CS3231: Tutorial - 2

Rahul Jain

30-Aug-2010

- 1. Give state diagrams for DFA as required for recognizing the following languages. In all parts the alphabet is $\{0, 1\}$.
 - (a) $\{w \mid w \text{ does not contain the substring } 110\}$.
 - (b) $\{\varepsilon, 0\}.$
 - (c) The empty set.
 - (d) All strings except the empty string (also give a formal description of this last DFA).
 - (e) $\{w \mid w \text{ contains at least two zeros}\}.$
- 2. For language A, let $A^R = \{w^R | w \in A\}$ (recall w^R is the reverse of w). Show that if A is regular then A^R is regular.
- 3. Let $D = \{w | w \text{ contains an even number of } a$'s and an odd number of b's and does not contain the substring $ab\}$. Give a DFA with five states that recognizes D.
- 4. Let F be the language of all strings over $\{0, 1\}$ that do not contain a pair of 1s that are separated by an odd number of symbols. Give the state diagram of a DFA with 5 states that recognizes F.
- 5. Let $C = \{x \mid x \text{ is a binary number that is a multiple of 3}\}$. Show that C is a regular language.
- 6. For languages A and B, let the perfect-shuffle of A and B be the language:

 $\{w \mid w = a_1 b_1 \cdots a_k b_k, \text{ where } a_1 \cdots a_k \in A \text{ and } b_1 \cdots b_k \in B, \text{ each } a_i, b_i \in \Sigma\}$.

Show that the class of regular languages is closed under perfect-shuffle.