1. Let \(A = \{x, y, z\} \) and \(B = \{x, y\} \).
 (a) Is \(A \) a subset of \(B \)?
 (b) Is \(B \) a subset of \(A \)?
 (c) What is \(A \cup B \)?
 (d) What is \(A \cap B \)?
 (e) What is \(A \times B \)?
 (f) What is the power set of \(B \)?

2. If \(A \) has \(a \) elements and \(B \) has \(b \) elements, how many elements are in \(A \times B \)? Explain your answer.

3. If \(C \) is a set of \(c \) elements, how many elements are in the power set of \(C \)? Explain your answer.

4. For each part, give a relation that satisfies the condition:
 (a) Reflexive and symmetric but not transitive.
 (b) Reflexive and transitive but not symmetric.
 (c) Symmetric and transitive but not reflexive.

5. Find the error in the following proof that \(2 = 1 \). Let \(a = b = 1 \), then,

 \[
 \begin{align*}
 a &= b \\
 \Rightarrow a^2 &= ab \\
 \Rightarrow a^2 - b^2 &= ab - b^2 \\
 \Rightarrow (a + b)(a - b) &= b(a - b) \\
 \Rightarrow a + b &= b \\
 \Rightarrow 2 &= 1
 \end{align*}
 \]

6. Find the error in the following proof that all horses are the same color.
 Claim: In any set of \(h \) horses, all horses are the same color.
Proof: By induction on h.

Basis: For $h = 1$. In any set containing just one horse, all horses clearly are the same color.

Induction step: For $k \geq 1$ assume that the claim is true for $h = k$ and prove that it is true for $h = k + 1$. Take any set H of $k + 1$ horses. We show that all the horses in this set are the same color. Remove one horse from this set to obtain the set H_1 with just k horses. By the induction hypothesis, all the horses in H_1 are the same color. Now replace the removed horse and remove a different one to obtain the set H_2. By the same argument, all the horses in H_2 are the same color. Therefore all the horses in H must be the same color, and the proof is complete. □

7. Show that every graph with 2 or more nodes contains two nodes that have equal degrees.