CS3231 : Tutorial - 3

Rahul Jain

06-Sep-2010

- 1. Give state diagrams for NFA as required for recognizing the following languages. In all parts the alphabet is $\{0, 1\}$.
 - (a) NFA for $\{w | w \text{ contains an even number of 0s, or contains exactly two 1s}$ with six states; NFA for $0^*1^*00^*$ with three states; NFA for $\{0\}$ with two states (also give a formal description of this last NFA).
 - (b) NFA for A^* where $A=\{01\}\cup\{001\}.$ Convert this NFA to equivalent DFA .
 - (c) For each $k \ge 1$, let $C_k = \{\Sigma^* 0 \Sigma^{k-1}\}$. Give an NFA with k+1 states recognizing C_k . Also give a formal description of this NFA.
- 2. Prove the following languages are not regular :
 - (a) $\{0^n 1^m 0^n | m, n \ge 0\}.$
 - (b) $\{0^m 1^n | m \neq n\}.$
 - (c) $\{w | w \in \{0,1\}^*$ is not a palindrome $\}$. Palindrome is a string that reads the same forward and backward.
- 3. Covert the following regular expressions into NFA.
 - (a) $(0 \cup 1)^* 000 (0 \cup 1)^*$.
 - (b) $(((00)^*(11)) \cup 01)^*$.
 - (c) ϕ^* .
- 4. For languages A and B, let the shuffle of A and B be the language :

 $\{w \mid w = a_1 b_1 \cdots a_k b_k, \text{ where } a_1 \cdots a_k \in A \text{ and } b_1 \cdots b_k \in B, \text{ each } a_i, b_i \in \Sigma^*\}$.

Show that the class of regular languages is closed under shuffle.

5. For language A, let

 $DROP - OUT(A) = \{xz \mid xyz \in A \text{ where } x, z \in \Sigma^*, y \in \Sigma\}$.

Show that if A is regular then DROP - OUT(A) is regular.

Continued in the next page.

6. Convert the following finite automaton into regular expressions :

Figure 1: Figure for Question 6