(x) \rightarrow (M, y) \text{ (as in the proof earlier).} \]

Then: If $A \subseteq B$ and B is Turing-recognizable, then A is Turing-recognizable.

Contrary: If $A \subseteq B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Then: A_{TM} is unimplies $A \subseteq B$.

Then: E_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

D_{TM}:

$A_{TM} \in \overline{E_{TM}}$.

$F =$ "An input (w, u):

1. Construct following M_1, M_2, and M_3:

$M_1 =$ "An input x:
1. Repeat w.

$M_2 =$ "An input x:
1. Run M_1 on x, if it accepts accept.

2. Output (M_1, M_2).

$A_{TM} \in \overline{E_{TM}}$.

$G =$ "An input (w, u):
Correspondence Problem

The union of PCP is a collection of strings:

\[P = \{ [x_1], [x_2], [x_3], \ldots, [x_n] \} \]

A match is a sequence \(t_1, t_2, \ldots, t_n \) such that \(t_1, t_2, \ldots, t_n \) is a prefix.

Example:

\[P = \{ [a], [ab], [abc], [abcd] \} \]

A match \([a] [ab] [abc] [abcd] \)

The string \(\text{abcabcabc} \) is a match.

PCP = \{ \(<p> \): P is a collection of strings with a match \}

Theorem: PCP is undecidable.

Proof:

We show reduction from ATM via accepting computation history.

Fix any TM \(M \) and string \(w \). Let \(w \) be without infinite \(\delta \) of \(\langle M \rangle \) where \(w \) is in an accepting computation history for \(M \) on \(w \).

Formal description:

1. \(M \) or \(\delta \) never attempts to move its head off the left-hand end of the tape.
2. \(\delta \) is \(\epsilon \), in which case, \(\delta \) is in the continuation of \(P \).
3. We require that the first symbol will be \(\delta \). \(\delta \) will be in the continuation of \(P \).

\[P(C) = \{ <\delta>: P \text{ is a collection of strings with a match that starts with the first symbol} \} \]

We first prove \(\text{ATM} \in \text{PCP} \).

Let \(M = (Q, \Sigma, \Gamma, \delta, s, \text{accept}, \text{reject}) \). Let \(w \in \Sigma^* \).

Part 1: For \(\frac{\frac{\Gamma}{\delta(0, s)}}{\text{it is a first symbol in } P} \).

Part 2: For all \(s \in \Gamma \) and any \(q \in Q \) where \(q \neq \text{reject} \),

\[\psi(\delta(q)) = (q, \delta(q)), \text{ put } [\frac{\gamma}{\delta(q)}] \text{ into } P. \]

Part 3: For all \(q \in Q \) and any \(q \in Q \) where \(q \neq \text{ reject} \),

\[\psi(\delta(q)) = (q, q), \text{ put } [\frac{\gamma}{\delta(q)}] \text{ into } P. \]

Part 4: For all \(q \in Q \), put \([\frac{\gamma}{\delta(q)}] \text{ into } P. \)

Part 5: Put \(\frac{\frac{\Gamma}{\delta(0, s)}}{\text{it is a first symbol in } P} \).

TOC Page 6
Part 5: Put \(\begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix} \) and \(\begin{bmatrix} \frac{4}{5} \\ \frac{3}{5} \end{bmatrix} \) into \(P \).

Part 6: For any \(a \in R \), let
\[
\begin{bmatrix} \frac{a}{5} \\ \frac{1-a}{5} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \frac{1-a}{5} \\ \frac{a}{5} \end{bmatrix}
\]
into \(P \).

Part 7: Add \(\begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix} \) into \(P \).

Main beginning, let \(i = 0 \).

\[
\begin{bmatrix}
0 & 1 & 0 & 0 & 0
\end{bmatrix}
\]

Let \(d(q_0, x) = (3, 2, 2) \), so we have diagonal \(\begin{bmatrix} \frac{3}{2} \end{bmatrix} \) in \(P \).

We also have \(\begin{bmatrix} 0 \end{bmatrix} \) and \(\begin{bmatrix} \frac{1}{2} \end{bmatrix} \) in \(P \).

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Let \(d(q_0, 3) = (3, 2, 2) \); we have \(\begin{bmatrix} \frac{3}{2} \end{bmatrix} \) in \(P \).

\[
\begin{bmatrix}
1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Suppose we reach \(q_0 \).

\[
\begin{bmatrix}
2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Considering instance \(P \) of \((\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots) \) of \(P \).

For \(i = 0 \), \(u_i = u_i \), let
\[
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Let \(P \), \(\begin{bmatrix} \frac{2}{5} \\ \frac{3}{5} \end{bmatrix} \) to form directly with \(\begin{bmatrix} \frac{2}{5} \end{bmatrix} \).

Thus let \(P \), \(\begin{bmatrix} \frac{2}{5} \\ \frac{3}{5} \end{bmatrix} \), \(\begin{bmatrix} \frac{3}{5} \\ \frac{2}{5} \end{bmatrix} \), \(\begin{bmatrix} \frac{1}{5} \\ \frac{4}{5} \end{bmatrix} \), \(\begin{bmatrix} \frac{4}{5} \\ \frac{1}{5} \end{bmatrix} \), \(\begin{bmatrix} \frac{1}{5} \\ \frac{4}{5} \end{bmatrix} \), \(\begin{bmatrix} \frac{4}{5} \\ \frac{1}{5} \end{bmatrix} \).